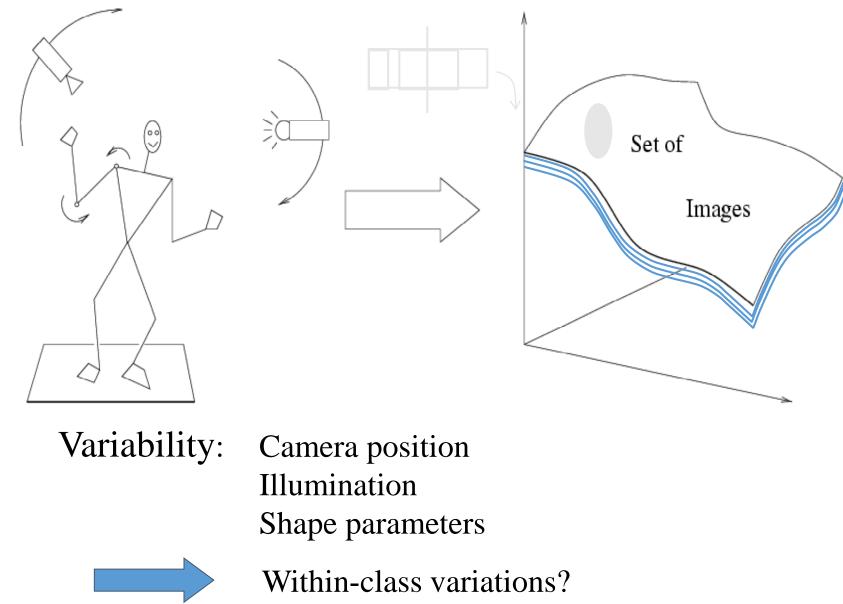
Bag of Visual Words for Image Representation

Jianping Fan Department of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html Recognition is all about modeling variability

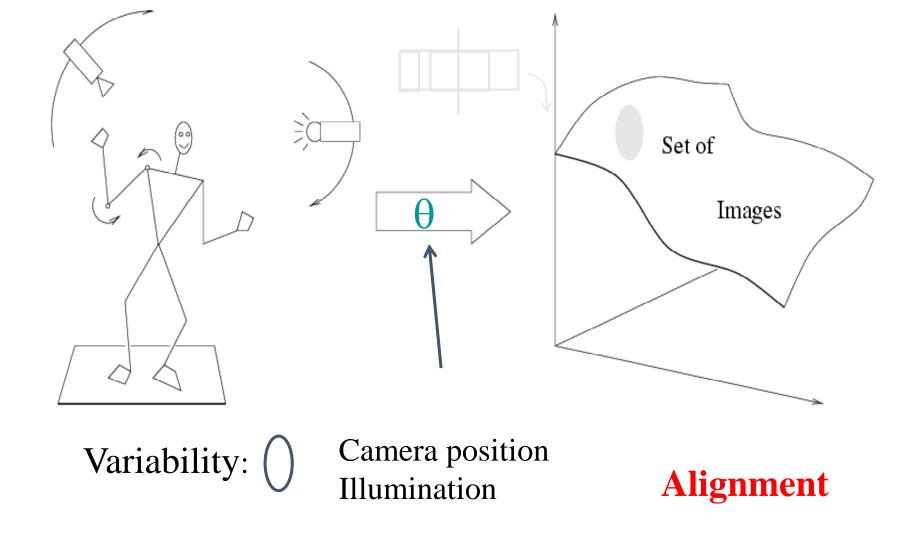


Within-class variations

Svetlana Lazebnik

History of ideas in recognition

• 1960s – early 1990s: the geometric era

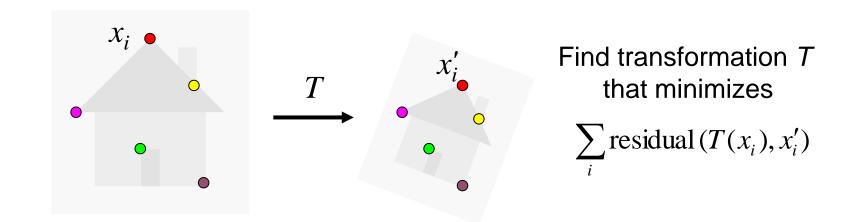


Shape: assumed known

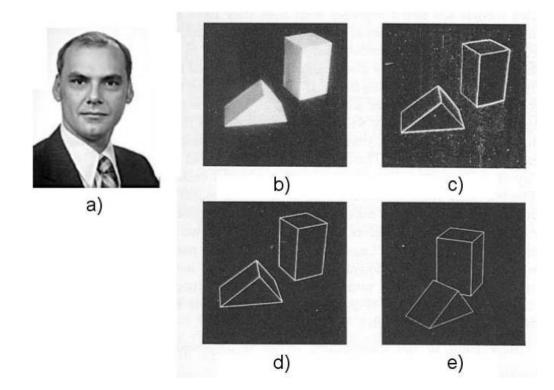
Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987) Svetlana Lazebnik

