Hough Transformation for Fitting

Jianping Fan Dept of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html

Few pieces are from : www.cs.cmu.edu/afs/academic/class/lectures/lec-9

Boundaries of Objects

Marked by many users

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/htm

Boundaries of Objects from Edges

Brightness Gradient (Edge detection)

Missing edge continuity, many spurious edges

Boundaries of Objects from Edges

Multi-scale Brightness Gradient

• But, low strength edges may be very important

Missing point recovery by edge tracking

Boundaries of Objects from Edges

Image

Machine Edge Detection

Human Boundary Marking

Boundaries in Medical Imaging

Fig. 2. Representation of a closed contour by elliptic Fourier descriptors. (a) Input. (b) Series truncated at 16 harmonics. (c) Series truncated to four harmonics.

Detection of cancerous regions.

[Foran, Comaniciu, Meer, Goodell, 00]

Boundaries in Ultrasound Images

Hard to detect in the presence of large amount of speckle noise

Boundaries of Objects

Sometimes hard even for humans!

Preprocessing Edge Images

- Edge Tracking Methods
- Fitting Lines and Curves to Edges
- The Hough Transform

Preprocessing Edge Images

Edge Tracking Methods

Adjusting a priori Boundaries:

Given: Approximate Location of Boundary

Task: Find Accurate Location of Boundary

Fig. 4.2 Search orientations from an approximate boundary location.

• Search for STRONG EDGES along normals to approximate boundary.

• Fit curve (eg., polynomials) to strong edges.

Edge Tracking Methods

Divide and Conquer:

Given: Boundary lies between points A and B

Task: Find Boundary

- Connect A and B with Line
- Find strongest edge along line bisector
- Use edge point as break point
- Repeat

Line Fitting

Fitting Lines to Edges (Least Squares)

Given: Many (x_i, y_i) pairs Find: Parameters (m, c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Using:

$$\frac{\partial E}{\partial m} = 0 \quad \& \quad \frac{\partial E}{\partial c} = 0$$

Note:

$$c = \overline{y} - m\overline{x}$$
$$m = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Hough transform

- An early type of voting scheme
- General outline:

Discretize parameter space into bins

- For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
- Find parameter bins that have the most votes

 A line in the image corresponds to a point in Hough space

 What does a point (x₀, y₀) in the image space map to in the Hough space?

- What does a point (x₀, y₀) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0m + y_0$
 - This is a line in Hough space

 Where is the line that contains both (x₀, y₀) and (x₁, y₁)?

- Where is the line that contains both (x₀, y₀) and (x₁, y₁)?
 - It is the intersection of the lines $b = -x_0m + y_0$ and

 $\mathbf{b} = -\mathbf{x}_1 \mathbf{m} + \mathbf{y}_1$

Image and Parameter Spaces

Equation of Line:
$$y = mx + c$$

Find: (m, c)

Consider point: (x_i, y_i)

$$y_i = mx_i + c$$
 or $c = -x_im + y_i$

Parameter space also called Hough Space

Line Detection by Hough Transform

Algorithm:

- Quantize Parameter Space (m, c)
- Create Accumulator Array A(m,c)
- Set $A(m,c) = 0 \quad \forall m,c$
- For each image edge (x_i, y_i) increment:

A(m,c) = A(m,c) + 1

• If (m, c) lies on the line:

$$c = -x_i m + y_i$$

• Find local maxima in A(m,c)

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

Slide from S. Savarese

Hough transform

Slide from S. Savarese

- Problems with the (m, b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m

Computer Vision - A Modern Approach Set: Fitting Slides by D.A. Forsyth

Least squares line fitting

•Data:
$$(x_1, y_1), \dots, (x_n, y_n)$$

•Line equation: $y_i = mx_i + b$
•Find (m, b) to minimize
 $E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$
 $E = \sum_{i=1}^{n} (x_i - 1 \begin{bmatrix} m \\ b \end{bmatrix} - y_i)^2 = \left\| \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \left\| \mathbf{Ap} - \mathbf{y} \right\|^2$
 $= \mathbf{y}^T \mathbf{y} - 2(\mathbf{Ap})^T \mathbf{y} + (\mathbf{Ap})^T (\mathbf{Ap})$ Matlab: $\mathbf{p} = \mathbf{A} \setminus \mathbf{y};$
 $\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{Ap} - 2\mathbf{A}^T \mathbf{y} = 0$ Python: $\mathbf{p} =$
numpy.linalg.lstsq(A, y)
 $\mathbf{A}^T \mathbf{Ap} = \mathbf{A}^T \mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$

