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Pipeline for Traditional Image Classification System
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Separating feature extraction from classifier training

Hand-crafted Features





Review for Feature Extraction: 
Hand-Crafted Features

• Hand-crafted features from neighboring pixels: 
operations over 7x7, 5x5, 3x3 neighboring 
blocks because image pixels are spatially 
correlated!
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• Hand-crafted features from neighboring pixels: 
operations over 7x7, 5x5, 3x3 neighboring 
blocks because image pixels are spatially 
correlated!

• We expect that such features are scale, 
translation, even affine transformation 
invariant!



Review for Feature Extraction: 
Hand-Crafted Features

• Hand-crafted features from neighboring 
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is most important! Feature 
quality is more important than classifier!
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• Hand-crafted features from neighboring 
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimensions are meaningful for 
classifier! Dimension reduction should be 
there!



Review for Feature Extraction: 
Hand-Crafted Features

• Hand-crafted features from neighboring 
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimension reduction!

• High-level features vs. low-level features! 
Feature extraction from objects, parts of 
objects, ………



Review for Feature Extraction: 
Hand-Crafted Features

• Hand-crafted features about neighborhoods: 
7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimension reduction!

• Semantics-driven features 



Bag of Visual Words



Patch-based Visual Features



Review for Feature Extraction: 
Hand-Crafted Features

• Hand-crafted features from neighboring 
pixels: 7x7, 5x5, 3x3 neighboring blocks!

• Such features are transformation-invariant!

• Feature quality is important than classifier!

• Feature dimension reduction!

• Semantics-driven features 

• Feature normalization

• ----------



Deep Learning Approach

Joint process for feature learning & classifier training

Let data speak out for themselves!

SGD for back-propagation



Deep Learning
• Deep learning (a.k.a. representation learning) seeks to 

learn rich hierarchical representations (i.e. features at 
multiple levels) automatically through multiple stage of 
feature learning process. 

Low-level 
features

output
Mid-level 
features

High-level 
features

Trainable 
classifier

Feature visualization of convolutional net trained on ImageNet 

(Zeiler and Fergus, 2013)



Learning Hierarchical 
Representations

• Hierarchy of representations with increasing level of 
abstraction. Each stage is a kind of trainable nonlinear 
feature transform 

• Hierarchical Image Representation & Recognition 
– Pixel → edge → texton → motif → part → object 

• Text 
– Character → word → word group → clause → sentence → story 

Low-level 
features

output
Mid-level 
features

High-level 
features

Trainable 
classifier

Increasing level of abstraction



1. Convolution, 2. ReLU, 3. Pooling, 4. Softmax

5. Data Augmentation, 6. Fine-tune, 7. Batch Normalization, 8. Drop out

Key 

Operations



Convolutional Neural Network (CNN)

• A standard CNN for image classification is 
composed of:

– Convolutional layers

– Down-sampling layers 

• Strided convolution

• Max pooling

• Avg. Pooling 

– Batch normalization 

– Activation functions (e.g. ReLU)



Basic Operators for CNN 

1. Convolution; 

2. ReLU

3. Pooling

4. Softmax

1. Data Augmentation

2. Fine-tune

3. Batch Normalization

4. Drop-out

Basic Tools for CNN Training 



Convolution works on neighboring pixels!



Convolution as neighbor-based 
feature extraction

Input Feature Map

.

.

.

Slide: Lazebnik



Discrete convolution

x0 x1 x2

x3 x4 x5

x6 x7 x8

y4

k0 k1 k2

k3 k4 k5

k6 k7 k8
* =

Input Kernel Output

• A discrete convolution is a linear transformation

• Sparse – only few inputs contribute to a given 

output unit

• Reuses parameters – same kernel is applied 

over multiple input elements

Figure: In this example, each output element is 

computed using 9 pixels 

Figure: Kernel strides 

over input



Convolution Layer
• Convolution layer takes an input feature map 

of dimension 𝑊 ×𝐻 ×𝑁 and produces an 
output feature map of dimension ෡𝑊 × ෡𝐻 ×𝑀

• Each layer is defined using following 
parameters:

– # Input channels (N)

– # Output channels (M)

– Kernel size 

– Padding

– Stride

# of parameters learned by convolution layer is 𝒏𝟐𝑵𝑴



Convolution Layer

Figure: In this example, 

5x5 input is convolved 

with 3x3 kernel with 

stride=padding=1 to 

produce an output of size 

5x5.