Recall: Alignment

• Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images



Recognition as an alignment problem: Block world

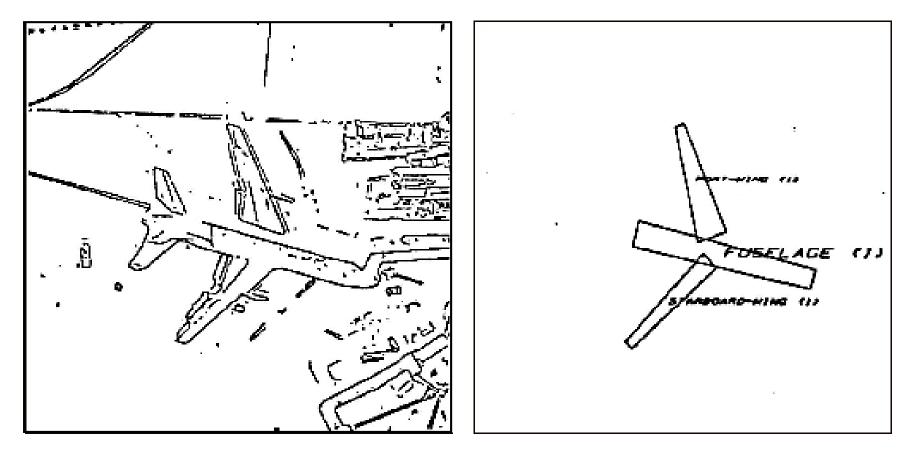


L. G. Roberts, <u>Machine</u> <u>Perception of Three</u> <u>Dimensional Solids</u>, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

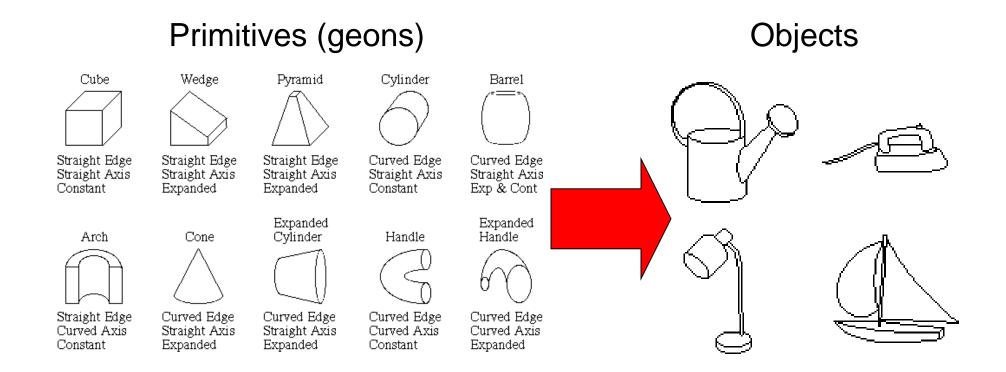
Representing and recognizing object categories is harder...



ACRONYM (Brooks and Binford, 1981) Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)

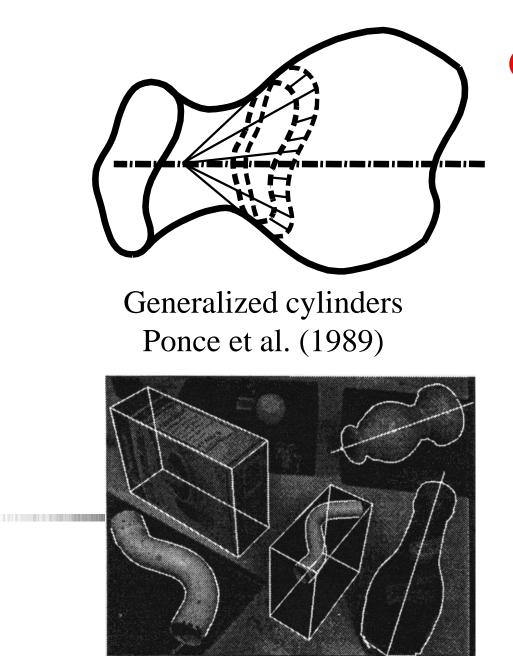
Recognition by components

Biederman (1987)



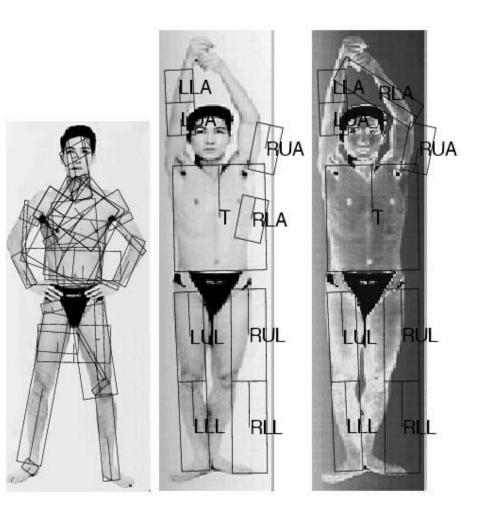
http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

Svetlana Lazebnik



Zisserman et al. (1995)

General shape primitives?

