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Pipeline for Traditional Image Classification System

Training Image Set

Hand-crafted Features

Feature Classifier N
» Extraction * Training » Classifier
3 - T S Support Vectgr:’laochine f("c{,f)..:,],(:f:,ﬂb
B ke
Offline Training i -
Online Testing
- o ~— Flower
| e Feature Garden
Extraction Classifier |m) - Nature

—

Test Image

predictions
Separating feature extraction from classifier training



Class Probabilities

Dog (0.7)

Feature C?t (0.1)
Extractor Bike (0.02)

& Classifier Car (0.02)
Plane (0.02)

House (0.04)




Review for Feature Extraction:
Hand-Crafted Features

* Hand-crafted features from neighboring pixels:
operations over 7x7, 5x5, 3x3 neighboring
blocks because image pixels are spatially
correlated!



Review for Feature Extraction:
Hand-Crafted Features

* Hand-crafted features from neighboring pixels:
operations over 7x7, 5x5, 3x3 neighboring
blocks because image pixels are spatially
correlated!

 We expect that such features are scale,
translation, even affine transformation

invariant!



Review for Feature Extraction:
Hand-Crafted Features

 Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

 Such features are transformation-invariant!

* Feature quality is most important! Feature
quality is more important than classifier!



Review for Feature Extraction:
Hand-Crafted Features

Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

Such features are transformation-invariant!
Feature quality is important than classifier!

Feature dimensions are meaningful for
classifier! Dimension reduction should be
there!



Review for Feature Extraction:
Hand-Crafted Features

Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

Such features are transformation-invariant!
Feature quality is important than classifier!
Feature dimension reduction!

High-level features vs. low-level features!
Feature extraction from objects, parts of
objects, .........



Review for Feature Extraction:
Hand-Crafted Features

Hand-crafted features about neighborhoods:
7x7, 5x5, 3x3 neighboring blocks!

Such features are transformation-invariant!
Feature quality is important than classifier!
Feature dimension reduction!
Semantics-driven features



Bag of Visual Words




Patch-based Visual Features
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Review for Feature Extraction:
Hand-Crafted Features

Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

Such features are transformation-invariant!
Feature quality is important than classifier!
Feature dimension reduction!
Semantics-driven features

Feature normalization



Deep Learning Approach

Joint process for feature learning & classifier training
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Let data speak out for themselves'

SGD for back-propagation



Deep Learning

 Deep learning (a.k.a. representation learning) seeks to
learn rich hierarchical representations (i.e. features at
multiple levels) automatically through multiple stage of
feature learning process.

Low-level Mid-level High-level Trainable P—
features features features classifier outpu

Feature visualization of convolutional net trained on ImageNet
(Zeiler and Fergus, 2013)



Learning Hierarchical
Representations

Low level Mid-level High-level Trainable
> . >{ output
features features features classifier

Increasing level of abstraction >

* Hierarchy of representations with increasing level of
abstraction. Each stage is a kind of trainable nonlinear

feature transform
* Hierarchical Image Representation & Recognition
— Pixel - edge - texton - motif - part - object

* Text
— Character - word - word group = clause - sentence - story



Convolution Neural Network
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Key 1. Convolution, 2. ReLU, 3. Pooling, 4. Softmax
Operations 5. Data Augmentation, 6. Fine-tune, 7. Batch Normalization, 8. Drop out



Convolutional Neural Network (CNN)

e A standard CNN for image classification is
composed of:
— Convolutional layers
— Down-sampling layers
 Strided convolution
* Max pooling
* Avg. Pooling
— Batch normalization
— Activation functions (e.g. RelLU)



Basic Operators for CNN

1. Convolution:
2. ReLU

3. Pooling

4. Softmax

Basic Tools for CNN Training

1. Data Augmentation
2. Fine-tune
3. Batch Normalization
4. Drop-out



Convolutional Layer
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Convolution works on neighboring pixels!

Ranzaton




Convolution as neighbor-based
feature extraction

Feature Map

Slide: Lazebnik



Discrete convolution

A discrete convolution is a linear transformation
« Sparse — only few inputs contribute to a given
output unit
* Reuses parameters — same kernel is applied
over multiple input elements

x0 | x1 [ x2 kO [ k1 [ k2
x3 | x4 | x5 % | k3 |k4]|Kk5 —_ y4
X6 | X7 | x8 ké [ k7 | k8
Input Kernel Output
Figure: In this example, each output element is Figure: Kernel strides

computed using 9 pixels over input



Convolution Layer

e Convolution layer takes an input feature map
of dimension W X H X N and produces an

output feature map of dimension W X H X M

* Each layer is defined using following
parameters:

— # Input channels (N) L
— # Output channels (M) \ %
— Kernel size w Vo w
— Padding

— Stride

/
Wy

# of parameters learned by convolution layer is n*NM



Convolution Layer

Figure: In this example,
5x5 input is convolved
with 3x3 kernel with
stride=2 and padding=1
to produce an output of
size 3x3.

