SIFT-based Image Alignment

Jianping Fan Dept of Computer Science UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Project 2: SIFT-based Image Alignment

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Correspondence and Alignment

- Correspondence: matching points, patches, edges, or regions across images

Keypoints \& SIFT Descriptors

Keypoint \& SIFT Descriptor

- 16×16 Gradient window is taken. Partitioned into 4×4 subwindows.
- Histogram of 4×4 samples in 8 directions
- Gaussian weighting around center(σ is 0.5 times that of the scale of a keypoint)
- $4 \times 4 \times 8=128$

Image gradients

Keypoint descriptor

Image alignment

www.cs.unc.edu/~lazebnik/spring10/lec10_alignment

Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B using least squares on set of matches

What could go wrong?

A look into the past

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

A look into the past

- Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html

Bing streetside images

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-maps-application-streetside-photos.aspx

Image alignment: Applications

Panorama stitching

Recognition of object instances

Image alignment: Challenges

Small degree of overlap

Intensity changes

Occlusion, clutter

Image alignment

- Two broad approaches:
- Direct (pixel-based) alignment
- Search for alignment where most pixels agree
- Feature-based alignment
- Search for alignment where extracted features agree
- Can be verified using pixel-based alignment

Image Alignment as Fitting

Alignment as fitting

- Previous lectures: fitting a model to features in one image

Find model M that minimizes

$$
\sum_{i} \operatorname{residual}\left(x_{i}, M\right)
$$

Alignment as fitting

- Fitting a model to features in one image

Find model M that minimizes

$$
\sum_{i} \operatorname{residual}\left(x_{i}, M\right)
$$

- Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find transformation T that minimizes
$\sum_{i} \operatorname{residual}\left(T\left(x_{i}\right), x_{i}^{\prime}\right)$

2D transformation models

- Similarity (translation,
 scale, rotation)
- Affine

- Projective (homography)

Parametric (global) warping

$\mathbf{p}=(x, y)$
$\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$
Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$
\begin{array}{r}
\mathrm{p}^{\prime}=\mathrm{Tp} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

Common transformations

Transformations

$$
y^{\prime}=y+u
$$

Transformations

Original Image

Transformed Image

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Transformations

Original Image

$$
\begin{aligned}
x^{\prime} & =x / r \quad \text { Transformed Image } \\
y^{\prime} & =y / t \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Transformations

Original Image

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

Scaling

- Scaling operation: $x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } S}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2-D Rotation

2-D Rotation

This is easy to capture in matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ,
$-x^{\prime}$ is a linear combination of x and y
$-y^{\prime}$ is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\quad \mathbf{R}^{-1}=\mathbf{R}^{T}$

Basic 2D transformations

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\text { Scale } \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\text { Rotate }
\end{gathered}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\underset{\text { Rotate }}{\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]}\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] }=\left[\begin{array}{cc}
1 & \alpha_{x} \\
\alpha_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \text { Shear }
\end{aligned}
$$

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]} \\
\text { Affine }
\end{array} \frac{\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]}{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}\right.
$$

Affine is any combination of translation, scale, rotation, shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

or
Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

2D image transformations (reference table)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Image matching under transformation

$\mathbf{p}=(x, y)$

$\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$
Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$
\begin{array}{r}
\mathrm{p}^{\prime}=\mathrm{Tp} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

- Assume we know the correspondences, how do we get the transformation?

$$
\begin{array}{ll}
\left(x_{i}, y_{i}\right) & \longrightarrow
\end{array}
$$

Fitting an affine transformation

$$
\left[\begin{array}{cccccc}
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& & \cdots & & &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
\cdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\cdots
\end{array}\right]
$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Alignment as fitting

- Transformation between pairs of features (matches) in two images
x_{i}

Find transformation T

| Find transformation \boldsymbol{T}
 $\sum_{i} \operatorname{resid}$ minimizes
 $\left.\operatorname{residual}\left(x_{i}\right), x_{i}^{\prime}\right)$ |
| :--- |\(\quad\left[\begin{array}{l}x^{\prime}

y^{\prime}\end{array}\right]=\left[$$
\begin{array}{lll}a & b & c \\
d & e & f\end{array}
$$\right]\left[$$
\begin{array}{l}x \\
y \\
1\end{array}
$$\right]\)