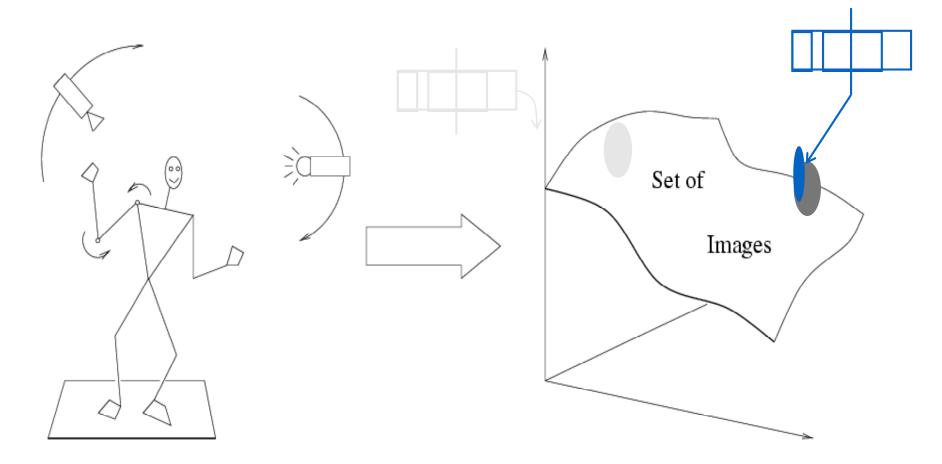


Forsyth (2000)

Svetlana Lazebnik

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models



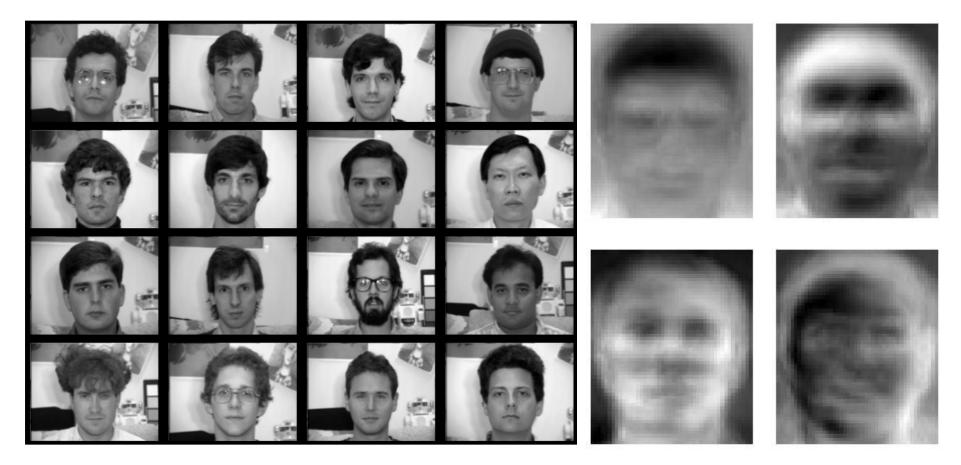
Empirical models of image variability

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.

Svetlana Lazebnik

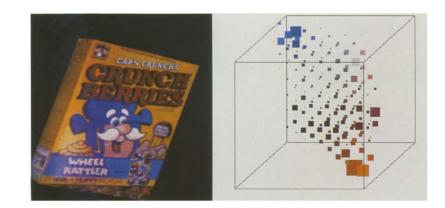
Eigenfaces (Turk & Pentland, 1991)

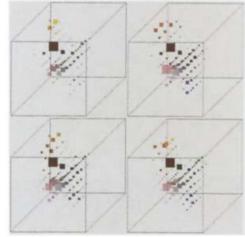


Experimental	Correct/Unknown Recognition Percentage		
Condition	Lighting	Orientation	Scale
Forced classification	96/0	85/0	64/0
Forced 100% accuracy	100/19	100/39	100/60
Forced 20% unknown rate	100/20	94/20	74/20

Svetlana Lazebnik

Color Histograms





Swain and Ballard, Color Indexing, IJCV 1991. Svetlana Lazebnik

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

Sliding window approaches

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features

Local features for object instance recognition



D. Lowe (1999, 2004)

Large-scale image search

Combining local features, indexing, and spatial constraints

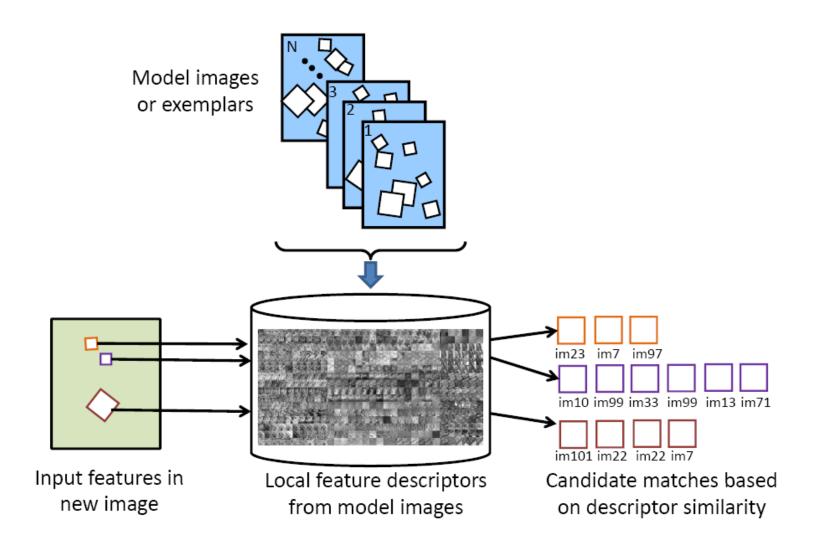
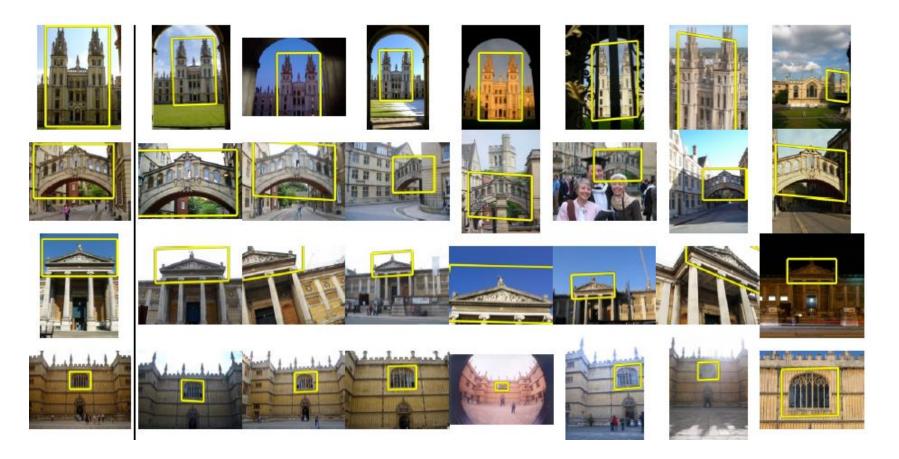