Figure: In this example,
5x5 input is convolved
with 3x3 kernel with
stride=padding=1 to
produce an output of size
SXO.



Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
. when input image is registered (e.g., |
face recognition). Ranzatoll §




Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
\ 40K hidden units
. Filter size: 10x10

. 4M parameters

Note: This parameterization is good
when input image is registered (e.g., N
face recognition). Ranzaton




Convolutional Layer

Share the same parameters across

N different locations (assuming input is

,f ~ ' stationary):
\ Convolutions with learned kernels

36
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Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer
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Convolutional Layer




Convolutional Layer
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Convolutional Layer

A AN DN A




Convolutional Layer




Convolutional Layer
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Convolutional Layer







Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton




Convolutional Layer

K
n__ n—1 n
h';=max (0, Zkzl e KXW

/

output input feature kernel
feature map map

Conv.
layer
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Convolutional Layer

K
n__ n—1 n
h';=max (0, Zkzl e KXW

/

output input feature kernel
feature map map
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Convolutional Layer

K
n__ n—1 n
h';=max (0, Zkzl e KXW

/

output input feature kernel
feature map map
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Convolutional Layer

0 fw-z4+5b<0

/ Perceptron output = {
“ P P 1 fw-z+b>0
k ’4‘ |

This is
. convolution!

av 4 Share the same parameters across
» ( S different locations (assuming input is

1 ,;"’ v, stationary):
& ; :
i1 — Convolutions with learned kernels

AN

36
Ranzaton




Convolutional Layer

Learn multiple filters.

Filter = ‘local’ perceptron.
g\ Also called kernel.

E.g.: 200x200 image
100 Filters

Filter size: 10x10
10K parameters

54
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Convolutional kernel




Convolutional kernel

Center element of the kernel is placed over the (0% 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel
Padding on the
input volume with
zeros in such
way that the conv
layer does not
alter the spatial
dimensions of
the input

Convolution kernel
(emboss)

New pixel value (destination pixel)



Dilated Convolution Layer

Inserts spaces between the kernel element to increase
the effective size of kerne

Same as the convolutional layer except it has additional
parameter, dilation rate, that controls the spacing

Each layer is defined using following parameters:

— # Input channels (Cy)
— # Output channels ()
— Kernel size (w; X hy)
— Padding ok -
— Stride .

— Dilation rate (7) input witha distionrare of 2

Output



Group Convolution Layer

Input and kernel are split into g groups across channel
dimension

Each group then performs the convolutions independently

Each layer is defined using following parameters:
— # Input channels (C;)

— # Output channels (C5)

— Kernel size (w; X hq)

— Padding

— Stride

— Dilation rate (7)

— # of groups (g)

Parameter reduction??



Group vs Standard Convolution Layer

-
W ok
w,

H

H
W

H
W

Figure: Standard convolution Figure: Grouped convolution



Depth-wise Convolution

* Special case of group convolution where each
channel is processed independently

# input channels = # groups = # output channels

e Parameter reduction??



RelLU
o ReLU

R(z) =max(0, z}




RelLU

_RelLU




RelLU

L) wWo

*® synapse
axon from a neuron
. WoT0

cell body f (Z i L b)
- Z W;T; + b f i =
. output axon
activation
function

Wo Ty

Feature Normalization

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Sigmoid

o(z) =1/(1+e7)

et

tanh tanh(x)

ReLU max(0,x)

Leaky RelLU
max(0.1x, X)

Maxout  max(wz +by,ulz + by)

X ifz>0

ELU fla) = {a(exp(a:)—l) ifw<(

=ELU
=LRelU
==ReLU
=SRelU

X
¥
-100 -15 -50 -25 00
X

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




o(z)=1/(1+e77)

« Squashes numbers to range [0,1] —
can kill gradients.

 Akey elementin LSTM networks —
“control signals”

« Best for learning “logical” functions
— 1.e. functions on binary inputs.

SlngId * Not as good for image networks
(replaced by RELU)

 Not zero-centered

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
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>@® synapse

axon from a neuron

WoTo

w11

Wa 2

/" cell body

Zwimi +b

f (Zwixi + b)

output axon

activation
function

f Z’wz‘a?i—i-b

What can we say about the gradients on w?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




allowed

gradient
update
directions
| 0
f E W;Ts 1 b zig zag path
: allowed
?’ gradient
update
directions
hypothetical
What can we say about the gradients on w? 322{2?' W

Always all positive or all negative :(
(this is also why you want zero-mean data!)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




i
|

Squashes numbers to range [-1,1]
Zero centered (nice)
Still kills gradients when saturated :(

Also used in LSTMs for bounded,
signed values.

