
Deep Networks for Image Classification

Jianping Fan

Dept of Computer Science

UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Pipeline for Traditional Image Classification System

Training Image Set

Feature
Extraction

Classifier
Training Classifier

Offline Training

Online Testing

Test Image

Feature
Extraction

Classifier

Flower

Garden

Nature

……….

predictions
Separating feature extraction from classifier training

Hand-crafted Features

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features from neighboring pixels:
operations over 7x7, 5x5, 3x3 neighboring
blocks because image pixels are spatially
correlated!

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features from neighboring pixels:
operations over 7x7, 5x5, 3x3 neighboring
blocks because image pixels are spatially
correlated!

• We expect that such features are scale,
translation, even affine transformation
invariant!

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is most important! Feature
quality is more important than classifier!

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimensions are meaningful for
classifier! Dimension reduction should be
there!

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimension reduction!

• High-level features vs. low-level features!
Feature extraction from objects, parts of
objects, ………

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features about neighborhoods:
7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimension reduction!

• Semantics-driven features

Bag of Visual Words

Patch-based Visual Features

Review for Feature Extraction:
Hand-Crafted Features

• Hand-crafted features from neighboring
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimension reduction!

• Semantics-driven features

• Feature normalization

• ----------

Deep Learning Approach

Joint process for feature learning & classifier training

Let data speak out for themselves!

SGD for back-propagation

Deep Learning
• Deep learning (a.k.a. representation learning) seeks to

learn rich hierarchical representations (i.e. features at
multiple levels) automatically through multiple stage of
feature learning process.

Low-level
features

output
Mid-level
features

High-level
features

Trainable
classifier

Feature visualization of convolutional net trained on ImageNet

(Zeiler and Fergus, 2013)

Learning Hierarchical
Representations

• Hierarchy of representations with increasing level of
abstraction. Each stage is a kind of trainable nonlinear
feature transform

• Hierarchical Image Representation & Recognition
– Pixel → edge → texton → motif → part → object

• Text
– Character → word → word group → clause → sentence → story

Low-level
features

output
Mid-level
features

High-level
features

Trainable
classifier

Increasing level of abstraction

1. Convolution, 2. ReLU, 3. Pooling, 4. Softmax

5. Data Augmentation, 6. Fine-tune, 7. Batch Normalization, 8. Drop out

Key

Operations

Convolutional Neural Network (CNN)

• A standard CNN for image classification is
composed of:

– Convolutional layers

– Down-sampling layers

• Strided convolution

• Max pooling

• Avg. Pooling

– Batch normalization

– Activation functions (e.g. ReLU)

Basic Operators for CNN

1. Convolution;

2. ReLU

3. Pooling

4. Softmax

1. Data Augmentation

2. Fine-tune

3. Batch Normalization

4. Drop-out

Basic Tools for CNN Training

Convolution works on neighboring pixels!

Convolution as neighbor-based
feature extraction

Input Feature Map

.

.

.

Slide: Lazebnik

Discrete convolution

x0 x1 x2

x3 x4 x5

x6 x7 x8

y4

k0 k1 k2

k3 k4 k5

k6 k7 k8
* =

Input Kernel Output

• A discrete convolution is a linear transformation

• Sparse – only few inputs contribute to a given

output unit

• Reuses parameters – same kernel is applied

over multiple input elements

Figure: In this example, each output element is

computed using 9 pixels

Figure: Kernel strides

over input

Convolution Layer
• Convolution layer takes an input feature map

of dimension 𝑊 ×𝐻 ×𝑁 and produces an
output feature map of dimension 𝑊 × 𝐻 ×𝑀

• Each layer is defined using following
parameters:

– # Input channels (N)

– # Output channels (M)

– Kernel size

– Padding

– Stride

of parameters learned by convolution layer is 𝒏𝟐𝑵𝑴

Convolution Layer

Figure: In this example,

5x5 input is convolved

with 3x3 kernel with

stride=padding=1 to

produce an output of size

5x5.

Figure: In this example,

5x5 input is convolved

with 3x3 kernel with

stride=2 and padding=1

to produce an output of

size 3x3.

Slide Credit: Marc'Aurelio Ranzato

Perceptron

:

This is

convolution!

Filter = ‘local’ perceptron.

