
Designing Light-Weight Networks for
Mobile Applications

Jianping Fan

Dept of Computer Science

UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Outline

1. Background

2. SqueezeNet

3. MobileNet v1

4. MobileNet v2

5. ShuffleNet

6. Summary

7. References

2

Source:

http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf 4

Special Requirements from Mobile Applications

• Low Battery small size of model, cost-
efficient inference methods, short inference
time & cost

• Small Memory small size of model, less
parameters, less data-hungry for model
updating

• Quick Response: short inference time

Small Model

For Mobile Applications

Accuracy vs. Energy Cost & Model Size

Why smaller models?

Why smaller models?

Why smaller models?

Why smaller models?

Why smaller models?

Why smaller models?

12

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

Source:

http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf

13

Original Net Design

Knowledge Distillation

Model Compression

Efficient Implementation

loss

student

teacher

data

New Layer Types

Design Space Exploration

Techniques for Creating Fast & Energy-Efficient DNNs

14

Original Net Design

Knowledge Distillation

Model Compression

Efficient Implementation

loss

student

teacher

data

New Layer Types

Design Space Exploration

Techniques for Creating Fast & Energy-Efficient DNNs

15

Original Net Design

Knowledge Distillation

Model Compression

Efficient Implementation

loss

student

teacher

data

New Layer Types

Design Space Exploration

Techniques for Creating Fast & Energy-Efficient DNNs

Where computational cost comes from?

Where computational cost comes
from in deep networks?

• Kernel numbers for convolution

• Channel numbers for image inputs or feature
maps

• Size of feature maps

Kernel Reduction

While 1x1 filters cannot see outside of a 1-pixel radius, they retain the ability
to combine and reorganize information across channels.

SqueezeNet (2016): we found that we could replace half the 3x3 filters with
1x1's without diminishing accuracy

SqueezeNext (2018): eliminate most of the 3x3 filters – we use mix of 1x1,
3x1, and 1x3 filters (and still retain accuracy)

3

3

x numFilt

1

1 x numFilt

REDUCING THE SIZE (HEIGHT AND WIDTH) OF FILTERS

Kernel Reduction
Decomposing larger filter into smaller ones

Channel Reduction
REDUCING THE NUMBER of CHANNELS

Depthwise Separable Convolution

used in recent papers such as MobileNets and ResNeXt

3

3

x numFilt

3

3

x numFilt

ALSO CALLED: "GROUP CONVOLUTIONS" or "CARDINALITY"

Channel Reduction
REDUCING THE NUMBER of CHANNELS

Feature Map Reduction
REDUCING THE SIZE of FEATURE MAPS

Four Advantages of Light-Weight (Smaller) Networks:

(1) Smaller CNNs require less communication

across servers during distributed training.

(2) Smaller CNNs require less bandwidth to export

a new model from the cloud to a mobile device.

(3) Smaller CNNs are more feasible to deploy on

FPGAs and other hardware with limited

memory.

(4) Smaller CNNs result in less inference time and

storage space.

DNN Challenges in Training

Don’t support full training due to energy inefficiency

TFLite Apple AI Hawaii NPUNervana

Highly Parallel Architecture

High Precision Computation2

1

DNN/CNN
Training

How about using existing PIM architectures?

Large Data Movement3

Mohsen Imani, Saransh Gupta, Yeseo, Kim, Tajana Rosing:University of California San Diego

Neural Networks

Activation
Function (g)

Derivative
Activation (g’)

Feed Forward

Zi Weight Matrix aj
Zj

g’(aj)

Weight
Wij

j

i

k w1j

wij

z1

zi

g zj

aj

wjkwij

i j

jkwk)ja('g= j

wjk

k

j .izη – ijw ij w

Error Backward:

Weight Update:

wij

Back Propagation

jkwk)ja('g= j
Error Backward:

j .izη – ijw ij w

Vector-Matrix Multiplication

Input Weight Matrix

A
d

d
it

io
n Doesn’t support

row-level addition

a1

a2

a3

a4

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

Row-Parallel Copy

Transposed
Input

Transposed
Weight

Addition

Multiplication

Multiplication

Neural Network: Convolution Layer

Weight
MatrixZ1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

w1 w2

w3 w4

Input
Convolution

Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

How to move convolution
windows in memory

Write in memory is too slow!

