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Special Requirements from Mobile Applications

• Low Battery small size of model, cost-
efficient inference methods, short inference 
time & cost

• Small Memory small size of model, less 
parameters, less data-hungry for model 
updating

• Quick Response: short inference time

Small Model



For Mobile Applications

Accuracy vs. Energy Cost & Model Size



Why smaller models?



Why smaller models?
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Why smaller models?



Why smaller models?
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Operation Energy [pJ] Relative Cost 

32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

Source: 

http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf
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Where computational cost comes from?



Where computational cost comes 
from in deep networks?

• Kernel numbers for convolution 

• Channel numbers for image inputs or feature 
maps 

• Size of feature maps



Kernel Reduction 

While 1x1 filters cannot see outside of a 1-pixel radius, they retain the ability 
to combine and reorganize information across channels.

SqueezeNet (2016): we found that we could replace half the 3x3 filters with 
1x1's without diminishing accuracy

SqueezeNext (2018): eliminate most of the 3x3 filters – we use mix of 1x1, 
3x1, and 1x3 filters (and still retain accuracy)

3
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REDUCING THE SIZE (HEIGHT AND WIDTH) OF FILTERS



Kernel Reduction 
Decomposing larger filter into smaller ones 



Channel Reduction 
REDUCING THE NUMBER of CHANNELS



Depthwise Separable Convolution

used in recent papers such as MobileNets and ResNeXt
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3

3

x numFilt

ALSO CALLED: "GROUP CONVOLUTIONS" or "CARDINALITY"



Channel Reduction 
REDUCING THE NUMBER of CHANNELS



Feature Map Reduction 
REDUCING THE SIZE of FEATURE MAPS



Four Advantages of Light-Weight (Smaller) Networks: 

(1) Smaller CNNs require less communication 

across servers during distributed training. 

(2) Smaller CNNs require less bandwidth to export 

a new model from the cloud to a mobile device. 

(3) Smaller CNNs are more feasible to deploy on 

FPGAs and other hardware with limited 

memory. 

(4) Smaller CNNs result in less inference time and 

storage space.



DNN Challenges in Training

Don’t support full training due to energy inefficiency 

TFLite Apple AI Hawaii NPUNervana

Highly Parallel Architecture

High Precision Computation2

1

DNN/CNN 
Training

How about using existing PIM architectures?

Large Data Movement3

Mohsen Imani, Saransh Gupta, Yeseo, Kim, Tajana Rosing:University of California San Diego



Neural Networks
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Neural Network: Convolution Layer
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*

Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

Input

w1 w2 w3 w4

w1 w2 w3 w4

w1 w2 w3 w4

Shifter

Expand 
weights

Multiplication Addition Addition





Neural Network: Back Propagation
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Memory Layout: Back Propagation
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Approaches for Applying Deep 
Networks on Mobile Devices

a.Designing Light-Weight Deep Networks 

directly towards mobile applications 

b.Performing Model Compression over Heavy but 

Accurate Network 

c.Knowledge Distillation from a Heavy Large 

Teacher Network to a Light-Weight Small Student 

Network

d.Searching Light-Weight Network according to 

Pre-defined Constraints
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SqueezeNet



Three issues to define size of 
neural networks:

• Kernel numbers for convolution 

• Channel numbers for image input or feature 
maps 

• Size of feature maps



SqueezeNet
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SqueezeNet

• Strategy 1. Replace 3×3 filters with 1x1 filters
◦ Parameters per filter: (3×3 filter) = 9 * (1x1 filter)

• Strategy 2. Decrease the number of input channels to 
3×3 filters by using squeeze layers

◦ Total # of parameters: (# of input channels) * (# of 
filters) * ( # of parameters per filter)

• Strategy 3. Down-sample late in the network so that 
convolution layers have large activation maps
◦ Size of activation maps: the size of input data, the 
choice of layers in which to down-sample in the CNN 
architecture 

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

Key ideas
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SqueezeNet

• Fire module is consist of:

◦ A squeeze convolution layer

◦ full of 𝑆1×1# of 1×1 filters

◦ An expand layer

◦ mixture of 𝑒1×1 # of 1×1 and 𝑒3×3 # of 3×3 filters

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

A Fire module is comprised of: a squeeze convolution layer (which has only 

1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3 

convolution filters
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SqueezeNet
• Strategy 2. Decrease the 

number of input channels to 
3×3 filters
◦ Total # of parameters: (# of 
input channels) * (# of filters) 
* ( # of parameters per filter)

Squeeze Layer

Set 𝑆1×1 < (𝑒1×1 + 𝑒3×3)

How much can we limit 𝑆1×1?

limits the # of input channels to 

3×3 filters

How much can we replace 3×3 

with 1×1? 