Not as good for binary functions

[LeCun et al., 1991]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




« Computes f(x) = max(0,x)
* Does not saturate (in +region)

« Converges faster than sigmoid/tanh
on image data (e.g. 6x)

..........

* Not suitable for logical functions

RelLU
(Rectified Linear Unit) * Not for control in recurrent nets

[Krizhevsky et al., 2012]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




Activation Functions =~ Computes f(x) =max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

..........

hint: what is the gradient when x < 0?

RelLU
(Rectified Linear Unit)

Based on cs231n by Fei-Fei Li & Andre] Karpathy & Justin Johnson
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What happens when x = -107?
What happens when x = 0?
What happens when x = 10?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




[Mass et al., 2013]
[He et al., 2015]

 Does not saturate

» Converges faster than sigmoid/tanh
on image data(e.g. 6x)

 will not “die”.

Leaky RelLU

f(z) = max(0.01z, z)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




[Mass et al., 2013]
[He et al., 2015]

* Does not saturate

« Converges faster than sigmoid/tanh
on image data (e.g. 6x)

* will not “die”.

Parametric Rectifier (PReLU)

Leaky ReLU f(z) = max(az, )

f(x) — maX(O.le, w) backprop into \alpha/
(parameter)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




[Clevert et al., 2015]

Exponential Linear Units (ELU)

 All benefits of ReLU

« Does not die

f(x)

 Closer to zero mean outputs

x ifz >0
a(exp(z)—-1) ifz <0

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Pooling for Dimension Reduction .
max pooling

average pooling




Down-sampling

* Learning representations at multiple scalesis a
fundamental step in computer vision
— Laplacian Pyramids
— SIFT, etc.

* Down-sampling in CNNs

— Strided convolution | 20 | b1 |

. {a0 [a1]bo b1 <1 | a3 | Max-Pooling
— Max pooling 22 |3 | b2 | b3 | 1

. cO | c1§do|dl L= 12 1 Avg. Poolin
— Avg. Pooling 2| c3fd2]a3 e [a]™ J

Y0 Y1 | Convolution
y2 |y3




Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
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Pooling Layer: Examples
Max-pooling:
1 n—1;_ _
h]-('x’y):ma‘xfeN(x),j/EN(y)hj ('x:y)
Average pooling-

)J=UK DY N E, )

), VEN(y

L2-pooling:
n — n—1y7—_ _—\2
hj(x’y)_\/szN(x),jzeN(y) hj (x?y)

L2-pooling over features:

W, )=V 2 e P (3, 0)

62
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Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

(P+KAX(P+K1) o
5eee
gz %
g ale %
X
’b‘ 66
‘ Ranzaton




Pooling Layer: Receptive Field Size

hn—l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

67
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Features at Different Levels




Features at Different Levels
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Features at Different Levels
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Softmax

Neural Network Labels

R Odog

Input Image .%\?"{/{%M.A Obird
) NI
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Probabilities

Classifier for prediction



Operations for Network Training

1. Data Augmentation: extracting
transformation-invariant features

2. Fine-tune: optimizing feature
extractor & classifier

3. Batch Normalization: feature
normalization & shift reduction

4. Drop-out: uncertain & vote



Slide: Jiabin Huang

Data Augmentation (Jittering)

* Create virtual training
samples

— Horizontal flip

— Random crop

— Color casting

— Geometric distortion

* |dea goes back to
Pomerleau 1995 at
east (neural net for
car driving)

Deep Image [Wu et al. 2015]



http://arxiv.org/pdf/1501.02876v2.pdf

Data Augmentation

Enlarge your Dataset



Data Augmentation

200 A1

0 250 0 250

200 - 2 E 200

i

0 200 0
¥
200 200
0 250 0 250

Affine Transformation for handling objects under different views



Data Augmentation

Lt

Original Image

De-texturized

De-colorized

Edge Enhanced

Salient Edge Map

Flip/Rotate



Data Augmentation

Base Augmentations

Geometry based

Perspective- Elastic-
transform transformation

horizontal-flip crop crop-and-pad

Color based A
iV
s ’ i iﬂ ‘JJ g:d-
sharpen Gamma-

contrast
:—77 =

Noise / occlusion

gaussian-blur additive-gaussian-  trgnslate-x translate-y coarse-salt
noise -

Weather

. o TS
clouds snow-flakes Fast-snowy-
landscape



~Data Augmentation
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Data Augmentatlon