Image credit: K. Grauman and B. Leibe

Large-scale image search

Combining local features, indexing, and spatial constraints



Philbin et al. '07

Large-scale image search

Combining local features, indexing, and spatial constraints

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

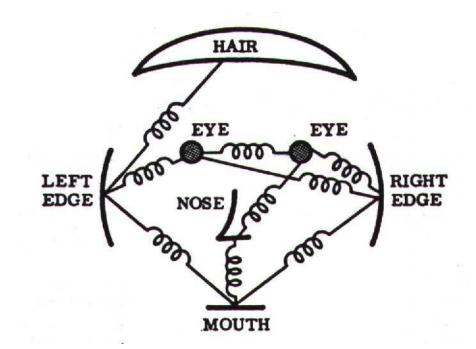


History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

Parts-and-shape models

- Model:
 - Object as a set of parts
 - Relative locations between parts
 - Appearance of part

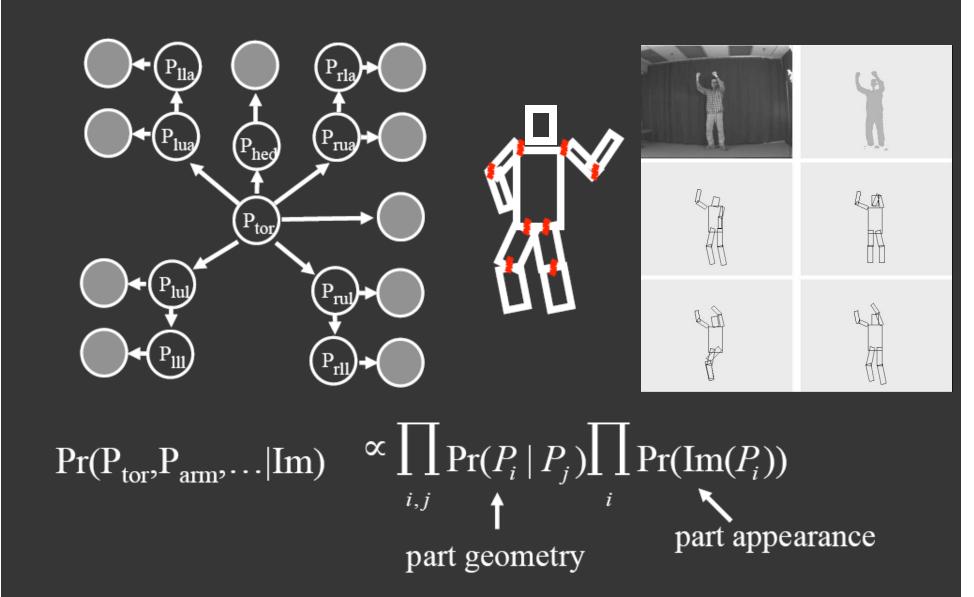


Constellation models

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

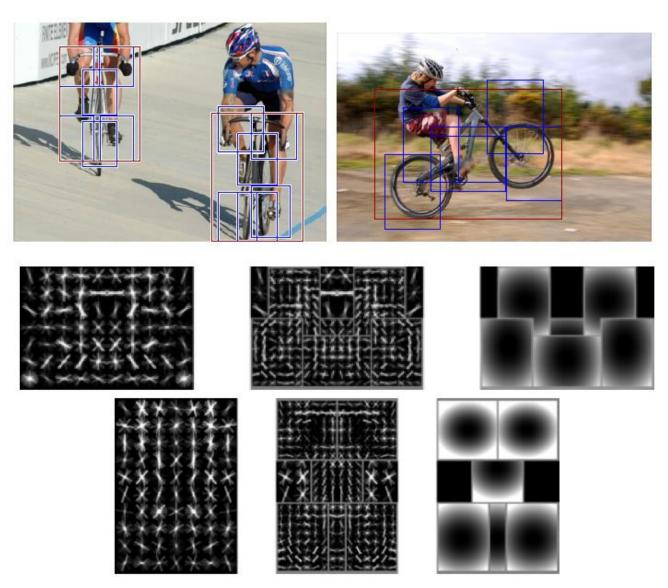
Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)