• Strategy 1. Replace 3×3 filters with 

1x1 filters

◦ Parameters per filter: (3×3 filter) = 9 

* (1×1 filter)
(𝑒1×1 𝑣𝑠 𝑒3×3 )?

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

A Fire module is comprised of: a 

squeeze convolution layer (which 

has only 1x1 filters), feeding into an 

expand layer that has a mix of 1x1 

and 3x3 convolution filters



42

SqueezeNet

Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

These relative late placements of 

pooling concentrates activation

maps at later phase to preserve 

higher accuracy .

Strategy 3. Downsample

late in the network so that 

convolution layers have large 

activation maps

◦ Size of activation maps: the 

size of input data, the choice of 

layers in which to downsample

in the CNN architecture 



A Fire module is comprised of: a squeeze convolution layer (which has only 

1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3 

convolution filters





SqueezeNet Design Strategies

• Strategy 1. Replace 3x3 filters with 1x1 filters
– Parameters per filter:  (3x3 filter) = 9 * (1x1 filter)

• Strategy 2. Decrease the number of input channels to 
3x3 filters 
– Total # of parameters: (# of input channels) * (# of 

filters) * ( # of parameters per filter)

• Strategy 3. Down-sample late in the network so that 
convolution layers have large activation maps 
– Size of activation maps: the size of input data, the 

choice of layers in which to down-sample in the CNN 
architecture

45Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf


Microarchitecture – Fire Module

• Fire module is consist 
of: 

– A squeeze convolution 
layer

• full of s1x1 # of 1x1 filters

– An expand layer

• mixture of e1x1 # of  1x1 
and  e3x3 # of 3x3 filters

46

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf


Microarchitecture – Fire Module
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Squeeze Layer

Set s1x1 < (e1x1 + e3x3), 

limits the # of input channels to 3*3 

filters

Strategy 2. Decrease the number of input 

channels to 3x3 filters 

Total # of parameters: (# of input 

channels) * (# of filters) * ( # of 

parameters per filter)

How much can we limit

s1x1?

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

Strategy 1. Replace 3*3 filters with 1*1 

filters

Parameters per filter:  (3*3 filter) = 9 * 

(1*1 filter)

How much can we replace 3*3 with

1*1?

(e1x1 vs e3x3 )?

https://arxiv.org/pdf/1602.07360v4.pdf


Parameters in Fire Module

The # of expanded filter(ei)
ei = ei,1x1 + ei,3x3

The % of 3x3 filter in expanded 
layer(pct3x3)

ei,3x3 = pct3x3 * ei

The Squeeze Ratio(SR)
si,1x1 = SR *ei

48
Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf


Macroarchitecture

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."
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Strategy 3. Downsample late in the 

network so that convolution layers have 

large activation maps 

Size of activation maps: the size of 

input data, the choice of layers in 

which to downsample in the CNN 

architecture

These relative late placements of pooling 

concentrates activation maps at later phase to 

preserve higher accuracy

https://arxiv.org/pdf/1602.07360v4.pdf


Macroarchitecture

50
Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size."

https://arxiv.org/pdf/1602.07360v4.pdf


Summary of SqueezeNet

• Comparing with AlexNet: with close accuracy 
rate, the ratio of their parameter sizes is 1:50

• If model compression is performed, comparing 
with AlexNet, the ratio of their parameter sizes 
is 1:510

• Three strategies: (a) using 1x1filter to replace 
3x3filter; (b) using squeeze layer to reduce the 
channels; © performing down-sampling late in 
the network to gain larger activation map; all 
these are implemented in fire module



MobileNet V1





Three issues to define size of 
neural networks:

• Kernel numbers for convolution 

• Channel numbers for image input or feature 
maps 

• Size of feature maps







SqueezeNet



SqueezeNet

MobileNet V1
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MobileNet v1

Key Idea : Depthwise Separable Convolution! 