(a) Real image samples (b) BAGAN (c) ACGAN (d) Simple GAN

GAN-based Data Augmentation



Data Augmentation
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Data Augmentation

“, Original

&
e
b
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~—— Au gmented
images



Data Augmentation

Ecaiter Diagram with the Decisicn Boundarny
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0.8

0.7

Batch Normalization

Input: Values of = over a mini-batch: B = {x1._,.}:
Parameters to be learned: ~, 3
Output: {y; = BN, g(z;)}

TrL

1 "
U< — Y T // mini-batch mean
m &
] TrL
o — — E (z; — pB)? // mini-batch variance
m
i=1

.{_

T; & ——— // normalize
v UBZ + €

yi + vz; + B = BN, g(x;) /! scale and shift
/_/'r ______ 2 2 /W
0 0
- — = Without BN
—— With BN w
10K 20K 30K 40K 50K 2 2
(a) (b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [loffe and Szegedy 2015]



http://arxiv.org/pdf/1502.03167v3.pdf

Batch Normalization
Batch normalization

-1y

1
3




Batch Normalization

Batch Normalization o Szegedy. 2049
e | Usually inserted after Fully
BlN _ Connected or Convolutional layers,
1 ,and before nonlinearity.
tanh /
l
FC | /
[ /
taim | \/ Var[z(®)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - 56 April 20, 2017




Local Contrast Normalization

b () Gy )=l (N (. p)

o' (N(x,y))

68
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Local Contrast Normalization

69
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Local Contrast Normalization
W, )2 )= (N ()
o (N(x,y))

Performed also across features
and in the higher layers..

Effects:

— Improves invariance
— improves optimization
— increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




Fine-tuning

Horse




Fine-tuning

Initialize with pre-
trained, then train
with low learning rate

ol
wt+1 — wt _ - —(‘lﬂt)

ow



Start with:

Initialize:

Train:

Fine-tuning

Initialize with pre-
trained, then train
with low learning rate

8, : shared parameters
8,: task specific parameters for each old task
X,.Y,: tramning data and ground truth on the new task

Y, < CNN (X,,6,6,) // compute output of old tasks for new data
6, < RanpInIT (|6,|) // randomly initialize new parameters

Define ¥, = CnN (X, 6,,6,) // old task output
Define ¥, = 6
argmin

H;' ﬂgﬁﬁ = é“ é é l:lo Lald (yor i}o} + Lnew(}’w ?n} + R(a:r! éﬂ’ én})
s+ YarUn



Dropout

- Similar to bagging (approximation of bagging)

- Act like regularizer (reduce overfit)

- Instead of using all neurons, "dropout” some neurons
randomly (usually 0.5 probability)

(a) Standard Neural Net (b} After applying dropout.



Learning Rate

25

loss

20}

low learning rate

high learning rate

good learning rate

00! ‘ . ‘ ‘ epoch

20 40 60 80 100
Epoch 4

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




L. oss Visualization

Loss

time

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




L. oss Visualization

Loss

Bad initialization

. — a prime suspect

time

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




lossfunctions.tumblr.com
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Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




lossfunctions.tumblr.com

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




P

lossfunctions.tumblr.com

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Accuracy Visualization
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0.75

n I

W/ / \J | big gap = overfitting

=> increase regularization strength?

o
o
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Clasification accuracy

o
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no gap

050 /V\/\M J/\AMWM\/\MMINM => increase model capacity?

045

— Training accuracy
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:::::

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




t-SNE
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Additional Interpretations of CNN Operators



Fully Connected Layer

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

. . 33
training samples anyway.. Ranzat n
anzato




Convolutional Layer

Question: What is the size of the output? What's the computational
cost?

Answer: It is proportional to the number of filters and depends on the
stride. If kernels have size KxK, input has size DxD, stride is 1, and
there are M input feature maps and N output feature maps then:

- the input has size M@DxD

- the output has size N@(D-K+1)x(D-K+1)

- the kernels have MxNxKxK coefficients (which have to be learned)

- cost: M*K*K*N*(D-K+1)*(D-K+1)

Question: How many feature maps? What's the size of the filters?

Answer: Usually, there are more output feature maps than input

feature maps. Convolutional layers can increase the number of

hidden units by big factors (and are expensive to compute).

The size of the filters has to match the size/scale of the patterns wess
want to detect (task dependent). Ranzaton




Key ldeas

A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: convolutional layer.
A network with convolutional layers is called convolutional network.

59
LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998



Pooling Layer

Question: What is the size of the output? What's the computational
cost?

