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Related learning approaches

Transfer learning (finetuning):

e Data in the source domain help learning the target
domain
e |ess data are needed in the target domain

Multi-task learning:

e Co-learn multiple, related tasks simultaneously

e All tasks have labeled data and are treated equally

e Goal: optimize learning/performance across all
tasks through shared knowledge

Original model
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B random initialize + train
[ fine-tune
] unchanged




Related learning approaches iliN
Transfer learning (finetuning): Source task
Unidirectional: source = target H/

Not continuous
No retention/accumulation of knowledge
Tasks must be similar

Multi-task learning: ._"

e Simultaneous learning
e All tasks data are needed for training

\I Target task

®

®

®

®
I Task 1

/

\I Task 2

B random initialize + train
[ fine-tune
[] unchanged




Biological Aspects of Lifelong Learning
(a) The Stability-Plasticity Dilemma

As humans, we have an astonishing ability to adapt by effectively acquiring knowledge and
skills, refining them on the basis of novel experiences, and transferring them across multiple
domains. While it is true that we tend to gradually forget previously learned information
throughout our lifespan, only rarely does the learning of novel information catastrophically
interfere with consolidated knowledge.

Lifelong learning in the brain is mediated by a rich set of neurophysiological principles that
regulate the stability-plasticity balance of the different brain areas and that contribute to the
development and specialization of our cognitive system on the basis of our sensorimotor
experiences.

The stabilityplasticity dilemma regards the extent to which a system must be prone to
integrate and adapt to new knowledge and, importantly, how this adaptation process should
be compensated by internal mechanisms that stabilize and modulate neural activity to
prevent catastrophic forgetting .



Stability -plasticity dilemma: When and how to adapt to the current model

(a) Quick update enables rapid adaptation, but old information is forgotten;

(b) Slower adaptation allows to retain old information but the reactivity of the system is
decreased;

(c) Failure to deal with this dilemma may lead to catastrophic forgetting

(d) Data streams, constantly arriving, not static - Incremental learning

(e) Multiple tasks with multiple learning/mining algorithms

(f) Retain/accumulate learned knowledge in the past & use it to help future learning:
Use past knowledge for inductive transfer when learning new tasks

(g) Mimics human way of learning



Biological Aspects of Lifelong Learning
(b) Hebbian Plasticity and Stability

The ability of the brain to adapt to changes in its environment provides vital insight into how
connectivity and function of the cortex are shaped. It has been shown that while
rudimentary patterns of connectivity in the visual system are established in early
development, normal visual input is required for the correct development of the visual
cortex.

The most well-known theory describing the mechanisms of synaptic plasticity for the
adaptation of neurons to external stimuli was first proposed by Hebb, postulating that when
one neuron drives the activity of another neuron, the connection between them is
strengthened. More specifically, the Hebb’s rule states that the repeated and persistent
stimulation of the postsynaptic cell from the presynaptic cell leads to an increased synaptic
efficacy. Throughout the process of development, neural systems stabilize to shape optimal
functional patterns of neural connectivity.



1. Learning without Forgetting (Regularization Approaches)

Kirkpatrick et al. proposed the elastic weight consolidation (EWC) model in supervised and
reinforcement learning scenarios. The approach consists of a quadratic penalty on the
difference between the parameters for the old and the new tasks that slows down the
learning for task-relevant weights coding for previously learned knowledge. The relevance of
the parameter 8 with respect to a task’s training data D is modelled as the posterior
distribution p(6 | D). Assuming a scenario with two independent tasks A with DA and B with
DB, the log value of the posterior probability given by the Bayes’ rule is:

logp(6 | D) = logp(Dp | ) +logp(0 | D4) —logp(Dp).

where the posterior probability logp(6 | DA) embeds all the information about the previous
task. However, since this term is intractable, EWC approximates it as a Gaussian distribution
with mean given by the parameters 0 * A and a diagonal precision given by the diagonal of
the fisher information matrix F. Therefore, the loss function of EWC is given by

L(0) = Lp(0) +Z SFi(0: — 0%,),



1. Learning without Forgetting (Regularization Approaches)

Zenke, Poole & Ganguli (2017) proposed to alleviate catastrophic forgetting by allowing individual
synapses to estimate their importance for solving a learned task. Similar to Kirkpatrick et al. (2017),
this approach penalizes changes to the most relevant synapses so that new tasks can be learned with
minimal forgetting. To reduce large changes in important parameters f; when learning a new task,
the authors use a modified cost function £ with a surrogate loss which approximates the summed
loss functions of all previous tasks L :

L =Ln+c) QF(6; —6)°,
k

where c is a weighting parameter to balance new and old tasks, ¢, are the parameters at the end of
the previous task, and €27 is a per-parameter regulation strength.