• The MobileNet model is based on depthwise

separable convolutions which is a form of 

factorized convolutions which factorize a 

standard convolution into a depthwise

convolution and a 1× 1 convolution called a 

pointwise convolution. 

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
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MobileNet v1

Standard Convolution Operation

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

VGG, Inception-v3

• VGG – use only 3x3 convolution

◦ Stack of 3x3 conv layers has same effective 

receptive field 

as 5x5 or 7x7 conv layer

◦ Deeper means more non-linearities

◦ Fewer parameters: 2 × (3 × 3 × C) vs (5 

× 5 × C)

• Inception-v3

◦ Factorization of filters
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Why should we always consider all channels?
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Standard Convolution 
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Depthwise Separable Convolution

• Depthwise Convolution + Pointwise 

Convolution(1x1 convolution) 
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Standard Convolution vs Depthwise Separable 

Convolution
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Standard Convolution vs Depthwise Separable 

Convolution

• Standard convolutions have the computational cost of

◦ 𝐷𝐾×𝐷𝐾×M×N×𝐷𝐹×𝐷𝐹
• Depthwise separable convolutions cost

◦ 𝐷𝐾×𝐷𝐾×M×𝐷𝐹×𝐷𝐹+M×N×𝐷𝐹×𝐷𝐹
• Reduction in computations

◦ 1/N+1/𝐷𝐾
2

◦ If we use 3x3 depthwise separable convolutions, we get 

between 8 to 9 times
𝐷𝐾: width/height of filters

𝐷𝐹: width/height of feature maps

M : number of input channels

N : number of output 

channels(number of filters)
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Depthwise Separable Convolution
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Model Structure
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Width Multiplier & Resolution Multiplier

• Width Multiplier – Thinner Models
◦ For a given layer and width multiplier α, the number of input 

channels M becomes αM and the number of output channels N 
becomes αN – where α with typical settings of 1, 0.75, 0.6 and 
0.25
• Resolution Multiplier – Reduced Representation

◦ The second hyper-parameter to reduce the computational 
cost of a neural network is a resolution multiplier ρ

◦ 0<ρ≤1, which is typically set of implicitly so that input 
resolution of network is 224, 192, 160 or 128(ρ = 1, 0.857, 0.714, 
0.571)
• Computational cost: 

◦ 𝐷𝐾×𝐷𝐾×αM×ρ𝐷𝐹×ρ𝐷𝐹+αM×αN×ρ𝐷𝐹× ρ𝐷𝐹
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Width Multiplier & Resolution Multiplier
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Experiments – Model Choices
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MobileNet v1

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

Experiments – Results



MobileNet V2
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Key ideas

• Strategy 1. Linear Bottleneck

◦ using depthwise separable convolution as 

efficient building blocks. However, V2 introduces 

two new features to the architecture: 1) linear 

bottlenecks between the layers

• Strategy 2. Inverted Residual Blocks

◦ shortcut connections between the bottlenecks
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Linear Bottleneck

• Informally, for an input set of real images, we 
say that the set of layer activations forms a 
“manifold of interest” .

• It has been long assumed that manifolds of 
interest in neural networks could be 
embedded in low-dimensional subspaces.
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Residual Blocks

• Residual blocks connect the beginning and end of a 
convolutional block with a shortcut connection. By 
adding these two states the network has the 
opportunity of accessing earlier activations that 
weren’t modified in the convolutional block.

• Wide → narrow(bottleneck) → wide approach
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Inverted Residuals

• Inspired by the intuition that the bottlenecks 

actually contain all the necessary information, 

while an expansion layer acts merely as an 

implementation detail that accompanies a non-

linear transformation of the tensor, the authors 

use shortcuts directly between the bottlenecks.

• narrow → wide → narrow approach
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Information Flow Interpretation

• The proposed convolutional block has a unique 
property that allows to separate the network 
expressiveness (encoded by expansion layers) from 
its capacity (encoded by bottleneck inputs).
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

The Architecture of MobileNetV2

• The architecture of 

MobileNetV2 contains 

the initial fully 

convolution layer with 

32 filters, followed by 

19 residual bottleneck 

layers described in the 

Table 2.
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Memory Efficient Inference

• The amount of memory is simply the maximum total
size of combined inputs and outputs across all
operations.