Answer: The size of the output depends on the stride between the
pools. For instance, if pools do not overlap and have size KxK, and
the input has size DxD with M input feature maps, then:

- output is M@ (D/K)x(D/K)

- the computational cost is proportional to the size of the input
(negligible compared to a convolutional layer)

Question: How should | set the size of the pools?

Answer: It depends on how much “invariant” or robust to distortions
we want the representation to be. It is best to pool slowly (via a few
stacks of conv-pooling layers).

63
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ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank
courtesy of

Mormalization
K. Kavukcuoglu Ranzaton




ConvNets: Typical Stage

One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.

72
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ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
—>

Class
Fully Conn, |Labels
Layers

73
Ranzaton

1%t stage 2" stage 3" stage




ConvNets: Typical Architecture

Whole system

Input Class
Image | Fully Conn. |Labels
Layers
1% stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling —» SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012
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Convolution = Matrix Multiply

' OFM: 55x55x96

IFM: 227x227x3 Filter: 11x11x3x96
Stride: 4

IFM converted to 363x3025 matrix
e filter looks at 11x11x3 input volume, 55 locations along W,H.
Weights converted to 96x363 matrix
OFM = Weights x IFM.
BLAS libraries used to implement matrix multiply ( GEMM )
* MKL for CPU, CuBLAS for GPU



Convolutional Neural Network
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Reminder: Receptive Field

conv conv conv

'II‘LJ |




Receptive field

* Which input pixels does a particular unit in a
feature map depends on

—

convolve with 3 x
3 filter




Receptive field

— —
convolve convolve
with 3 X with 3 x
: 3 filter : -
5X5 receptive 3X3 receptive 3 filter



Receptive field

—

convolve with 3 x
3 filter,
subsample




Receptive field

— —
convolve convolve
with 3 x 3 with 3 x
7X7 receptive filter, 3x3 receptive 3 filter
: : subsampl :
field: union of e by factor field
9 3x3 fields 5

with stride of 2



CONV NETS: EXAMPLES

- Face Verification & Identification

REPRESENTATIOMN
SFC labels

P . . - CL: M2 C3: L4; L5: LE: F7: F&
Colista_Flockhort_ (002 jpg Frontalization: 32x11x1143 EFEETETEN 16x9x3x32 16ExBxEnlé Iafaiule  16x5x5xl6 A0%6d 40304
Detection & Localization @152%152x3 @142x142 @771 A6 @EEKEE B25%25 @21x21

92
Taigman et al. “DeepFace...” CVPR 2014 Ranzaton




Well-known Deep Networks

1. AlexNet
2.VGG
3.GoogleNet
4.ResNet



AlexNet

Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton: ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012



Network Structure for AlexNet
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Convolutional Neural Networks: AlexNet

AR Lion
‘sgﬂ \
y [ L - - - -
A NN

‘\;“L‘* \ L s
Image labels

Krizhevsky, Sutskever, Hinton — NIPS 2012



Convolutional Neural Networks: AlexNet

- I:II:VIn:I
|
I
| | sunset ~* p_

[4 — »0 e U
o

L s - pmﬂ
| o
=]

. > P
' = L=}
convolution + max pooling vec | o
| nonlinearity | o

convolution + pooling layers fully connected layers  Mx binary classification




channels

First layer .| g

3D

e Each filter works = o +
all 3.channels R,C




Output of Convolution Layer

e |f input =MxM and have K filters that are 3X3
— OUTPUT = K channels of (M-2)x(M-2)

1 Example:
OE | 2 filters

S > 2 output channels

filtering RelLU filtering RelL U
& downsampling




Windsor tie: 0.992462

Last
Layer

Filter (Gabor
and color
blobs

Zeller et al.
arXiv 2013, ECCV

2014
Nguyen et al.
Gabor filter: linear filters used for edge detection -
with similar orientation representations to the human arXiv 2014

visual system



AlexNet

conv ’ max pool conv max pool
—>
11><11 3><3 5><5 3><3
s=4 s=2
227x227x3 L0 55><55 X 96 27x27 X96 27><27 X256
conv conv conv max pool
' —>
3><3 3X%x3 3><3 3><3
=1 S = 1 =1
13%13 -1 =1
X 13x13 X384 13%x13 X384 13%x13 X256 6X6 X256

X256



Example of CNN layer

RELU RELU

CONV

=,
=
L
4
=
=
L
4

RELU RELU

CONV

CONV

CONV
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96 filters of 11x11x3 each




Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
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Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understandlng Convolutloal Networks [Zeller and Ferus CV 2014 ]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

VGG

Karen Simonyan, Andrew Zisserman:Very Deep Convolutional Networks for Large-
Scale Image Recognition, ICLR, 2015



https://arxiv.org/search/cs?searchtype=author&query=Simonyan,+K
https://arxiv.org/search/cs?searchtype=author&query=Zisserman,+A