Re

Discriminatively trained part-based models

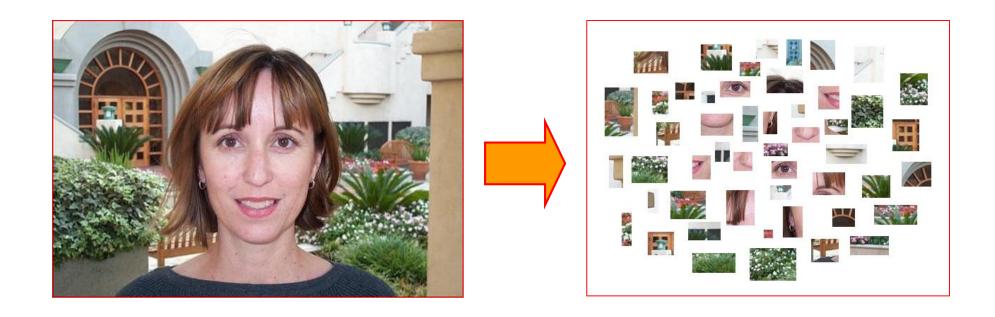


P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>"Object Detection with</u> <u>Discriminatively Trained Part-Based Models,"</u> PAMI 2009

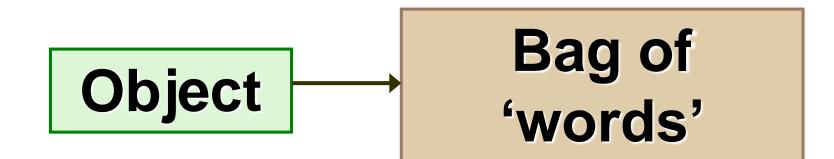
History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features

Bag-of-features models



Bag-of-features models



Svetlana Lazebnik

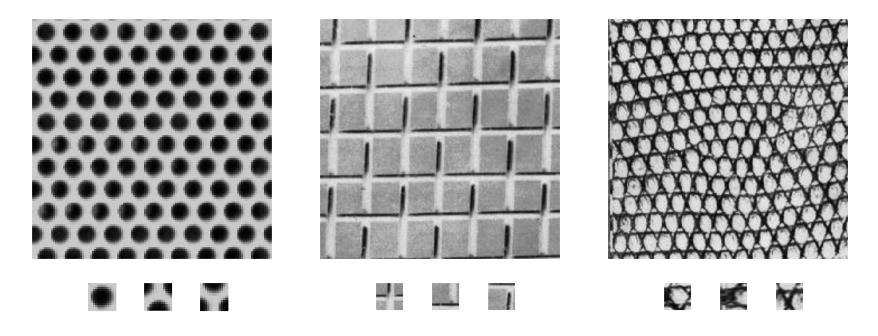
Objects as texture

• All of these are treated as being the same

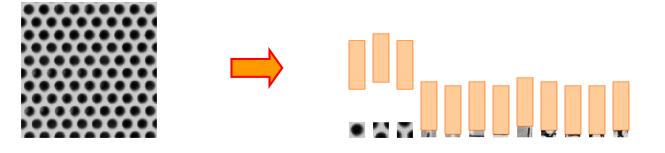
• No distinction between foreground and background: scene recognition?

Origin 1: Texture recognition

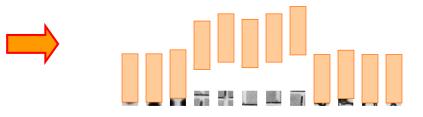
- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

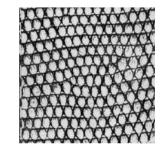


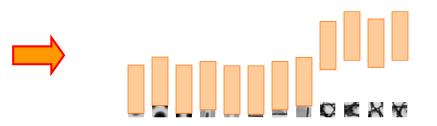
Origin 1: Texture recognition











Origin 2: Bag-of-words models

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models

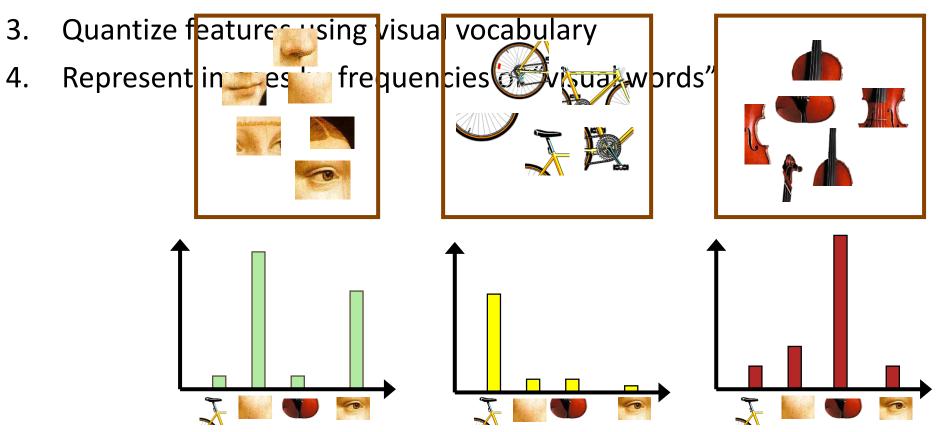
• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