• If we treat a bottleneck residual block as a single
operation (and treat inner convolution as a
disposable tensor), the total amount of memory
would be dominated by the size of bottleneck
tensors, rather than the size of tensors that are
internal to bottleneck (and much larger)
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Comparison of Convolutional Blocks for Different Architectures
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

The Max Number of Channels/Memory(in Kb)
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

ImageNet Classification Results
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

MobileNet v1 Vs MobileNet v2
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MobileNet v2

Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2018: 4510-4520.

Object Detection & Semantic Segmentation Results

Object Detection Semantic Segmentation 



ShuffleNet



Three issues to define size of 
neural networks:

• Kernel numbers for convolution 

• Channel numbers for image input or feature 
maps 

• Size of feature maps



SqueezeNet

MobileNet V1



SqueezeNet

MobileNet V1

ShuffleNet
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ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018: 6848-6856.

Key ideas

• Strategy 1. Use depthwise separable convolution

• Strategy 2. Grouped convolution on 1x1 
convolution layers – pointwise group convolution

• Strategy 3. Channel shuffle operation after 
pointwise group convolution
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ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018: 6848-6856.

Grouped Convolution
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ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018: 6848-6856.

1x1 Grouped Convolution with Channel Shuffling

• If multiple group convolutions stack together, there is one side effect(a)
◦ Outputs from a certain channel are only derived from a small fraction of input

channels
• If we allow group convolution to obtain input data from different groups, the input

and outputchannels will be fully related
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ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018: 6848-6856.

Channel Shuffle Operation

• Suppose a convolutional layer with g groups whose
output has g×n channels; we first reshape the
output channel dimension into (g, n), transposing
and then flattening it back as the input of next layer.

• Channel shuffle operation is also differentiable
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ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018: 6848-6856.

ShuffleNet Units
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ShuffleNet

Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018: 6848-6856.

ShuffleNet Units

• From (a), replace the first 1x1 layer with pointwise group

convolution followed by a channel shuffle operation

• ReLU is not applied to 3x3 DWConv

• As for the case where ShuffleNet is applied with stride,

simply make to modifications

◦ Add 3x3 average pooling on the shortcut path

◦ Replace element-wise addition with channel

concatenation to enlarge channel dimension with little

extra computation
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Complexity

• For example, given the input size c×h×w and the bottleneck channel m
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ShuffleNet Architecture
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Experimental Results

• It is clear that channel shuffle consistently boosts classification scores for

different settings
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Experimental Results
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Experimental Results

• Results show that with similar accuracy ShuffleNet is much more efficient

than others
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Experimental Results

• Due to memory access and other overheads, every 4x theoretical complexity reduction usually result in ~2.6x

actual speedup. Compared with AlexNet achieving ~13x actual speedup(the theoretical speedup is 18x)



Except Designing Light-Weight Networks, Other 

Approaches to enable Mobile Applications 

include: 

a.Network Compression such as singular value 

decomposition (SVD), network pruning, 

quantization, binarization, …..

b.Knowledge Distillation from heavy large 

teacher network to light-weight small student 

network

c.Automatic Network Searching
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Original Net Design

Knowledge Distillation

Model Compression

Efficient Implementation

loss

student

teacher

data

New Layer Types

Design Space Exploration

Techniques for Creating Fast & Energy-Efficient DNNs

Automatic Network Search
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Summary

Model

SqueezeNet
1×1 filters , input channels , Down-
sample late in network

MobileNet v1 Pruning ,Weight Sharing , Groupwise Conv.

MobileNet v2
Depthwise conv + Pconv, Width Multiplier, 
Resolution Multiple

ShuffleNet
Depthwise convolution with Channel 
Shuffle
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Summary

Model Caffe Tensorflow Keras PyTorch Migration network
Recommendation

level

SqueezeNet 1★ 4★ 2★ 2★
AlexNet,

faster-rcnn
3★

MobileNet v1 4★ 5★ 3★ 3★
Mobilenet-SSD,

MXNet, faster-rcnn
3★

MobileNet v2 3★ 5★ 2★ 4★
MobileNetv2-

SSDLite
5★

ShuffleNet 5★ 4★ 2★ 5★ Shufflenet-SSD 4★

Tips: according to the number of people used
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