Hough Transformation for Alignment

Hough transform

- Recall: Generalized Hough transform

visual codeword with displacement vectors

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Hough transform

- Suppose our features are adapted to scale and rotation
- Then a single feature match provides an alignment hypothesis (translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Hough transform

- Suppose our features are adapted to scale and rotation
- Then a single feature match provides an alignment hypothesis (translation, scale, orientation)
- Of course, a hypothesis obtained from a single match is unreliable
- Solution: let each match vote for its hypothesis in a Hough space with very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Hough transform details (D. Lowe's system)

- Modeling phase: For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- Test phase: Let each match between a test and a model feature vote in a 4D Hough space
- Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
- Vote for two closest bins in each dimension
- Find all bins with at least three votes and perform geometric verification
- Estimate least squares affine transformation
- Use stricter thresholds on transformation residual
- Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Features for Image Alignment

Feature-based alignment outline

Feature-based alignment outline

- Extract features

Feature-based alignment outline

- Extract features
- Compute putative matches

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T
- Verify transformation (search for other matches consistent with T)

Generating putative correspondences

Generating putative correspondences

- Need to compare feature descriptors of local patches surrounding interest points

Feature descriptors

- Assuming the patches are already normalized (i.e., the local effect of the geometric transformation is factored out), how do we compute their similarity?
- Want invariance to intensity changes, noise, perceptually insignificant changes of the pixel pattern

Feature descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors?
- Sum of squared differences (SSD)

$$
\operatorname{SSD}(u, v)=\sum_{i}\left(u_{i}-v_{i}\right)^{2}
$$

- Not invariant to intensity change
- Normalized correlation

$$
\rho(u, v)=\frac{\sum_{i}\left(u_{i}-\bar{u}\right)\left(v_{i}-\bar{v}\right)}{\sqrt{\left(\sum_{j}\left(u_{j}-\bar{u}\right)^{2}\right)\left(\sum_{j}\left(v_{j}-\bar{v}\right)^{2}\right)}}
$$

- Invariant to affine intensity change

Feature descriptors

- Disadvantage of patches as descriptors:
- Small shifts can affect matching score a lot

- Solution: histograms

Feature descriptors: SIFT

- Descriptor computation:
- Divide patch into 4×4 sub-patches
- Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
- Resulting descriptor: $4 \times 4 \times 8=128$ dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Feature descriptors: SIFT

- Descriptor computation:
- Divide patch into 4×4 sub-patches
- Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
- Resulting descriptor: 4x4x8 = 128 dimensions
- Advantage over raw vectors of pixel values
- Gradients less sensitive to illumination change
- Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Feature matching

- Generating putative matches: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance

Feature space outlier rejection

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor
- Ratio of closest distance to second-closest distance will be high for features that are not distinctive

Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Reading

David G. Lowe. "Distinctive image features from scaleinvariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

RANSAC Technique

What's RANSAC ?

- RANSAC is an abbreviation for "RANdom SAmple Consensus".
- It is an iterative method to estimate parameters of a mathematical model from a set of observed data which contains outliers.
- Non-deterministic algorithm.

Why RANSAC ?

- RANSAC can estimate a model which ignored outliers.
- Example:
- To fit a line
- Least Squares method:
- Optimally fitted to all points including outliers.
- RANSAC:
- Only computed from the inliers.

Inliers vs. Outliers

RANSAC

General version:

1. Randomly choose s samples

- Typically $s=$ minimum sample size that lets you fit a model

2. Fit a model (e.g., line) to those samples
3. Count the number of inliers that approximately fit the model
4. Repeat N times
5. Choose the model that has the largest set of inliers

How big is s ?

- For alignment, depends on the motion model
- Here, each sample is a correspondence (pair of matching points)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Illustration of RANSAC

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

Illustration of RANSAC

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

Illustration of RANSAC

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis

Illustration of RANSAC

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

RANSAC Algorithm

- Input:
- data: a set of observations
- model: a model that can be fitted to data
- n : the minimum number of data required to fit the model
- k : the maximum number of iterations allowed in the algorithm
-t : a threshold value for determining when a datum fits a model
- d: the number of close data values required to assert that a model fits well to data
- Output:
- best_model : model parameters which best fit the data (or nil if no good model is found)
- best_consensus_set : data point from which this model has been estimated
- best_error : the error of this model relative to the data http://en.wikipedia.org/wiki/RANSAC