*

Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

Input

w1 w2 w3 w4

w1 w2 w3 w4

w1 w2 w3 w4

Shifter

Expand
weights

Multiplication Addition Addition

Neural Network: Back Propagation

Activation
Function (g)

Derivative
Activation (g’)

Error Backward Weight Update

Feed Forward
Zi Weight Matrix aj

Zj

g’(aj)

δk Weight Matrix

Weight
Wjk

Weight
Wij

Weight
Wij

Updated Weight

ηδjZi

i j

jkwk)ja('g= j

wjk

k

j .izη – ijw ij w

Error Backward:

Weight Update:

wij

η

δj

jkwk)ja('g= j
Error Backward:

j .izη – ijw ij w

Back Propagation

Memory Layout: Back Propagation

δk

Copies
WTjk g’(aj) ηZj δj

PIM
Reserved

Stored during Feed Forward

δj

Copies
WTij g’(ai)ηZi δi

PIM
Reserved

Stored during Feed Forward

Switch

Error Backward Weight Update

δk Weight Matrix

Weight
Wjk

Weight
Wij

Updated Weight

ηδjZi

δj

Update next
layer weights

Memory Layout: Back Propagation

δk

Copies
WTjk g’(aj) ηZj δj

PIM
Reserved

Stored during Feed Forward

δj

Copies
WTij g’(ai)ηZi δi

PIM
Reserved

Stored during Feed Forward

Switch

Error Backward Weight Update

δk Weight Matrix

Weight
Wjk

Weight
Wij

Updated Weight

ηδjZi

δj

Update next
layer weights

Approaches for Applying Deep
Networks on Mobile Devices

a.Designing Light-Weight Deep Networks

directly towards mobile applications

b.Performing Model Compression over Heavy but

Accurate Network

c.Knowledge Distillation from a Heavy Large

Teacher Network to a Light-Weight Small Student

Network

d.Searching Light-Weight Network according to

Pre-defined Constraints

35

Original Net Design

Knowledge Distillation

Model Compression

Efficient Implementation

loss

student

teacher

data

New Layer Types

Design Space Exploration

Techniques for Creating Fast & Energy-Efficient DNNs

SqueezeNet

Three issues to define size of
neural networks:

• Kernel numbers for convolution

• Channel numbers for image input or feature
maps

• Size of feature maps

SqueezeNet

39

SqueezeNet

• Strategy 1. Replace 3×3 filters with 1x1 filters
◦ Parameters per filter: (3×3 filter) = 9 * (1x1 filter)

• Strategy 2. Decrease the number of input channels to
3×3 filters by using squeeze layers

◦ Total # of parameters: (# of input channels) * (# of
filters) * (# of parameters per filter)

• Strategy 3. Down-sample late in the network so that
convolution layers have large activation maps
◦ Size of activation maps: the size of input data, the
choice of layers in which to down-sample in the CNN
architecture

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

Key ideas

40

SqueezeNet

• Fire module is consist of:

◦ A squeeze convolution layer

◦ full of 𝑆1×1# of 1×1 filters

◦ An expand layer

◦ mixture of 𝑒1×1 # of 1×1 and 𝑒3×3 # of 3×3 filters

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

A Fire module is comprised of: a squeeze convolution layer (which has only

1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3

convolution filters

41

SqueezeNet
• Strategy 2. Decrease the

number of input channels to
3×3 filters
◦ Total # of parameters: (# of
input channels) * (# of filters)
* (# of parameters per filter)

Squeeze Layer

Set 𝑆1×1 < (𝑒1×1 + 𝑒3×3)

How much can we limit 𝑆1×1?

limits the # of input channels to

3×3 filters

How much can we replace 3×3

with 1×1?

• Strategy 1. Replace 3×3 filters with

1x1 filters

◦ Parameters per filter: (3×3 filter) = 9

* (1×1 filter)
(𝑒1×1 𝑣𝑠 𝑒3×3)?