Also called kernel.

Convolutional kernel

Convolutional kernel

Padding on the

input volume with

zeros in such

way that the conv

layer does not

alter the spatial

dimensions of

the input

Dilated Convolution Layer
• Inserts spaces between the kernel element to increase

the effective size of kernel

• Same as the convolutional layer except it has additional
parameter, dilation rate, that controls the spacing

• Each layer is defined using following parameters:
– # Input channels (𝐶1)

– # Output channels (𝐶2)

– Kernel size (𝑤1 × ℎ1)

– Padding

– Stride

– Dilation rate (𝑟)

Group Convolution Layer

• Input and kernel are split into 𝑔 groups across channel
dimension

• Each group then performs the convolutions independently
• Each layer is defined using following parameters:

– # Input channels (𝐶1)
– # Output channels (𝐶2)
– Kernel size (𝑤1 × ℎ1)
– Padding
– Stride
– Dilation rate (𝑟)
– # of groups (𝑔)

• Parameter reduction??

Group vs Standard Convolution Layer

Figure: Standard convolution Figure: Grouped convolution

Depth-wise Convolution

• Special case of group convolution where each
channel is processed independently

input channels = # groups = # output channels

• Parameter reduction??

ReLU

ReLU

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Feature Normalization

ReLU

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Leaky ReLU

max(0.1x, x)

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Sigmoid

• Squashes numbers to range [0,1] –

can kill gradients.

• A key element in LSTM networks –

“control signals”

• Best for learning “logical” functions

– i.e. functions on binary inputs.

• Not as good for image networks

(replaced by RELU)

• Not zero-centered

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Consider what happens when the input to a neuron (x)

is always positive:

What can we say about the gradients on w?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Consider what happens when the input to a neuron is

always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(this is also why you want zero-mean data!)

hypothetical

optimal w

vector

zig zag path

allowed

gradient

update

directions

allowed

gradient

update

directions

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

tanh(x)

• Squashes numbers to range [-1,1]

• Zero centered (nice)

• Still kills gradients when saturated :(

• Also used in LSTMs for bounded,

signed values.

• Not as good for binary functions

[LeCun et al., 1991]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

• Computes f(x) = max(0,x)

• Does not saturate (in +region)

• Converges faster than sigmoid/tanh

on image data (e.g. 6x)

• Not suitable for logical functions

• Not for control in recurrent nets
ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson64

Activation Functions

ReLU

(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

- An annoyance:

hint: what is the gradient when x < 0?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Leaky ReLU

• Does not saturate

• Converges faster than sigmoid/tanh

on image data(e.g. 6x)

• will not “die”.

[Mass et al., 2013]

[He et al., 2015]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Leaky ReLU

• Does not saturate

• Converges faster than sigmoid/tanh

on image data (e.g. 6x)

• will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha

(parameter)

[Mass et al., 2013]

[He et al., 2015]

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Exponential Linear Units (ELU)

• All benefits of ReLU

• Does not die

• Closer to zero mean outputs

[Clevert et al., 2015]

ReLU

Pooling for Dimension Reduction

Down-sampling
• Learning representations at multiple scales is a

fundamental step in computer vision

– Laplacian Pyramids

– SIFT, etc.

• Down-sampling in CNNs

– Strided convolution

– Max pooling

– Avg. Pooling

a0 a1 b0 b1

a2 a3 b2 b3

c0 c1 d0 d1

c2 c3 d2 d3

a0 b1

c1 d3 Max-Pooling

ෝ𝒂 𝒃

ො𝒄 𝒅
Avg. Pooling

y𝟎 𝒚𝟏

𝒚𝟐 𝒚𝟑
Convolution

Features at Different Levels

Features at Different Levels

Features at Different Levels

Softmax

Classifier for prediction

Operations for Network Training

1. Data Augmentation: extracting

transformation-invariant features

2. Fine-tune: optimizing feature

extractor & classifier

3. Batch Normalization: feature

normalization & shift reduction

4. Drop-out: uncertain & vote

Data Augmentation (Jittering)

• Create virtual training
samples
– Horizontal flip

– Random crop

– Color casting

– Geometric distortion

• Idea goes back to
Pomerleau 1995 at
least (neural net for
car driving)

Deep Image [Wu et al. 2015]