1. Learning without Forgetting (Regularization Approaches)
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a) Retraining with regularization



2. Dynamic Architectures

The approaches change architectural properties in response to new information by
dynamically accommodating novel neural resources, e.g., re-training with an increased
number of neurons or network layers.

Rusu et al. proposed to block any changes to the network trained on previous knowledge and
expand the architecture by allocating novel sub-networks with fixed capacity to be trained
with the new information.

Zhou et al. proposed the incremental training of a denoising autoencoder that adds neurons
for samples with high loss and subsequently merges these neurons with existing ones to
prevent redundancy. More specifically, the algorithm is composed of two processes for (i)
adding new features to minimize the residual of the objective function and (ii) merging similar
features to obtain a compact feature representation and in this way prevent overfitting.



2. Dynamic Architectures

b) Training with network
expansion



Model Integration
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Model Integration
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3. Model Integration

» Network Fusion when only few new samples (Concept drift) are added
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3. Model Integration
» Network Fusion when only few new but similar tasks are added

X\
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Local Model 1¢/

Old tasks

New task
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3. Model Integration
« Network Fusion & Pruning when few new but different tasks are added

Old tasks

New task
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LWF: Learning without Forgetting [Li2016]

Goal:

Add new prediction tasks based on adapting shared parameters without access
to training data for previously learned tasks

Solution:

Using only examples for the new task, optimize for :

e High accuracy on the new task
e Preservation of responses on existing tasks from the original network (distillation, Hinton2015)

e Storage doew time. Old samples are not kept

Preserves performance on old task
(even if images in new task provide a poor sampling of old task)

Ramon Morros, Life-long/incremental Learning,2017



LWF: Learning without Forgetting [Li2016]
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LWF: Learning without Forgetting [Li2016]

LEARNINGWITHOUTFORGETTING:

Start with:

Os: shared parameters

f,: task specific parameters for each old task

Xy, Y,: training data and ground truth on the new task
Initialize:

Y, + CNN(Xp, 05, 0,)

0 < RANDINIT(|6,,|)

// compute output of old tasks for new data
// randomly initialize new parameters

Define Y, = CNN(X,, 93, 0,)

// old task output
Define Y;, = CNN(Xn, 05, 0,

// new task output

02, 05, 0% « argmin(Lora(Yo, ¥o) @) R (04,00, 0,,)

03 aoo ao'n

Multinomial logistic loss
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iCaRL

Goal:

Add new classes based on adapting shared parameters with restricted access to
training data for previously learned classes. Class 1 Class 3

class-incremental learner

e A subset of training samples (exemplar set) from previous classes is stored.

e Combination of classification loss for new samples and distillation loss for old samples.

e The size of the exemplar set is kept constant. As new classes arrive, some examples
from old classes are removed.

......

Solution:



iCaRL: Incremental Classifier and Representation learning

Algorithm 2 iCaRL INCREMENTALTRAIN

input X*° ... . X' // training examples in per-class sets
input K // memory size
require © /I current model parameters

...... “P,0)

P, +~ REDUCEEXEMPLARSET(P,, m)

end for
fory=2=,...; t do
P, +~ CONSTRUCTEXEMPLARSET(X,,m,©)
end for
P+« (P,..., F) // new exemplar sets
Exemplar set
(old classes)

0 (]

R

Algorithm 3 iCaRL UPDATEREPRESENTATION

input X°*,...,. X* // training images of classes s, ... ¢
require P = (P, ..., Pie1) // exemplar sets
require © // current model parameters

// form combined training set:

/I’storc network outputs with pre-update parameters: \
fory=1.....s—1do

q’ < gy(z;) forall (z;,-)€D
end for

run network training (e.g. BackProp) with loss function

f
(O) = -y [Zﬁ,,zy. log(gy(x:)) # classification loss

(x4,90)ED y=s

U0

New training data
(new class)

Model
update

s—1
k + Zq:’ log(!ly(J'e)}] // distillation losy'"ntmzms]
=1

—J



iCa RL: Incremental Classifier and Representation learning

Algorithm 2 iCaRL INCREMENTALTRAIN

input X*...., X'/ training examples in per-class sets fg}g'zl‘::;::;
input A // memory size New exemolar sek
require © /I current model parameters UHU I:“][l E
require P = (F;...., P.1) // current exemplar sets

O « UPDATEREPRESENTATION(X®, ..., . X':P,0) —)

m + K/t // number of exemplars per class I:”]II:IU

fory=1 .. —s—1de
@,'? Rl-:m:(fEEXEMPl.ARSE'r@ New training data
ena or (new class)
fory =s—. 0
P, +~ CONSTRUCTEXEMPLARSET(X,.m,©)
e

Pit= Py ey ) // new exemplar sets




Progressive Neural Networks

Goal:

Learn a series of tasks in sequence, using knowledge from
previous tasks to improve convergence speed

Solution:

e [nstantiate a new NN for each task being solved, with lateral
connections to features of previously learned columns

e Previous tasks training data is not stored. Implicit
representation as NN weights.

e Complexity of the model grows with each task

e Task labels needed at test time

outputy outputs outputsy

input

W g (W;thﬂ + S UERD,

j<k

|



Increasing model capacity (I)

New knowledge acquired (new classes, new domains) over time may saturate
network capacity

We can think of a lifelong learning system as experiencing a continually growing
training set.