RANSAC Algorithm

```
iterations := 0
```

best_model := nil
best_consensus_set := nil
best_error := infinity
while iterations $<k$
maybe_inliers := n randomly selected values from data
maybe_model := model parameters fitted to maybe_inliers
conseñsus_set := maybe_inliers
for every point in data not in maybe_inliers
if point fits maybe_model with an error smaller than t
add point to consensus_set
if the number of elements in consensus_set is $>d$
(this implies that we may have found a good model,
now test how good it is)
better_model := model parameters fitted to all points in consensus_set
this_error := a measure of how well better_model fits these points
if this_error < best_error
(we have found a model which is better than any of the previous one
keep it until a better one is found)
best_model := better_model
best_consensus_set : $=$ consensus_set
best_error := This_error
increment iterations
return best_model, best_consensus_set, best_error
http://en.wikipedia.org/wiki/RANSAC

Parameters

$$
\begin{aligned}
& 1-p=\left(1-w^{n}\right)^{k} \quad \begin{array}{l}
\text { k: Iteration times. } \\
\mathrm{n}: \\
\text { p: Selected points in one iteration. } \\
\text { only inliers. } \\
\text { onl } \\
\text { w: Probability of a point which is } \\
\text { a inlier. }
\end{array} \\
& \log (1-p)
\end{aligned}
$$

In general, the p is unknown. If we fixed p, the k increased when n increased.

RANSAC for Image Alignment

RANSAC

RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

Problem with RANSAC

- In many practical situations, the percentage of outliers (incorrect putative matches) is often very high (90% or above)
- Alternative strategy: Hough transform

RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in '81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Number of sampled points s
- Minimum number needed to fit the model
- Distance threshold δ
- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$

$$
\mathrm{N}=\log (1-\mathrm{p}) / \log \left(1-(1-\mathrm{e})^{\mathrm{s}}\right)
$$

proportion of outliers e							
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

$$
\text { For } p=0.99
$$

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Alignment

- Alignment: find parameters of model that maps one set of points to another
- Typically want to solve for a global transformation that accounts for *most* true correspondences
- Difficulties
- Noise (typically 1-3 pixels)
- Outliers (often 50\%)
- Many-to-one matches or multiple objects

Example: solving for translation

Given matched points in $\{A\}$ and $\{B\}$, estimate the translation of the object

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

Example: solving for translation

Least squares solution

1. Write down objective function
2. Derived solution
a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form $A x=b$
b) Solve using pseudo-inverse or eigenvalue decomposition

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{l}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{B}-x_{1}^{A} \\
y_{1}^{B}-y_{1}^{A} \\
\vdots \\
x_{n}^{B}-x_{n}^{A} \\
y_{n}^{B}-y_{n}^{A}
\end{array}\right]
$$

Example: solving for translation

Problem: outliers

RANSAC solution

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps $1-3 \mathrm{~N}$ times

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$ consistent values

3. Find the parameters with the most votes
4. Solve using least squares with inliers

Example: solving for translation

Problem: no initial guesses for correspondence

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

ICP for Image Alignment

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

1. Initialize transformation (e.g., compute difference in means and scale)
2. Assign each point in $\{$ Set 1$\}$ to its nearest neighbor in $\{$ Set 2$\}$
3. Estimate transformation parameters

- e.g., least squares or robust least squares

4. Transform the points in $\{$ Set 1$\}$ using estimated parameters
5. Repeat steps $2-4$ until change is very small

Example: aligning boundaries

1. Extract edge pixels $p_{1} . . p_{n}$ and $q_{1} . . q_{m}$
2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
3. Get nearest neighbors: for each point p_{i} find corresponding $\operatorname{match}(\mathrm{i})=\operatorname{argmin} \operatorname{dist}(p i, q j)$
j
4. Compute transformation \boldsymbol{T} based on matches
5. Warp points \boldsymbol{p} according to \boldsymbol{T}
6. Repeat 3-5 until convergence

Example: solving for translation

Problem: no initial guesses for correspondence

ICP solution

1. Find nearest neighbors for each point
2. Compute transform using matches

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

3. Move points using transform
4. Repeat steps 1-3 until convergence

Applications of Feature Matching

Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
- Efficient putative match generation
- Fast nearest neighbor search, inverted indexes

Test image

Scalability of SIFT Matching

Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
- Efficient putative match generation
- Fast nearest neighbor search, inverted indexes