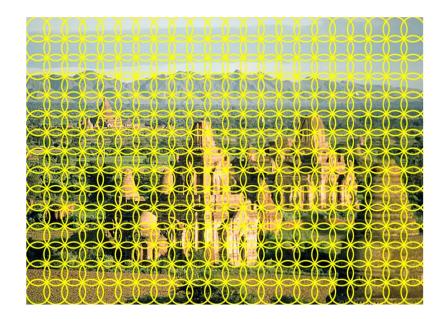
Bag-of-features steps

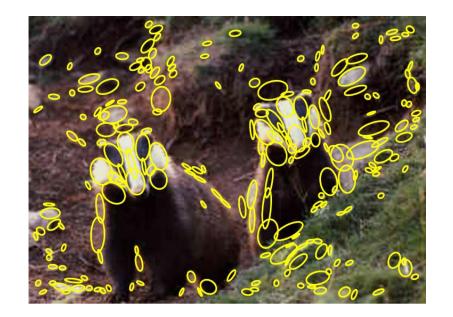
- 1. Extract features
- 2. Learn "visual vocabulary"



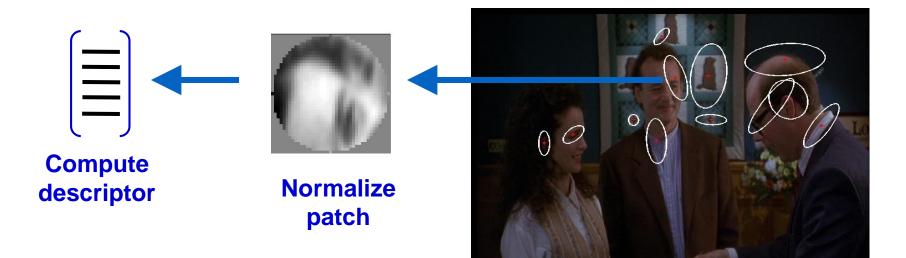
1. Feature extraction

• Regular grid or interest regions



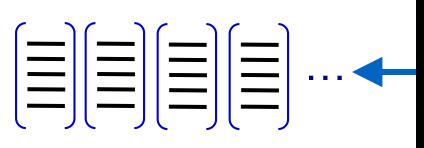


1. Feature extraction

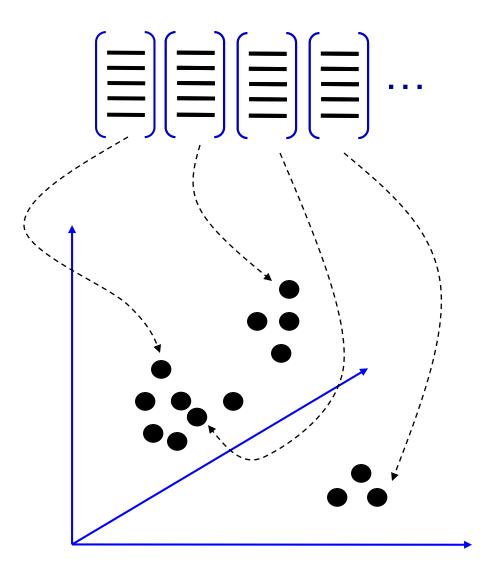


Detect patches

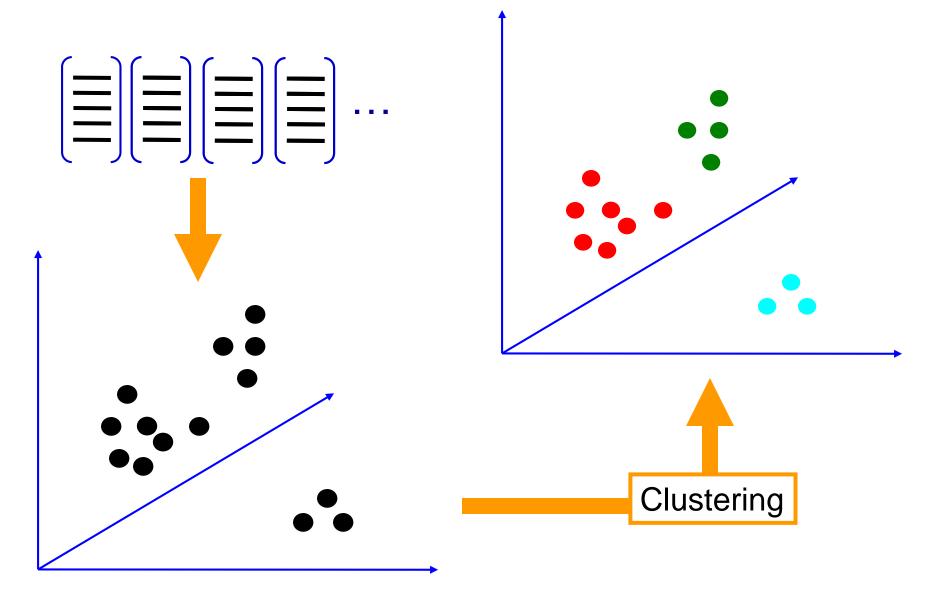
1. Feature extraction



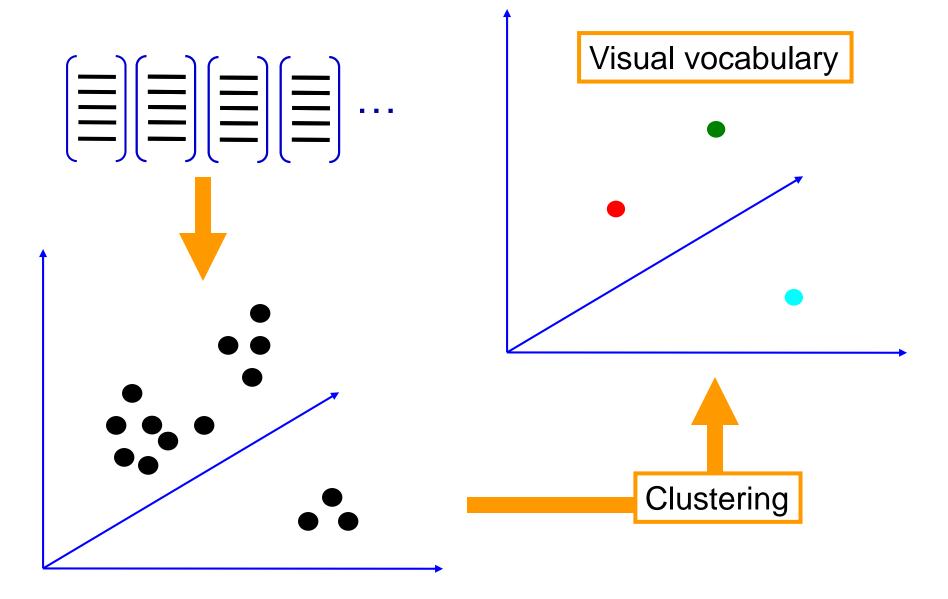
2. Learning the visual vocabulary



2. Learning the visual vocabulary



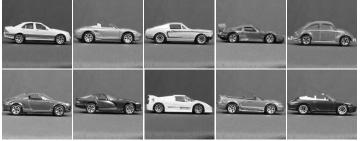
2. Learning the visual vocabulary