Slide: Jiabin Huang

http://arxiv.org/pdf/1501.02876v2.pdf

Data Augmentation

Data Augmentation

Affine Transformation for handling objects under different views

Data Augmentation

Affine Transformation for handling objects under different views

Data Augmentation

Affine Transformation for handling objects under different views

Data Augmentation

Affine Transformation for handling objects under different views

Data Augmentation

GAN-based Data Augmentation

Data Augmentation

Data Augmentation

Data Augmentation

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

http://arxiv.org/pdf/1502.03167v3.pdf

Batch Normalization

Batch Normalization

Fine-tuning

Horse

Fine-tuning

Bakery

Initialize with pre-
trained, then train

with low learning rate

Fine-tuning

Bakery

Initialize with pre-
trained, then train

with low learning rate

Drop-out

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Monitor and visualize the loss curveLearning Rate

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Loss

time

Loss Visualization

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson105

Loss

time

Bad initialization

a prime suspect

Loss Visualization

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

lossfunctions.tumblr.com Loss function specimen

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson107

lossfunctions.tumblr.com

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

lossfunctions.tumblr.com

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Monitor and visualize the accuracy:

big gap = overfitting

=> increase regularization strength?

no gap
=> increase model capacity?

Accuracy Visualization

t-SNE

t-SNE

Additional Interpretations of CNN Operators

Convolution = Matrix Multiply

.

.

.

IFM: 227x227x3 Filter: 11x11x3x96

Stride: 4

OFM: 55x55x96

• IFM converted to 363x3025 matrix
• filter looks at 11x11x3 input volume, 55 locations along W,H.

• Weights converted to 96x363 matrix
• OFM = Weights x IFM.
• BLAS libraries used to implement matrix multiply (GEMM)

• MKL for CPU, CuBLAS for GPU

Convolutional Neural Network

Reminder: Receptive Field

conv conv conv

Receptive field

• Which input pixels does a particular unit in a
feature map depends on

convolve with 3 x

3 filter

Receptive field

convolve

with 3 x

3 filter

convolve

with 3 x

3 filter
3x3 receptive

field

5x5 receptive

field

Receptive field

convolve with 3 x

3 filter,

subsample

Receptive field

convolve

with 3 x 3

filter,

subsampl

e by factor

2

convolve

with 3 x

3 filter
3x3 receptive

field

7x7 receptive

field: union of

9 3x3 fields

with stride of 2

Well-known Deep Networks

1.AlexNet

2.VGG

3.GoogleNet

4.ResNet

AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with

Deep Convolutional Neural Networks, NIPS 2012

Network Structure for AlexNet

labelsImage

Krizhevsky, Sutskever, Hinton — NIPS 2012

Convolutional Neural Networks: AlexNet

Lion

Convolutional Neural Networks: AlexNet

First layer

• Each filter works on
all 3 channels R,G,B

Output of Convolution Layer
• If input =MxM and have K filters that are 3X3

– OUTPUT = K channels of (M-2)x(M-2)

Example:

2 filters

 2 output channels

Last

Layer

Nguyen et al.

arXiv 2014

Zeiler et al.

arXiv 2013, ECCV

2014

Layer 2 Layer 5

Gabor filter: linear filters used for edge detection

with similar orientation representations to the human

visual system

AlexNet

. . .

max pool max pool

max pool

conv conv

conv conv conv
. . .

. . .

Example of CNN layer

96 filters of 11x11x3 each

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

VGG

Karen Simonyan, Andrew Zisserman:Very Deep Convolutional Networks for Large-

Scale Image Recognition, ICLR, 2015

https://arxiv.org/search/cs?searchtype=author&query=Simonyan,+K
https://arxiv.org/search/cs?searchtype=author&query=Zisserman,+A

VGGNet

• Smaller filters
Only 3x3 CONV filters, stride 1, pad 1
and 2x2 MAX POOL , stride 2

• Deeper network
AlexNet: 8 layers
VGGNet: 16 - 19 layers

• ZFNet: 11.7% top 5 error in ILSVRC’13

• VGGNet: 7.3% top 5 error in ILSVRC’14

Input

3x3 conv, 64

3x3 conv, 64

Pool 1/2

3x3 conv, 128

3x3 conv, 128

Pool 1/2

3x3 conv, 256

3x3 conv, 256

Pool 1/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool 1/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool 1/2

FC 4096

FC 4096

FC 1000

Softmax

VGGNet

• Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

• What is the effective receptive field of three 3x3 conv (stride
1) layers?