Figure: In this example, 

5x5 input is convolved 

with 3x3 kernel with 

stride=2 and padding=1 

to produce an output of 

size 3x3. 









Slide Credit: Marc'Aurelio Ranzato









































Perceptron

:

This is 

convolution!



Filter = ‘local’ perceptron.

Also called kernel.



Convolutional kernel



Convolutional kernel

Padding on the 

input volume with 

zeros in such 

way that the conv 

layer does not 

alter the spatial 

dimensions of 

the input



Dilated Convolution Layer
• Inserts spaces between the kernel element to increase 

the effective size of kernel

• Same as the convolutional layer except it has additional 
parameter, dilation rate, that controls the spacing

• Each layer is defined using following parameters:
– # Input channels (𝐶1)

– # Output channels (𝐶2)

– Kernel size (𝑤1 × ℎ1)

– Padding

– Stride

– Dilation rate (𝑟)



Group Convolution Layer

• Input and kernel are split into 𝑔 groups across channel 
dimension

• Each group then performs the convolutions independently
• Each layer is defined using following parameters:

– # Input channels (𝐶1)
– # Output channels (𝐶2)
– Kernel size (𝑤1 × ℎ1)
– Padding
– Stride
– Dilation rate (𝑟)
– # of groups (𝑔)

• Parameter reduction??



Group vs Standard Convolution Layer

Figure: Standard convolution Figure: Grouped convolution 



Depth-wise Convolution

• Special case of group convolution where each 
channel is processed independently

# input channels = # groups = # output channels

• Parameter reduction??



ReLU



ReLU



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Feature Normalization

ReLU



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Maxout

ELU

Leaky ReLU

max(0.1x, x)



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Sigmoid

• Squashes numbers to range [0,1] –

can kill gradients.

• A key element in LSTM networks –

“control signals”

• Best for learning “logical” functions 

– i.e. functions on binary inputs. 

• Not as good for image networks 

(replaced by RELU)

• Not zero-centered



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Consider what happens when the input to a neuron (x) 

is always positive:

What can we say about the gradients on w?



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Consider what happens when the input to a neuron is 

always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(this is also why you want zero-mean data!)

hypothetical 

optimal w 

vector

zig zag path

allowed 

gradient 

update 

directions

allowed 

gradient 

update 

directions



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

tanh(x)

• Squashes numbers to range [-1,1]

• Zero centered (nice)

• Still kills gradients when saturated :(

• Also used in LSTMs for bounded, 

signed values.

• Not as good for binary functions

[LeCun et al., 1991]



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

• Computes f(x) = max(0,x)

• Does not saturate (in +region)

• Converges faster than sigmoid/tanh 

on image data (e.g. 6x)

• Not suitable for logical functions

• Not for control in recurrent nets
ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson64

Activation Functions

ReLU

(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

- An annoyance:

hint: what is the gradient when x < 0?



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU 

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Leaky ReLU

• Does not saturate

• Converges faster than sigmoid/tanh 

on image data(e.g. 6x)

• will not “die”.

[Mass et al., 2013]

[He et al., 2015]



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Leaky ReLU

• Does not saturate

• Converges faster than sigmoid/tanh 

on image data (e.g. 6x)

• will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha

(parameter)

[Mass et al., 2013]

[He et al., 2015]



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation Functions

Exponential Linear Units (ELU)

• All benefits of ReLU

• Does not die

• Closer to zero mean outputs

[Clevert et al., 2015]



ReLU



Pooling for Dimension Reduction



Down-sampling
• Learning representations at multiple scales is a 

fundamental step in computer vision

– Laplacian Pyramids

– SIFT, etc.