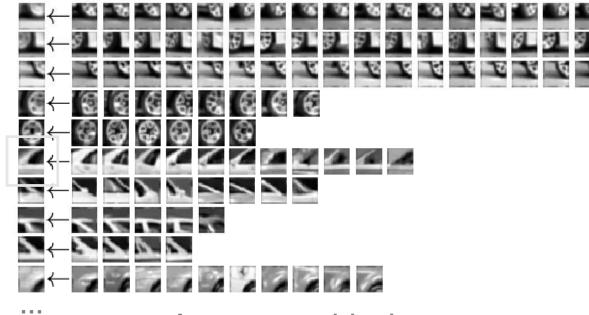


Clusteringteringds vector or codebook

- Unsupervised learning process
- Each cluster center produced by k-means becomes a codevector
- Codebook can be learned on separate training set
- Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A *vector quantizer* takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example codebook

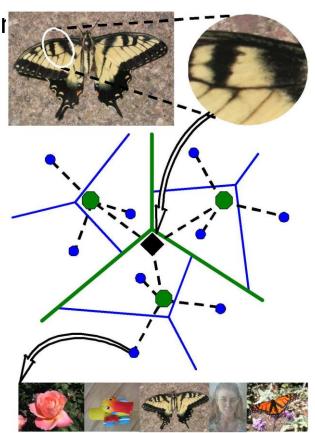




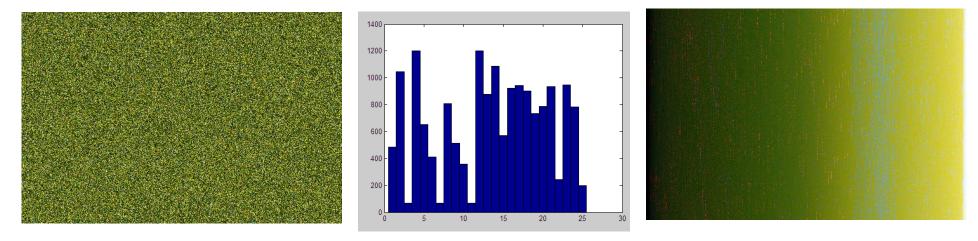
Appearance codebook

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfittin
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

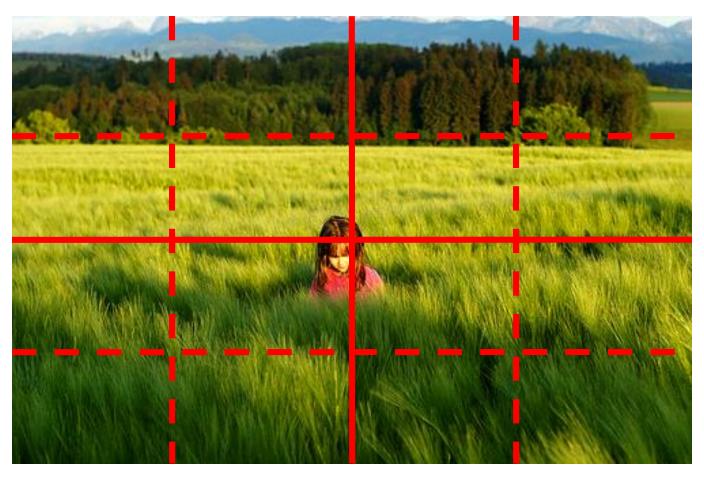


But what about layout?