Input

3x3 conv, 64
3x3 conv, 64
Pool 1/2

3x3 conv, 128
3x3 conv, 128
Pool 1/2

3x3 conv, 256
3x3 conv, 256
Pool 1/2

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2

Softmax

VGGNet

Smaller filters
Only 3x3 CONV filters, stride 1, pad 1
and 2x2 MAX POOL, stride 2

Deeper network
AlexNet: 8 layers
VGGNet: 16 - 19 layers

ZFNet: 11.7% top 5 error in ILSVRC’13
VGGNet: 7.3% top 5 error in ILSVRC'14



VGGNet

* Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

 What is the effective receptive field of three 3x3 conv (stride
1) layers?

7x7
But deeper, more non-linearities
And fewer parameters: 3 * (32C?) vs. 7?C? for C channels per layer



Input

3x3 conv, 64
3x3 conv, 64
Pool

3x3 conv, 128
3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool

3x3 cony, 512
3x3 cony, 512
3x3 cony, 512
Pool

3x3 cony, 512
3x3 cony, 512
3x3 cony, 512
Pool

Softmax

VGGNet

VGG16:
TOTAL memory: 24M * 4 bytes ~= 96MB / image
TOTAL params: 138M parameters



Input memory: 224*224*3=150K params: 0

3x3 conv, 64 memory: 224*224*64:C’ﬂ params: (3*3*3)*64 = 1,728

3x3 conv, 64 memory: 224%224*64=3.2M params: (3*3*64)*64 = 36,864

Pool memory: 112*112*64=800K params: 0O

3x3 conv, 128 memory: 112*112*128=1.6M params: (3*3*64)*128 =
73,728

3x3 conv, 128 memory: 112*112*128=1.6M params: (3*3*128)*128 =
147,456

Pool memory: 56*56*128=400K params: O

3x3 conv, 256 memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
3x3 conv, 256 memory. 56*56*256=800K params: (3*3*256)*256 = 589,824
3x3 conv, 256 memory. 56*56*256=800K params: (3*3*256)*256 = 589,824
Pool memory: 28*28*256=200K params: 0

3x3 conv, 512 memory:. 28*28*512=400K params: (3*3*256)*512 = 1,179,648
3x3 conv, 512 memory. 28*28*512=400K params: (3*3*512)*512 = 2,359,296
3x3 conv, 512 memory. 28*28*512=400K params: (3*3*512)*512 = 2,359,296
Pool memory: 14*14*512=100K params: 0

3x3 cony, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
3x3 cony, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
3x3 conv, 512 memory. 14*14*5{12=100K params: (3*3*512)*512 2,359,296
Pool memory: 7*7*512=25K params: O

FC 4096 memory: 4096 params: 7*7*512*4096 = 102,760,448

FC 4096 memory—4096 params: 40864056 —16,777,216

FC 1000 memory: 1000 params: 4096*1000 = 4,096,000




GoogleNet

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich: Going Deeper
with Convolutions, IEEE CVPR, 2015.



https://arxiv.org/search/cs?searchtype=author&query=Szegedy,+C
https://arxiv.org/search/cs?searchtype=author&query=Liu,+W
https://arxiv.org/search/cs?searchtype=author&query=Jia,+Y
https://arxiv.org/search/cs?searchtype=author&query=Sermanet,+P
https://arxiv.org/search/cs?searchtype=author&query=Reed,+S
https://arxiv.org/search/cs?searchtype=author&query=Anguelov,+D
https://arxiv.org/search/cs?searchtype=author&query=Erhan,+D
https://arxiv.org/search/cs?searchtype=author&query=Vanhoucke,+V
https://arxiv.org/search/cs?searchtype=author&query=Rabinovich,+A

GoogleNet

* Going Deeper with Convolutions - Christian Szegedy et
al.; 2015

* |LSVRC 2014 competition winner

* Also significantly deeper than AlexNet
* x12 less parameters than AlexNet

* Focused on computational efficiency



GoogleNet

22 layers

Efficient “Inception” module - strayed from
the general approach of simply stacking conv
and pooling layers on top of each other in a
sequential structure

No FC layers
Only 5 million parameters!