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

A Fire module is comprised of: a

squeeze convolution layer (which

has only 1x1 filters), feeding into an

expand layer that has a mix of 1x1

and 3x3 convolution filters

42

SqueezeNet

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

These relative late placements of

pooling concentrates activation

maps at later phase to preserve

higher accuracy .

Strategy 3. Downsample

late in the network so that

convolution layers have large

activation maps

◦ Size of activation maps: the

size of input data, the choice of

layers in which to downsample

in the CNN architecture

A Fire module is comprised of: a squeeze convolution layer (which has only

1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3

convolution filters

SqueezeNet Design Strategies

• Strategy 1. Replace 3x3 filters with 1x1 filters
– Parameters per filter: (3x3 filter) = 9 * (1x1 filter)

• Strategy 2. Decrease the number of input channels to
3x3 filters
– Total # of parameters: (# of input channels) * (# of

filters) * (# of parameters per filter)

• Strategy 3. Down-sample late in the network so that
convolution layers have large activation maps
– Size of activation maps: the size of input data, the

choice of layers in which to down-sample in the CNN
architecture

45Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf

Microarchitecture – Fire Module

• Fire module is consist
of:

– A squeeze convolution
layer

• full of s1x1 # of 1x1 filters

– An expand layer

• mixture of e1x1 # of 1x1
and e3x3 # of 3x3 filters

46

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf

Microarchitecture – Fire Module

47

Squeeze Layer

Set s1x1 < (e1x1 + e3x3),

limits the # of input channels to 3*3

filters

Strategy 2. Decrease the number of input

channels to 3x3 filters

Total # of parameters: (# of input

channels) * (# of filters) * (# of

parameters per filter)

How much can we limit

s1x1?

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

Strategy 1. Replace 3*3 filters with 1*1

filters

Parameters per filter: (3*3 filter) = 9 *

(1*1 filter)

How much can we replace 3*3 with

1*1?

(e1x1 vs e3x3)?

https://arxiv.org/pdf/1602.07360v4.pdf

Parameters in Fire Module

The # of expanded filter(ei)
ei = ei,1x1 + ei,3x3

The % of 3x3 filter in expanded
layer(pct3x3)

ei,3x3 = pct3x3 * ei

The Squeeze Ratio(SR)
si,1x1 = SR *ei

48
Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf

Macroarchitecture

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

49

Strategy 3. Downsample late in the

network so that convolution layers have

large activation maps

Size of activation maps: the size of

input data, the choice of layers in

which to downsample in the CNN

architecture

These relative late placements of pooling

concentrates activation maps at later phase to

preserve higher accuracy

https://arxiv.org/pdf/1602.07360v4.pdf

Macroarchitecture

50
Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf

Summary of SqueezeNet

• Comparing with AlexNet: with close accuracy
rate, the ratio of their parameter sizes is 1:50

• If model compression is performed, comparing
with AlexNet, the ratio of their parameter sizes
is 1:510

• Three strategies: (a) using 1x1filter to replace
3x3filter; (b) using squeeze layer to reduce the
channels; © performing down-sampling late in
the network to gain larger activation map; all
these are implemented in fire module

MobileNet V1

Three issues to define size of
neural networks:

• Kernel numbers for convolution

• Channel numbers for image input or feature
maps

• Size of feature maps

SqueezeNet

SqueezeNet

MobileNet V1

59

MobileNet v1

Key Idea : Depthwise Separable Convolution!

• The MobileNet model is based on depthwise

separable convolutions which is a form of

factorized convolutions which factorize a

standard convolution into a depthwise

convolution and a 1× 1 convolution called a

pointwise convolution.

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

60

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

61

MobileNet v1

Standard Convolution Operation

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

62

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

VGG, Inception-v3

• VGG – use only 3x3 convolution

◦ Stack of 3x3 conv layers has same effective

receptive field

as 5x5 or 7x7 conv layer

◦ Deeper means more non-linearities

◦ Fewer parameters: 2 × (3 × 3 × C) vs (5

× 5 × C)

• Inception-v3

◦ Factorization of filters

63

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Why should we always consider all channels?