Modified from S. Lazebnik

Least squares (global) optimization

Good

- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

Least squares: Robustness to noise

• Least squares fit to the red points:

Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \boldsymbol{\rho} \left(u_{i} \left(x_{i}, \boldsymbol{\theta} \right); \boldsymbol{\sigma} \right) \qquad u^{2} = \sum_{i=1}^{n} (y_{i} - mx_{i} - b)^{2}$$

 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters ϑ ρ – robust function with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

Choosing the scale: Too large

Behaves much the same as least squares

Robust estimation: Details

• Robust fitting is a nonlinear optimization problem that must be solved **iteratively**

• Least squares solution can be used for initialization

 Scale of robust function should be chosen adaptively based on median residual
Other ways to search for parameters (for when no closed form solution exists)

• Line search

- 1. For each parameter, step through values and choose value that gives best fit
- 2. Repeat (1) until no parameter changes

• Grid search

- 1. Propose several sets of parameters, evenly sampled in the joint set
- 2. Choose best (or top few) and sample joint parameters around the current best; repeat

Gradient descent

- 1. Provide initial position (e.g., random)
- 2. Locally search for better parameters by following gradient

Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
 - Using oriented gradients
- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

Real World Example

Original

Found Lines

Parameter Space

Parameter space representation

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x,y) in the image For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$ $H(\theta, \rho) = H(\theta, \rho) + 1$ end

H: accumulator array (votes)

end

- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Problem with Parameterization

Solution: Use a different parameterization

(same as the one we used in computing Minimum Moment of Inertia)

$$E = \frac{1}{N} \sum_{i} (\rho - x_i \cos \theta + y_i \sin \theta)^2$$

Note: Error E must be formulated carefully!

Curve Fitting

Curve Fitting

Find Polynomial:

$$y = f(x) = ax^3 + bx^2 + cx + d$$

that best fits the given points (x_i, y_i)

Minimize:

1

$$\frac{1}{N} \sum_{i} [y_{i} - (ax_{i}^{3} + bx_{i}^{2} + cx_{i} + d)]^{2}$$
Using: $\frac{\partial E}{\partial a} = 0$, $\frac{\partial E}{\partial b} = 0$, $\frac{\partial E}{\partial c} = 0$, $\frac{\partial E}{\partial d} = 0$

Note: f(x) is LINEAR in the parameters (a, b, c, d)

Fitting Circles

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is known: (2D Hough Space)

Accumulator Array A(a,b)

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is not known: **3D Hough Space**! Use Accumulator array A(a,b,r)

What is the surface in the hough space?

Using Gradient Information

Gradient information can save lot of computation:

Edge Location (x_i, y_i) Edge Direction ϕ_i

Assume radius is known:

Need to increment only one point in Accumulator!!

Real World Circle Examples

Crosshair indicates results of Hough transform, bounding box found via motion differencing.

Finding Coins

Original

Edges (note noise)

Finding Coins (Continued)

Penn

Quarters

Finding Coins (Continued)

Note that because the quarters and penny are different sizes, a different Hough transform (with separate accumulators) was used for each circle size.