• Down-sampling in CNNs

– Strided convolution

– Max pooling 

– Avg. Pooling 

a0 a1 b0 b1

a2 a3 b2 b3

c0 c1 d0 d1

c2 c3 d2 d3

a0 b1

c1 d3 Max-Pooling

ෝ𝒂 ෡𝒃

ො𝒄 ෡𝒅
Avg. Pooling

y𝟎 𝒚𝟏

𝒚𝟐 𝒚𝟑
Convolution













Features at Different Levels 



Features at Different Levels 





Features at Different Levels 



Softmax

Classifier for prediction



Operations for Network Training

1. Data Augmentation: extracting 

transformation-invariant features

2. Fine-tune: optimizing feature 

extractor & classifier 

3. Batch Normalization: feature 

normalization & shift reduction

4. Drop-out: uncertain & vote



Data Augmentation (Jittering)

• Create virtual training 
samples
– Horizontal flip

– Random crop

– Color casting

– Geometric distortion

• Idea goes back to 
Pomerleau 1995 at 
least (neural net for 
car driving)

Deep Image [Wu et al. 2015]

Slide: Jiabin Huang

http://arxiv.org/pdf/1501.02876v2.pdf


Data Augmentation



Data Augmentation

Affine Transformation for handling objects under different views



Data Augmentation

Affine Transformation for handling objects under different views



Data Augmentation

Affine Transformation for handling objects under different views



Data Augmentation

Affine Transformation for handling objects under different views



Data Augmentation

GAN-based Data Augmentation



Data Augmentation



Data Augmentation



Data Augmentation



Batch Normalization

Batch Normalization: Accelerating Deep Network Training by 

Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

http://arxiv.org/pdf/1502.03167v3.pdf


Batch Normalization



Batch Normalization









Fine-tuning

Horse



Fine-tuning

Bakery

Initialize with pre-
trained, then train 

with low learning rate



Fine-tuning

Bakery

Initialize with pre-
trained, then train 

with low learning rate



Drop-out



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Monitor and visualize the loss curveLearning Rate



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Loss

time

Loss Visualization 



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson105

Loss

time

Bad initialization

a prime suspect

Loss Visualization 



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

lossfunctions.tumblr.com Loss function specimen



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson107

lossfunctions.tumblr.com



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

lossfunctions.tumblr.com



Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Monitor and visualize the accuracy:

big gap = overfitting

=> increase regularization strength?

no gap
=> increase model capacity?

Accuracy Visualization 



t-SNE



t-SNE



Additional Interpretations of CNN Operators



















Convolution = Matrix Multiply 

.

.

.

IFM: 227x227x3 Filter: 11x11x3x96

Stride: 4

OFM: 55x55x96

• IFM converted to 363x3025 matrix
• filter looks at 11x11x3 input volume, 55 locations along W,H.

• Weights converted to 96x363 matrix
• OFM = Weights x IFM. 
• BLAS libraries used to implement matrix multiply ( GEMM )