64

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Standard Convolution

65

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Depthwise Separable Convolution

• Depthwise Convolution + Pointwise

Convolution(1x1 convolution)

66

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Standard Convolution vs Depthwise Separable

Convolution

67

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Standard Convolution vs Depthwise Separable

Convolution

• Standard convolutions have the computational cost of

◦ 𝐷𝐾×𝐷𝐾×M×N×𝐷𝐹×𝐷𝐹
• Depthwise separable convolutions cost

◦ 𝐷𝐾×𝐷𝐾×M×𝐷𝐹×𝐷𝐹+M×N×𝐷𝐹×𝐷𝐹
• Reduction in computations

◦ 1/N+1/𝐷𝐾
2

◦ If we use 3x3 depthwise separable convolutions, we get

between 8 to 9 times
𝐷𝐾: width/height of filters

𝐷𝐹: width/height of feature maps

M : number of input channels

N : number of output

channels(number of filters)

68

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Depthwise Separable Convolution

69

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Model Structure

70

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Width Multiplier & Resolution Multiplier

• Width Multiplier – Thinner Models
◦ For a given layer and width multiplier α, the number of input

channels M becomes αM and the number of output channels N
becomes αN – where α with typical settings of 1, 0.75, 0.6 and
0.25
• Resolution Multiplier – Reduced Representation

◦ The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ρ

◦ 0<ρ≤1, which is typically set of implicitly so that input
resolution of network is 224, 192, 160 or 128(ρ = 1, 0.857, 0.714,
0.571)
• Computational cost:

◦ 𝐷𝐾×𝐷𝐾×αM×ρ𝐷𝐹×ρ𝐷𝐹+αM×αN×ρ𝐷𝐹× ρ𝐷𝐹

71

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Width Multiplier & Resolution Multiplier

72

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Experiments – Model Choices

73

MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Experiments – Results

MobileNet V2

77

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Key ideas

• Strategy 1. Linear Bottleneck

◦ using depthwise separable convolution as

efficient building blocks. However, V2 introduces

two new features to the architecture: 1) linear

bottlenecks between the layers

• Strategy 2. Inverted Residual Blocks

◦ shortcut connections between the bottlenecks

78

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Linear Bottleneck

• Informally, for an input set of real images, we
say that the set of layer activations forms a
“manifold of interest” .

• It has been long assumed that manifolds of
interest in neural networks could be
embedded in low-dimensional subspaces.

79

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Residual Blocks

• Residual blocks connect the beginning and end of a
convolutional block with a shortcut connection. By
adding these two states the network has the
opportunity of accessing earlier activations that
weren’t modified in the convolutional block.

• Wide → narrow(bottleneck) → wide approach

80

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Inverted Residuals

• Inspired by the intuition that the bottlenecks

actually contain all the necessary information,

while an expansion layer acts merely as an

implementation detail that accompanies a non-

linear transformation of the tensor, the authors

use shortcuts directly between the bottlenecks.

• narrow → wide → narrow approach

81

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Information Flow Interpretation

• The proposed convolutional block has a unique
property that allows to separate the network
expressiveness (encoded by expansion layers) from
its capacity (encoded by bottleneck inputs).

82

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

The Architecture of MobileNetV2

• The architecture of

MobileNetV2 contains

the initial fully

convolution layer with

32 filters, followed by

19 residual bottleneck

layers described in the

Table 2.

83

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Memory Efficient Inference

• The amount of memory is simply the maximum total
size of combined inputs and outputs across all
operations.

• If we treat a bottleneck residual block as a single
operation (and treat inner convolution as a
disposable tensor), the total amount of memory
would be dominated by the size of bottleneck
tensors, rather than the size of tensors that are
internal to bottleneck (and much larger)

84

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Comparison of Convolutional Blocks for Different Architectures

85

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

The Max Number of Channels/Memory(in Kb)

86

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

ImageNet Classification Results

87

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

MobileNet v1 Vs MobileNet v2

88

MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018: 4510-4520.