Coin finding sample images from: Vivek Kwatra

Mechanics of the Hough transform

Difficulties

- how big should the cells be? (too big, and we merge quite different lines; too small, and noise causes lines to be missed)
- How many lines?
 - Count the peaks in the Hough array
 - Treat adjacent
 peaks as a single
 peak
- Which points belong to each line?
 - Search for points close to the line
 - Solve again for line and iterate

This is difficult because of:

- Extraneous data: clutter or multiple models
 - We do not know what is part of the model?
 - Can we pull out models with a few parts from much larger amounts of background clutter?
- Missing data: only some parts of model are present
- Noise
- Cost:
 - It is not feasible to check all combinations of features by fitting a model to each possible subset

Generalized Hough Transform

Model Shape NOT described by equation

Generalized Hough Transform

Model Shape NOT described by equation

Edge Direction $\overline{\pi} = (\pi, \varkappa)$ ϕ_1 $\overline{\pi}'_1, \overline{\pi}'_2, \overline{\pi}'_3$ ϕ_2 $\overline{\pi}'_1, \overline{\pi}'_2, \overline{\pi}'_3$ $\overline{\phi}_2$ $\overline{\pi}'_1, \overline{\pi}'_2$ $\overline{\phi}_1$ $\overline{\pi}'_1, \overline{\pi}'_2$ $\overline{\phi}_1$ $\overline{\pi}'_1, \overline{\pi}'_2$ $\overline{\phi}_n$ $\overline{\pi}'_1, \overline{\pi}'_2$

Generalized Hough Transform

Find Object Center (x_c, y_c) given edges (x_i, y_i, ϕ_i)

Create Accumulator Array $A(x_c, y_c)$

Initialize: $A(x_c, y_c) = 0 \quad \forall (x_c, y_c)$

For each edge point (x_i, y_i, ϕ_i)

For each entry
$$\overline{r_k^i}$$
 in table, compute:
 $x_c = x_i + r_k^i \cos \alpha_k^i$
 $y_c = y_i + r_k^i \sin \alpha_k^i$

Increment Accumulator: $A(x_c, y_c) = A(x_c, y_c) + 1$

Find Local Maxima in $A(x_c, y_c)$

Scale & Rotation: Use Accumulator Array: A [xe, ye, S, 0] Rotation: O

Use:

$$X_{c} = X_{i} + \mathfrak{R}_{K}^{i} S \cos \left(\alpha_{K}^{i} + \theta \right)$$

$$Y_{c} = Y_{i} + \mathfrak{R}_{K}^{i} S \sin \left(\alpha_{K}^{i} + \theta \right)$$

 $A(x_c, y_c, s, \theta) = A(x_c, y_c, s, \theta) + 1.$

Extension: Cascaded Hough transform

- Let's go back to the original (m, b) parametrization
- A line in the image maps to a pencil of lines in the Hough space
- What do we get with parallel lines or a pencil of lines?
 - Collinear peaks in the Hough space!
- So we can apply a Hough transform to the output of the first Hough transform to find vanishing points
- Issue: dealing with unbounded parameter space

T. Tuytelaars, M. Proesmans, L. Van Gool <u>"The cascaded Hough transform,"</u> ICIP, vol. II, pp. 736-739, 1997.

Cascaded Hough transform

T. Tuytelaars, M. Proesmans, L. Van Gool <u>"The cascaded Hough transform,"</u> ICIP, vol. II, pp. 736-739, 1997.

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

Hough transform conclusions

Good

- **Robust to outliers**: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

1. Image \rightarrow Canny

2. Canny \rightarrow Hough votes

3. Hough votes \rightarrow Edges

Find peaks and post-process

Hough transform example

http://ostatic.com/files/images/ss_hough.jpg

Additional Contents

Better Parameterization

Hough Space

Hough Transform: Comments

- Works on Disconnected Edges
- Relatively insensitive to occlusion
- Effective for simple shapes (lines, circles, etc)
- Trade-off between work in Image Space and Parameter Space
- Handling inaccurate edge locations:

Increment Patch in Accumulator rather than a single point

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Slide from S. Savarese

Practical details

- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Who belongs to which line?
 - Tag the votes

Hough transform: Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model in a single pass
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
Hough transform: Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size

Extension: Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!
- Modified Hough transform:
- For each edge point (x,y) θ = gradient orientation at (x,y) ρ = x cos θ + y sin θ H(θ , ρ) = H(θ , ρ) + 1 end

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$