• MKL for CPU, CuBLAS for GPU



Convolutional Neural Network



Reminder: Receptive Field 

conv conv conv



Receptive field

• Which input pixels does a particular unit in a 
feature map depends on

convolve with 3 x 

3 filter



Receptive field

convolve 

with 3 x 

3 filter

convolve 

with 3 x 

3 filter
3x3 receptive 

field

5x5 receptive 

field



Receptive field

convolve with 3 x 

3 filter, 

subsample



Receptive field

convolve 

with 3 x 3 

filter, 

subsampl

e by factor 

2

convolve 

with 3 x 

3 filter
3x3 receptive 

field

7x7 receptive 

field: union of 

9 3x3 fields 

with stride of 2





Well-known Deep Networks

1.AlexNet

2.VGG 

3.GoogleNet

4.ResNet



AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with 

Deep Convolutional Neural Networks, NIPS 2012



Network Structure for AlexNet



labelsImage

Krizhevsky, Sutskever, Hinton — NIPS 2012

Convolutional Neural Networks: AlexNet

Lion



Convolutional Neural Networks: AlexNet



First layer

• Each filter works on
all 3 channels R,G,B



Output of Convolution Layer
• If input =MxM and have K filters that are 3X3  

– OUTPUT = K channels  of (M-2)x(M-2)    

Example:

2 filters 

 2 output channels



Last

Layer

Nguyen et al.

arXiv 2014

Zeiler et al.

arXiv 2013, ECCV 

2014

Layer 2 Layer 5

Gabor filter: linear filters used for edge detection 

with similar orientation representations to the human 

visual system



AlexNet

. . .

max pool max pool

max pool

conv conv

conv conv conv
. . .

. . .



Example of CNN layer



96 filters of 11x11x3 each



Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


VGG 

Karen Simonyan, Andrew Zisserman:Very Deep Convolutional Networks for Large-

Scale Image Recognition, ICLR, 2015

https://arxiv.org/search/cs?searchtype=author&query=Simonyan,+K
https://arxiv.org/search/cs?searchtype=author&query=Zisserman,+A


VGGNet

• Smaller filters
Only 3x3 CONV filters, stride 1, pad 1
and 2x2 MAX POOL , stride 2

• Deeper network
AlexNet: 8 layers 
VGGNet: 16 - 19 layers

• ZFNet: 11.7% top 5 error in ILSVRC’13

• VGGNet: 7.3% top 5 error in ILSVRC’14

Input

3x3 conv, 64

3x3 conv, 64

Pool 1/2

3x3 conv, 128

3x3 conv, 128

Pool 1/2

3x3 conv, 256

3x3 conv, 256

Pool 1/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool 1/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool 1/2

FC 4096

FC 4096

FC 1000

Softmax



VGGNet

• Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

• What is the effective receptive field of three 3x3 conv (stride
1) layers?

7x7

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer



VGGNet

VGG16:

TOTAL memory: 24M * 4 bytes ~= 96MB / image 

TOTAL params: 138M parameters

Input

3x3 conv, 64

3x3 conv, 64

Pool 

3x3 conv, 128

3x3 conv, 128

Pool 

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool 

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool 

FC 4096

FC 4096

FC 1000

Softmax



Input memory:  224*224*3=150K params: 0

3x3 conv, 64 memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728 

3x3 conv, 64 memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864

Pool memory:  112*112*64=800K params: 0

3x3 conv, 128 memory:  112*112*128=1.6M params: (3*3*64)*128 = 

73,728 

3x3 conv, 128 memory:  112*112*128=1.6M params: (3*3*128)*128 = 

147,456

Pool memory:  56*56*128=400K params: 0

3x3 conv, 256 memory:  56*56*256=800K params: (3*3*128)*256 = 294,912 

3x3 conv, 256 memory:  56*56*256=800K params: (3*3*256)*256 = 589,824 

3x3 conv, 256 memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

Pool memory:  28*28*256=200K params: 0

3x3 conv, 512 memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648 

3x3 conv, 512 memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296 

3x3 conv, 512 memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

Pool memory:  14*14*512=100K params: 0

3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296 

3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296 

3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

Pool memory:  7*7*512=25K  params: 0

FC 4096 memory:  4096  params: 7*7*512*4096 = 102,760,448

FC 4096 memory:  4096  params: 4096*4096 = 16,777,216

FC 1000 memory:  1000  params: 4096*1000 = 4,096,000



GoogleNet

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich: Going Deeper 

with Convolutions, IEEE CVPR, 2015.