ILSVRC’14 classification winner (6.7% top 5
error)



GoogleNet

Conv
1x1+1(S)

DepthConcat

Conv Conv Conv
3x3+1(S) 5x5+1(S) 1x1+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

MaxPool
3x3+2(S

Inception module

C. Szegedy et al., Going deeper with convolutions, CVPR 2015


https://arxiv.org/abs/1409.4842

GoogleNet

o
e

AT it

(NE+GXS
|00dabelany
(S)T+1IXT
uoneAIpyxewyos
OXewyos

Auxiliary classifier

C. Szegedy et al., Going deeper with convolutions, CVPR 2015



https://arxiv.org/abs/1409.4842

GoogleNet

“Inception module”: design a good local network topology (network within
a network) and then stack these modules on top of each other

Filter
concatenation

e e

1x1 B 3x3 5x5 1x1
convolution convolution convolution convolution
3 3 3

1x1 1x1 3x3 max
convolution convolution pooling

Previous layer




GoogleNet

Naive Inception Model

* Apply parallel filter operations on the input :
* Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
* Pooling operation (3x3)

* Concatenate all filter outputs together depth-wise

Filter
concatenation

N

1x1 3x3 5x5 3x3 max
convolution convolution convolution pooling

Previous layer




 What'’s the problem with this?

GoogleNet

High computational complexity

Filter
concatenation

AN

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max
pooling

Previous layer




GoogleNet

* Output volume sizes:

1x1 conv, 128: 28x28x128
3x3 conv, 192: 28x28x192
5x5 conv, 96: 28x28x96 Filter

3x3 pool: ZSXZSXZSEﬂLG,QMD

Example:

1x1 conv 128 3x3 conv 192 5x5 conv 96 33 n.max
pooling

Previous layer

* What is output size after 28x28x256
filter concatenation?

28x28x(128+192+96+256) = 28x28x672




GoogleNet

* Number of convolution operations:
1x1 conv, 128: 28x28x128x1x1x256
3x3 conv, 192: 28x28x192x3x3x256
5x5 conv, 96: 28x28x96x5x5x256
Total: 854M ops

Filter
concatenation

W

1x1 conv 128 3x3 conv 192 5x5 conv 96 33 rf‘a"
pooling

Previous layer
28x28x256




GoogleNet

* Very expensive compute!

* Pooling layer also preserves feature
depth, which means total depth after

concatenation can only grow at every layer.

Filter
concatenation

W

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96 33 rf‘a"
pooling




GoogleNet

e Solution: “bottleneck” layers that use 1x1 convolutions to
reduce feature depth (from previous hour).

Filter
concatenation

N

1x1 3x3 5x5 3x3 max
convolution convolution convolution pooling

Previous layer




GoogleNet

e Solution: “bottleneck” layers that use 1x1 convolutions to
reduce feature depth (from previous hour).

Filter
concatenation

e e

1x1 —T 3x3 5x5 1x1
convolution convolution convolution convolution
3 3 3
1x1 1x1 3x3 max
convolution convolution pooling

Previous layer




Number of convolution operations:
1x1 conv, 64: 28x28x64x1x1x256
1x1 conv, 64: 28x28x64x1x1x256
1x1 conv, 128: 28x28x128x1x1x256
3x3 conv, 192: 28x28x192x3x3x64
5x5 conv, 96: 28x28x96x5x5x264

1x1 conv, 64: 28x28x64x1x1x256 Filter
Total: 353M ops concatenation
— — 7 —_—
1x1 conv nﬁ 3x3 conv 192 5x5 conv 96 1x1 conv 64
4 & 5
1x1 conv 64 || 1x1 conv 64 ?;’:)30':::;

Previous layer
28x28x256

Compared to 854M ops for naive version




Details/Retrospectives :

GoogleNet

Deeper networks, with computational efficiency

22 layers

Efficient “Inception” module

No FC layers

12x less params than AlexNet
ILSVRC’14 classification winner (6.7% top 5 error)



ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:Deep Residual Learning
for Image Recognition, arXiv preprint arXiv:1512.03385,2015. IEEE CVPR 2016



https://arxiv.org/search/cs?searchtype=author&query=He,+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+X
https://arxiv.org/search/cs?searchtype=author&query=Ren,+S
https://arxiv.org/search/cs?searchtype=author&query=Sun,+J

ResNet

Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun;
2015

Extremely deep network — 152 layers
Deeper neural networks are more difficult to train.

Deep networks suffer from vanishing and
exploding gradients.

Present a residual learning framework to ease the
training of networks that are substantially deeper
than those used previously.