7x7

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer

VGGNet

VGG16:

TOTAL memory: 24M * 4 bytes ~= 96MB / image

TOTAL params: 138M parameters

Input

3x3 conv, 64

3x3 conv, 64

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 4096

FC 1000

Softmax

Input memory: 224*224*3=150K params: 0

3x3 conv, 64 memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728

3x3 conv, 64 memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864

Pool memory: 112*112*64=800K params: 0

3x3 conv, 128 memory: 112*112*128=1.6M params: (3*3*64)*128 =

73,728

3x3 conv, 128 memory: 112*112*128=1.6M params: (3*3*128)*128 =

147,456

Pool memory: 56*56*128=400K params: 0

3x3 conv, 256 memory: 56*56*256=800K params: (3*3*128)*256 = 294,912

3x3 conv, 256 memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

3x3 conv, 256 memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

Pool memory: 28*28*256=200K params: 0

3x3 conv, 512 memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

3x3 conv, 512 memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

3x3 conv, 512 memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

Pool memory: 14*14*512=100K params: 0

3x3 conv, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

3x3 conv, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

3x3 conv, 512 memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

Pool memory: 7*7*512=25K params: 0

FC 4096 memory: 4096 params: 7*7*512*4096 = 102,760,448

FC 4096 memory: 4096 params: 4096*4096 = 16,777,216

FC 1000 memory: 1000 params: 4096*1000 = 4,096,000

GoogleNet

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich: Going Deeper

with Convolutions, IEEE CVPR, 2015.

https://arxiv.org/search/cs?searchtype=author&query=Szegedy,+C
https://arxiv.org/search/cs?searchtype=author&query=Liu,+W
https://arxiv.org/search/cs?searchtype=author&query=Jia,+Y
https://arxiv.org/search/cs?searchtype=author&query=Sermanet,+P
https://arxiv.org/search/cs?searchtype=author&query=Reed,+S
https://arxiv.org/search/cs?searchtype=author&query=Anguelov,+D
https://arxiv.org/search/cs?searchtype=author&query=Erhan,+D
https://arxiv.org/search/cs?searchtype=author&query=Vanhoucke,+V
https://arxiv.org/search/cs?searchtype=author&query=Rabinovich,+A

GoogleNet

• Going Deeper with Convolutions - Christian Szegedy et
al.; 2015

• ILSVRC 2014 competition winner

• Also significantly deeper than AlexNet

• x12 less parameters than AlexNet

• Focused on computational efficiency

GoogleNet

• 22 layers

• Efficient “Inception” module - strayed from

the general approach of simply stacking conv

and pooling layers on top of each other in a

sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5

error)

GoogLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Inception module

https://arxiv.org/abs/1409.4842

GoogLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Auxiliary classifier

https://arxiv.org/abs/1409.4842

GoogleNet

“Inception module”: design a good local network topology (network within

a network) and then stack these modules on top of each other

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

1x1
convolution

1x1
convolution

1x1
convolution

3x3 max
pooling

GoogleNet
Naïve Inception Model

• Apply parallel filter operations on the input :

• Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

• Pooling operation (3x3)

• Concatenate all filter outputs together depth-wise

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max
pooling

GoogleNet

• What’s the problem with this?
High computational complexity

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max
pooling

GoogleNet
• Output volume sizes:

1x1 conv, 128: 28x28x128

3x3 conv, 192: 28x28x192

5x5 conv, 96: 28x28x96

3x3 pool: 28x28x256

• What is output size after
filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Example:

Filter
concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96
3x3 max
pooling

GoogleNet
• Number of convolution operations:

1x1 conv, 128: 28x28x128x1x1x256

3x3 conv, 192: 28x28x192x3x3x256

5x5 conv, 96: 28x28x96x5x5x256

Total: 854M ops
Filter

concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96
3x3 max
pooling

GoogleNet
• Very expensive compute!

• Pooling layer also preserves feature
depth, which means total depth after
concatenation can only grow at every layer.