https://arxiv.org/search/cs?searchtype=author&query=Szegedy,+C
https://arxiv.org/search/cs?searchtype=author&query=Liu,+W
https://arxiv.org/search/cs?searchtype=author&query=Jia,+Y
https://arxiv.org/search/cs?searchtype=author&query=Sermanet,+P
https://arxiv.org/search/cs?searchtype=author&query=Reed,+S
https://arxiv.org/search/cs?searchtype=author&query=Anguelov,+D
https://arxiv.org/search/cs?searchtype=author&query=Erhan,+D
https://arxiv.org/search/cs?searchtype=author&query=Vanhoucke,+V
https://arxiv.org/search/cs?searchtype=author&query=Rabinovich,+A


GoogleNet

• Going Deeper with Convolutions - Christian Szegedy et 
al.; 2015

• ILSVRC 2014 competition winner

• Also significantly deeper than AlexNet

• x12 less parameters than AlexNet

• Focused on computational efficiency 



GoogleNet

• 22 layers

• Efficient “Inception” module - strayed from 

the general approach of simply stacking conv 

and pooling layers on top of each other in a 

sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5 

error)



GoogLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Inception module

https://arxiv.org/abs/1409.4842


GoogLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Auxiliary classifier

https://arxiv.org/abs/1409.4842


GoogleNet

“Inception module”: design a good local network topology (network within 

a network) and then stack these modules on top of each other

Filter 
concatenation

Previous layer

1x1 
convolution

3x3 
convolution

5x5 
convolution

1x1 
convolution

1x1 
convolution

1x1 
convolution

3x3 max 
pooling



GoogleNet
Naïve Inception Model

• Apply parallel filter operations on the input :

• Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

• Pooling operation (3x3)

• Concatenate all filter outputs together depth-wise

Filter 
concatenation

Previous layer

1x1 
convolution

3x3 
convolution

5x5 
convolution

3x3 max 
pooling



GoogleNet

• What’s the problem with this?
High computational complexity

Filter 
concatenation

Previous layer

1x1 
convolution

3x3 
convolution

5x5 
convolution

3x3 max 
pooling



GoogleNet
• Output volume sizes:

1x1 conv, 128: 28x28x128

3x3 conv, 192: 28x28x192

5x5 conv, 96: 28x28x96

3x3 pool: 28x28x256

• What is output size after 
filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Example:

Filter 
concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96
3x3 max 
pooling



GoogleNet
• Number of convolution operations:

1x1 conv, 128: 28x28x128x1x1x256

3x3 conv, 192: 28x28x192x3x3x256

5x5 conv, 96: 28x28x96x5x5x256

Total: 854M ops
Filter 

concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96
3x3 max 
pooling



GoogleNet
• Very expensive compute!

• Pooling layer also preserves feature 
depth, which means total depth after 
concatenation can only grow at every layer.

Filter 
concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96
3x3 max 
pooling



GoogleNet

• Solution: “bottleneck” layers that use 1x1 convolutions to 
reduce feature depth (from previous hour).

Filter 
concatenation

Previous layer

1x1 
convolution

3x3 
convolution

5x5 
convolution

3x3 max 
pooling



GoogleNet

• Solution: “bottleneck” layers that use 1x1 convolutions to 
reduce feature depth (from previous hour).

Filter 
concatenation

Previous layer

1x1 
convolution

3x3 
convolution

5x5 
convolution

1x1 
convolution

1x1 
convolution

1x1 
convolution

3x3 max 
pooling



Filter 
concatenation

Previous layer
28x28x256

1x1 conv 128 3x3 conv 192 5x5 conv 96 1x1 conv 64

1x1 conv 64 1x1 conv 64
3x3 max 
pooling

• Number of convolution operations:
1x1 conv, 64: 28x28x64x1x1x256
1x1 conv, 64: 28x28x64x1x1x256
1x1 conv, 128: 28x28x128x1x1x256
3x3 conv, 192: 28x28x192x3x3x64
5x5 conv, 96: 28x28x96x5x5x264
1x1 conv, 64: 28x28x64x1x1x256
Total: 353M ops