Object Detection & Semantic Segmentation Results

Object Detection Semantic Segmentation

ShuffleNet

Three issues to define size of
neural networks:

• Kernel numbers for convolution

• Channel numbers for image input or feature
maps

• Size of feature maps

SqueezeNet

MobileNet V1

SqueezeNet

MobileNet V1

ShuffleNet

93

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Key ideas

• Strategy 1. Use depthwise separable convolution

• Strategy 2. Grouped convolution on 1x1
convolution layers – pointwise group convolution

• Strategy 3. Channel shuffle operation after
pointwise group convolution

94

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Grouped Convolution

95

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

1x1 Grouped Convolution with Channel Shuffling

• If multiple group convolutions stack together, there is one side effect(a)
◦ Outputs from a certain channel are only derived from a small fraction of input

channels
• If we allow group convolution to obtain input data from different groups, the input

and outputchannels will be fully related

96

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Channel Shuffle Operation

• Suppose a convolutional layer with g groups whose
output has g×n channels; we first reshape the
output channel dimension into (g, n), transposing
and then flattening it back as the input of next layer.

• Channel shuffle operation is also differentiable

97

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

ShuffleNet Units

98

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

ShuffleNet Units

• From (a), replace the first 1x1 layer with pointwise group

convolution followed by a channel shuffle operation

• ReLU is not applied to 3x3 DWConv

• As for the case where ShuffleNet is applied with stride,

simply make to modifications

◦ Add 3x3 average pooling on the shortcut path

◦ Replace element-wise addition with channel

concatenation to enlarge channel dimension with little

extra computation

99

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Complexity

• For example, given the input size c×h×w and the bottleneck channel m

100

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

ShuffleNet Architecture

101

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Experimental Results

• It is clear that channel shuffle consistently boosts classification scores for

different settings

102

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Experimental Results

103

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Experimental Results

• Results show that with similar accuracy ShuffleNet is much more efficient

than others

104

ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018: 6848-6856.

Experimental Results

• Due to memory access and other overheads, every 4x theoretical complexity reduction usually result in ~2.6x

actual speedup. Compared with AlexNet achieving ~13x actual speedup(the theoretical speedup is 18x)

Except Designing Light-Weight Networks, Other

Approaches to enable Mobile Applications

include:

a.Network Compression such as singular value

decomposition (SVD), network pruning,

quantization, binarization, …..

b.Knowledge Distillation from heavy large

teacher network to light-weight small student

network

c.Automatic Network Searching

10
6

Original Net Design

Knowledge Distillation

Model Compression

Efficient Implementation

loss

student

teacher

data

New Layer Types

Design Space Exploration

Techniques for Creating Fast & Energy-Efficient DNNs

Automatic Network Search

Network Compression and Speedup 107

Summary

Model

SqueezeNet
1×1 filters , input channels , Down-
sample late in network

MobileNet v1 Pruning ,Weight Sharing , Groupwise Conv.

MobileNet v2
Depthwise conv + Pconv, Width Multiplier,
Resolution Multiple

ShuffleNet
Depthwise convolution with Channel
Shuffle

Network Compression and Speedup 108

Summary

Model Caffe Tensorflow Keras PyTorch Migration network
Recommendation

level

SqueezeNet 1★ 4★ 2★ 2★
AlexNet,

faster-rcnn
3★

MobileNet v1 4★ 5★ 3★ 3★
Mobilenet-SSD,

MXNet, faster-rcnn
3★

MobileNet v2 3★ 5★ 2★ 4★
MobileNetv2-

SSDLite
5★

ShuffleNet 5★ 4★ 2★ 5★ Shufflenet-SSD 4★

Tips: according to the number of people used

References
• Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

• Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for
mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

• Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear
bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018: 4510-4520.

• Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network
for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018: 6848-6856.

• Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding[J]. arXiv preprint arXiv:1510.00149, 2015.

• Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.

• http://slazebni.cs.illinois.edu/spring17/lec06_compression.pdf

• https://www.slideshare.net/JinwonLee9/mobilenet-pr044

• https://www.slideshare.net/JinwonLee9/pr108-mobilenetv2-inverted-residuals-and-linear-
bottlenecks

• https://www.slideshare.net/JinwonLee9/shufflenet-pr054

109

http://slazebni.cs.illinois.edu/spring17/lec06_compression.pdf
https://www.slideshare.net/JinwonLee9/mobilenet-pr044
https://www.slideshare.net/JinwonLee9/pr108-mobilenetv2-inverted-residuals-and-linear-bottlenecks
https://www.slideshare.net/JinwonLee9/shufflenet-pr054