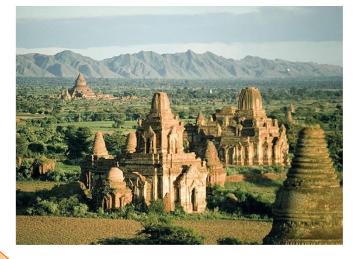
All of these images have the same color histogram

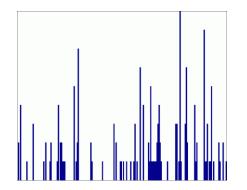
Spatial pyramid



Compute histogram in each spatial bin

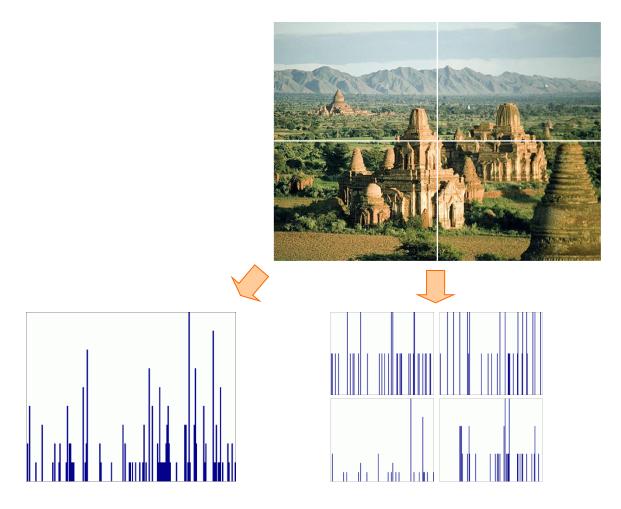
Spatial pyramid representation at several levels of resolution



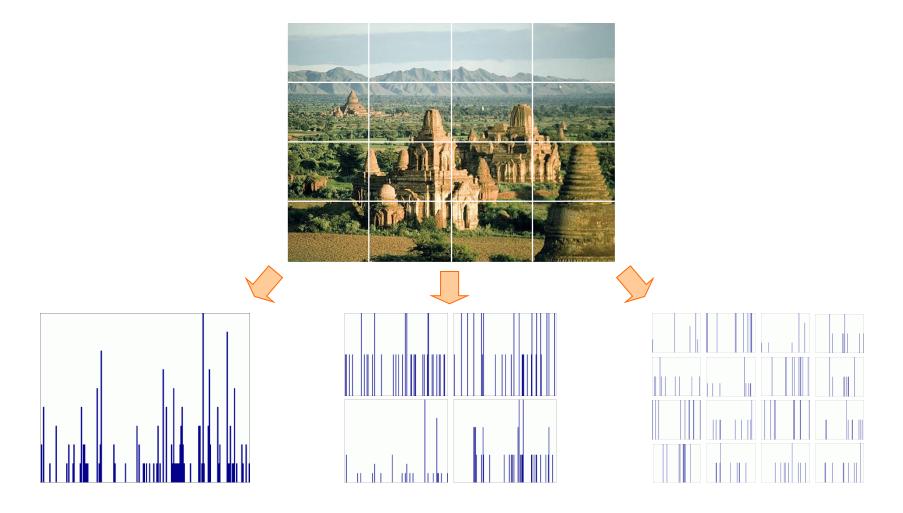


Lazebnik, Schmid & Ponce (CVPR 2006)

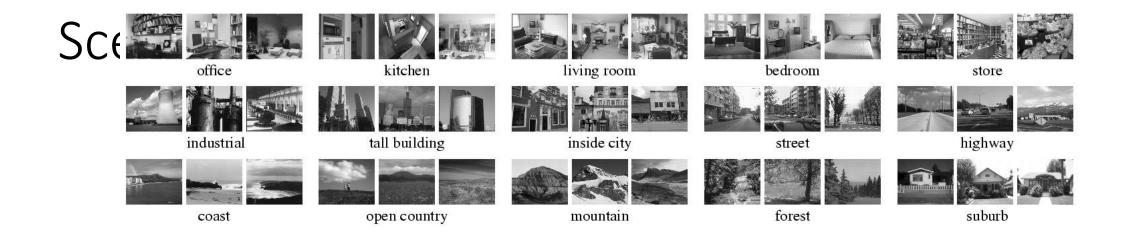
Spatial pyramid representation at several levels of resolution



Spatial pyramid representation at several levels of resolution



Lazebnik, Schmid & Ponce (CVPR 2006)



Multi-class classification results

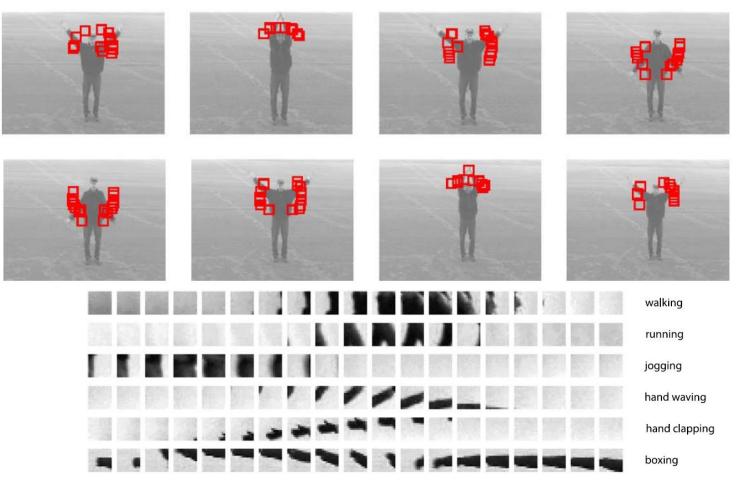
	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3
3 (8 × 8)	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3

Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	$52.2\pm\!0.8$	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

Bags of features for action recognition

Space-time interest points



Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human</u> <u>Action Categories Using Spatial-Temporal Words</u>, IJCV 2008.

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
- Present trends: combination of local and global methods, context, deep learning