• Compared to 854M ops for naive version



GoogleNet

Details/Retrospectives :

• Deeper networks, with computational efficiency

• 22 layers

• Efficient “Inception” module

• No FC layers

• 12x less params than AlexNet

• ILSVRC’14 classification winner (6.7% top 5 error)



ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:Deep Residual Learning 

for Image Recognition, arXiv preprint arXiv:1512.03385,2015. IEEE CVPR 2016

https://arxiv.org/search/cs?searchtype=author&query=He,+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+X
https://arxiv.org/search/cs?searchtype=author&query=Ren,+S
https://arxiv.org/search/cs?searchtype=author&query=Sun,+J


ResNet

• Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 
2015

• Extremely deep network – 152 layers

• Deeper neural networks are more difficult to train.

• Deep networks suffer from vanishing and 
exploding gradients.

• Present a residual learning framework to ease the 
training of networks that are substantially deeper 
than those used previously. 



ResNet: the residual module
• Introduce skip or shortcut connections (existing before in 

various forms in literature)

• Make it easy for network layers to represent the identity 
mapping

• For some reason, need to skip at least two layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 

Learning for Image Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385


ResNet
• Directly performing 3x3 

convolutions with 256 feature 
maps at input and output: 
256 x 256 x 3 x 3 ~ 600K 
operations

• Using 1x1 convolutions to 
reduce 256 to 64 feature maps, 
followed by 3x3 convolutions, 
followed by 1x1 convolutions 
to expand back to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 

Learning for Image Recognition, CVPR 2016 (Best Paper)

Deeper residual module (bottleneck)

Slide: Lazebnik

http://arxiv.org/abs/1512.03385


ResNet

• ILSVRC’15 classification winner (3.57% top 5 
error, humans generally hover around a 5-
10% error rate)
Swept all classification and detection 
competitions in ILSVRC’15 and COCO’15!



ResNet

• What happens when we continue stacking deeper layers on a 
convolutional neural network?

• 56-layer model performs worse on both training and test error

-> The deeper model performs worse (not caused by overfitting)!



ResNet

• Hypothesis: The problem is an optimization problem. Very 
deep networks are harder to optimize.

• Solution: Use network layers to fit  residual mapping instead 
of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation 
from one layer and feed it into another layer, much deeper 
into the network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly



ResNet
Residual Block
Input x goes through conv-relu-conv series and gives us F(x). 
That result is then added to the original input x. Let’s call that 
H(x) = F(x) + x. 
In traditional CNNs, H(x) would just be equal to F(x). So, instead 
of just computing that transformation (straight from x to F(x)), 
we’re computing the term that we have to add, F(x), to the 
input, x. 



ResNet

Short cut/ skip connection



ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has two 3x3 conv layers

• Periodically, double # of filters and 
downsample spatially using stride 2 (in each 
dimension)

• Additional conv layer at the beginning

• No FC layers at the end (only FC 1000 to 
output classes)



ResNet

• Total depths of 34, 50, 101, or 152 layers for 
ImageNet

• For deeper networks (ResNet-50+), use 
“bottleneck” layer to improve efficiency 
(similar to GoogLeNet)



VGG-16 GoogleNet ResNet



Reading list
• https://culurciello.github.io/tech/2016/06/04/nets.html

• Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 
recognition, Proc. IEEE 86(11): 
2278–2324, 1998.

• A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

• D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ICLR 2015

• M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, 
ECCV 2014 (best paper award)

• K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image 
Recognition, ICLR 2015

• M. Lin, Q. Chen, and S. Yan, Network in network, ICLR 2014

• C. Szegedy et al., Going deeper with convolutions, CVPR 2015

• C. Szegedy et al., Rethinking the inception architecture for computer vision, 
CVPR 2016

• K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, CVPR 
2016 (best paper award)
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