ResNet: the residual module

Introduce skip or shortcut connections (existing before in
various forms in literature)

Make it easy for network layers to represent the identity
mapping
For some reason, need to skip at least two layers

X
weight layer
f(x) l relu u
weight layer identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper)



http://arxiv.org/abs/1512.03385

ResNet

Deeper residual module (bottleneck)

* Directly performing 3x3
convolutions with 256 feature
maps at input and output:

| 256-d 256 x 256 x 3 x 3 ~ 600K

l operations
1x1, 64 e Using 1x1 convolutions to

| relu reduce 256 to 64 feature maps,
3x3 64 followed by 3x3 convolutions,

i —r followed by 1x1 convolutions

to expand back to 256 maps:

O, 255 256 x 64 x 1 x 1~ 16K

64 x 64 x3x3~ 36K
64 x 256 x 1 x 1~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper) Slide: Lazebnik



http://arxiv.org/abs/1512.03385

i ResNet
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e [LSVRC’15 classification winner (3.57% top 5
error, humans generally hover around a 5-
10% error rate)
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ResNet

* What happens when we continue stacking deeper layers on a
convolutional neural network?

56-layer
SG-layer

Training error
Test error

lterations lterations

* 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!



ResNet

Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

We will use skip connections allowing us to take the activation
from one layer and feed it into another layer, much deeper
into the network.

Use layers to fit residual F(x) = H(x) — x
instead of H(x) directly



ResNet

Residual Block

Input x goes through conv-relu-conv series and gives us F(x).
That result is then added to the original input x. Let’s call that
H(x) = F(x) + x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead
of just computing that transformation (straight from x to F(x)),
we’re computing the term that we have to add, F(x), to the

in Ut X. Trelu
PUt, H(Tx) Fo0 4 %
X
T e "6 Irelu identity
!
X X

“Plain” layers Residual block



ResNet |

a[l] _} —> a[l+2]

alt+1l %
O
O

OO0
'

Short cut/ skip connection

alll . Linear & ReLU— Linear —L ReLU—» all*2]
q[1+1]

Z0+1] — Wi+1] 51 4 p0+1] L0421 — Wwil+2150+1] 4 pl+2]

q1+1] = g(z[l+1]) q[1+2] — g(z[”z])

all+2] = g(z[1+2] 4 all) = g(W+2Ia(1+1] 4 pl1+2] 4 4T
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ResNet

Full ResNet architecture:
e Stack residual blocks
* Every residual block has two 3x3 conv layers

* Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

e Additional conv layer at the beginning

* No FC layers at the end (only FC 1000 to
output classes)



i ResNet

| A3 ooy Bl

* Total depths of 34, 50, 101, or 152 layers for
ImageNet

| 3 nofy Bl
| A3 ooy B

* For deeper networks (ResNet-50+), use
“bottleneck” layer to improve efficiency
i Lo Lo (similar to GooglLeNet)
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Size:224

3x3 conv, 64

v

3x3 conv, 64

I
pool/2
+

Size:112

3x3 conv, 128
!

3x3 conv, 128

[
pooly2
¥

Size:56 [

3x3 conv, 256

)

'

3x3 conv, 256

)

+

3x3 conv, 256

)

I
pool/2
¥

3x3 conv, 512

+

3x3 conv, 512

'

3x3 conv, 512

AN vy

I
pool/2
+

3x3 conv, 512

+

3x3 conv, 512

1

3x3 conv, 512

[
pool/2

¥

size7 | fc 4096
!

[ fc 4096
!

[ fc 4096

VGG-16

L

GoogleNet

Size:11

Size:56

syaopq [ofEf

Size:28
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Size:14
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Size:7
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2[ 7x7 conv, 64/2 ]

wnax pooif2

1x1conv, 64
3x3 conv, 64
x1 conv, 256

J

1x1conv, 64
3x3 conv, 64
1x1conv, 256

Ax1 conv, 64
3x3 conv, 64
11 conv, 256

1
1x1 conv, 128/2 i
3x3 conv, 128 !
1x1 conv, 512 |

:

frms

1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

¥
1x1conv, 128
3x3 conv, 128
1x1conv, 512

1
11 conv, 2562 | |
3x3 conv, 256 !
1x1 conv, 1024 !

s

1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024
- —
e —
1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024

1x1 conv, 512/2
3x3 conv, 512
1x1 conv, 2048

1x1 conv, 512
3x3 conv, 512
1x1cony, 2048
R Fe—
.
1x1 conv, 512
3x3 conv, 512
x1 conv, 2048

avg pool/2

fc 1000 )

ResNet
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Reading list

https://culurciello.github.io/tech/2016/06/04/nets.html

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11):
2278-2324, 1998.

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ICLR 2015

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
ECCV 2014 (best paper award)

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition, ICLR 2015

M. Lin, Q. Chen, and S. Yan, Network in network, ICLR 2014
C. Szegedy et al., Going deeper with convolutions, CVPR 2015

C. Szegedy et al., Rethinking the inception architecture for computer vision,
CVPR 2016

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, CVPR
2016 (best paper award)



https://culurciello.github.io/tech/2016/06/04/nets.html
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://arxiv.org/pdf/1311.2901v3.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.03385