Filter
concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96
3x3 max
pooling

GoogleNet

• Solution: “bottleneck” layers that use 1x1 convolutions to
reduce feature depth (from previous hour).

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max
pooling

GoogleNet

• Solution: “bottleneck” layers that use 1x1 convolutions to
reduce feature depth (from previous hour).

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

1x1
convolution

1x1
convolution

1x1
convolution

3x3 max
pooling

Filter
concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96 1x1 conv 64

1x1 conv 64 1x1 conv 64
3x3 max
pooling

• Number of convolution operations:
1x1 conv, 64: 28x28x64x1x1x256
1x1 conv, 64: 28x28x64x1x1x256
1x1 conv, 128: 28x28x128x1x1x256
3x3 conv, 192: 28x28x192x3x3x64
5x5 conv, 96: 28x28x96x5x5x264
1x1 conv, 64: 28x28x64x1x1x256
Total: 353M ops

• Compared to 854M ops for naive version

GoogleNet

Details/Retrospectives :

• Deeper networks, with computational efficiency

• 22 layers

• Efficient “Inception” module

• No FC layers

• 12x less params than AlexNet

• ILSVRC’14 classification winner (6.7% top 5 error)

ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:Deep Residual Learning

for Image Recognition, arXiv preprint arXiv:1512.03385,2015. IEEE CVPR 2016

https://arxiv.org/search/cs?searchtype=author&query=He,+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+X
https://arxiv.org/search/cs?searchtype=author&query=Ren,+S
https://arxiv.org/search/cs?searchtype=author&query=Sun,+J

ResNet

• Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun;
2015

• Extremely deep network – 152 layers

• Deeper neural networks are more difficult to train.

• Deep networks suffer from vanishing and
exploding gradients.

• Present a residual learning framework to ease the
training of networks that are substantially deeper
than those used previously.

ResNet: the residual module
• Introduce skip or shortcut connections (existing before in

various forms in literature)

• Make it easy for network layers to represent the identity
mapping

• For some reason, need to skip at least two layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual

Learning for Image Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385

ResNet
• Directly performing 3x3

convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K
operations

• Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual

Learning for Image Recognition, CVPR 2016 (Best Paper)

Deeper residual module (bottleneck)

Slide: Lazebnik

http://arxiv.org/abs/1512.03385

ResNet

• ILSVRC’15 classification winner (3.57% top 5
error, humans generally hover around a 5-
10% error rate)
Swept all classification and detection
competitions in ILSVRC’15 and COCO’15!

ResNet

• What happens when we continue stacking deeper layers on a
convolutional neural network?

• 56-layer model performs worse on both training and test error

-> The deeper model performs worse (not caused by overfitting)!

ResNet

• Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

• Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation
from one layer and feed it into another layer, much deeper
into the network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly

ResNet
Residual Block
Input x goes through conv-relu-conv series and gives us F(x).
That result is then added to the original input x. Let’s call that
H(x) = F(x) + x.
In traditional CNNs, H(x) would just be equal to F(x). So, instead
of just computing that transformation (straight from x to F(x)),
we’re computing the term that we have to add, F(x), to the
input, x.

ResNet

Short cut/ skip connection

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has two 3x3 conv layers

• Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

• Additional conv layer at the beginning

• No FC layers at the end (only FC 1000 to
output classes)

ResNet

• Total depths of 34, 50, 101, or 152 layers for
ImageNet

• For deeper networks (ResNet-50+), use
“bottleneck” layer to improve efficiency
(similar to GoogLeNet)

VGG-16 GoogleNet ResNet

Reading list
• https://culurciello.github.io/tech/2016/06/04/nets.html

• Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11):
2278–2324, 1998.

• A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

• D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ICLR 2015

• M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
ECCV 2014 (best paper award)

• K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition, ICLR 2015

• M. Lin, Q. Chen, and S. Yan, Network in network, ICLR 2014

• C. Szegedy et al., Going deeper with convolutions, CVPR 2015

• C. Szegedy et al., Rethinking the inception architecture for computer vision,
CVPR 2016

• K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, CVPR
2016 (best paper award)

https://culurciello.github.io/tech/2016/06/04/nets.html
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://arxiv.org/pdf/1311.2901v3.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.03385