The optimal model complexity changes as training set size changes over time.

e [nitially, a small model may be preferred, in order to prevent overfitting and to reduce

the computational cost of using the model.
e Later, a large model may be necessary to fully utilize the large dataset.

X »



Increasing model capacity ()

Some LML methods already add capacity for each task (PNN, DA) but others do
not.

If the capacity of the network has to be incremented we want to avoid retraining
the new network from scratch

It is possible to transfer knowledge from a teacher network to a ‘bigger’ student
network in an efficient way

Chen, T., Goodfellow, I., & Shlens, J. (2016). Net2Net: Accelerating Learning via Knowledge Transfer. In ICLR 2016



Increasing model capacity: Net2Net (I)

e The new, larger network immediately performs as well as the original network,
rather than spending time passing through a period of low performance.

e Any change made to the network after initialization is guaranteed to be an
improvement, so long as each local step is an improvement.

e |Itis always “safe” to optimize all parameters in the network.

Traditional Workflow Net2Net Workflow
Initial g Rebuild 8 Model Iniﬁalgm Reuse é%ﬁode'
N i g
- 2 - o B ~
Training Tragng | rz;ng SHD2
Training
B o S B = 2
g o

Chen, T., Goodfellow, |., & Shiens, J. (2016). Net2Net: Accelerating Learning via Knowledge Transfer. In ICLR
2016



Increasing model capacity: Net2Net (II)

Net2WiderNet:

e Allows a layer to be replaced with a wider layer (a layer that has more units)
e For convolution architectures, this means more convolution channels

Teacher Network Student Network

Chen, T., Goodfellow, |., & Shlens, J. (2016). Net2Net: Accelerating Learning via Knowledge Transfer. In ICLR



Increasing model capacity: Net2Net (liI)

Algorithm 1: Net2WiderNet

A I’andom mapplng g() |S Used tO bUlId U fl’0m W Input: {W|i = 1,2, ...n}, the weight matrix of teacher net

Use forward inference to generate a consistent random mapping {¢'*}

The first n columns of W" are copied directly into U" foric 2 ndo
2 c; —Ulor v 2.7 -qdo
Columns n+1through g of U" are created by choosing at Zldfg«-nm = Cqu-ny) +1
e
random (with replacement) as defined in g. for j€1.2.---qdo

i i (i+1) : : 4 Uy éws::')-”(k).ginm
e For weights in U"", we must account for the replication by | end

dividing the weight by a feplication factor)so all the units f,":,,,.,t {UO =1,2,:--n}: the transformed weight matrix for wider iet.
have the same value as the unit in the oKginal net Vs =
. : : : . Va, f(z:0) = g(z:;0')
e This can be generalized to making multiple layers wider
g:{1,2,--- ,q} = {1,2,---,n} g>n
; J 1<n
9(j) = { - S :
\_ random sample from {1,2,--- ,n} j>n)
(1) _ 1709 (i+1) _
Ubi =Weguy Usn =

Chen, T., Goodfellow, |., & Shlens, J. (2016). Net2Net: Accelerating Learning via Knowledge Transfer. In /ICLR
2016



Discovering new classes

Most learning systems follow a closed world assumption (the number of
categories is predetermined at training time)

New classes may appear over time. Systems need a way to detect them and to
introduce them in the learning process

The method in [Kading2016] inspires in the way humans (children) learn over time

incremental
learning
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K&ding, C., Rodner, E., Freytag. A.. & Denzler, J. (2016). Watch, Ask, Learn, and Improve: a lifelong learning cycle for visual recognition. European Symposium on Artificial NN.
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Discovering new classes

Most learning systems follow a closed world assumption (the number of
categories is predetermined at training time)

New classes may appear over time. Systems need a way to detect them and to
introduce them in the learning process

The method in [Kading2016] inspires in the way humans (children) learn over time

2047

Time

Kading, C., Rodner, E., Freytag, A., & Denzler, J. Watch, Ask, Learn, and Improve: a lifelong leaming cycle for visual recognition. European Symposium on Artificial NN. 2018

























