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR 2006

Slide credit: D. Nister

Model images

Model images

Model images

Populating the vocabulary tree/inverted index

Indexing with geometric invariants

- A match between invariant descriptors can yield a transformation hypothesis

Indexing with geometric invariants

- A match between invariant descriptors can yield a transformation hypothesis

Indexing with geometric invariants

- When we don't have feature descriptors, we can take n-tuples of neighboring features and compute invariant features from their geometric configurations
- Application: searching the sky: http://www.astrometry.net/

Projective (Homography) Transformation

Beyond affine transformations

- Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Homography

- The transformation between two views of a planar surface

- The transformation between images from two cameras that share the same center

Application: Panorama stitching

Fitting a homography

- Recall: homogenenous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Converting to homogenenous image coordinates

Converting from homogenenous image coordinates

Fitting a homography

- Recall: homogeneous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Converting to homogeneous image coordinates

Converting from homogeneous image coordinates

- Equation for homography:

$$
\lambda\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Fitting a homography

- Equation for homography:

$$
\begin{aligned}
& \lambda\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{r}
x_{i} \\
y_{i} \\
1
\end{array}\right] \quad \begin{array}{r}
\lambda \mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i} \\
\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=0
\end{array} \\
& {\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \times\left[\begin{array}{l}
\mathbf{h}_{1}^{T} \mathbf{x}_{i} \\
\mathbf{h}_{2}^{T} \mathbf{x}_{i} \\
\mathbf{h}_{3}^{T} \mathbf{x}_{i}
\end{array}\right]=\left[\begin{array}{c}
y_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i}-\mathbf{h}_{2}^{T} \mathbf{x}_{i} \\
\mathbf{h}_{1}^{T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}_{2}^{T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}_{1}^{T} \mathbf{x}_{i}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0^{T} & -\mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
\mathbf{x}_{i}^{T} & 0^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & 0^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0} \\
& \begin{array}{l}
3 \text { equations, } \\
\text { onlly in inarly } \\
\text { independent }
\end{array}
\end{aligned}
$$

Direct linear transform

$$
\left[\begin{array}{ccc}
0^{T} & \mathbf{x}_{1}^{T} & -y_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\mathbf{x}_{1}^{T} & 0^{T} & -x_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathbf{x}_{n}^{T} & -y_{n}^{\prime} \mathbf{x}_{n}^{T} \\
\mathbf{x}_{n}^{T} & 0^{T} & -x_{n}^{\prime} \mathbf{x}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0 \quad \mathbf{A} \mathbf{h}=0
$$

- H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
- One match gives us two linearly independent equations
- Four matches needed for a minimal solution (null space of 8×9 matrix)
- More than four: homogeneous least squares

RANSAC for Estimating Homography

RANSAC loop:

\longrightarrow 1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Compute inliers where $\operatorname{SSD}\left(p_{i}, \boldsymbol{H} p_{i}<\varepsilon\right.$
4. Keep largest set of inliers
5. Re-compute least-squares H estimate on all of the inliers

RANSAC

Why "Recognising Panoramas"?

- 1D Rotations (θ)
- Ordering \Rightarrow matching images

Why "Recognising Panoramas"?

- 1D Rotations (θ)
- Ordering \Rightarrow matching images

Why "Recognising Panoramas"?

- 1D Rotations (θ)
- Ordering \Rightarrow matching images
- 2D Rotations (θ, ϕ)
- Ordering \nRightarrow matching images

Why "Recognising Panoramas"?

- 1D Rotations (θ)
- Ordering \Rightarrow matching images
- 2D Rotations (θ, ϕ)
- Ordering \nRightarrow matching images

Why "Recognising Panoramas"?

- 1D Rotations (θ)
- Ordering \Rightarrow matching images

- 2D Rotations (θ, ϕ)
- Ordering \nRightarrow matching images

Why "Recognising Panoramas"?

Overview of Image Alignment

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Probabilistic model for verification

Finding the panoramas

Finding the panoramas

Finding the panoramas

Finding the panoramas

Homography for Rotation

- Parameterise each camera by rotation and focal length

$$
\begin{gathered}
\mathbf{R}_{i}=e^{\left[\boldsymbol{\theta}_{i}\right]_{\times}},\left[\boldsymbol{\theta}_{i}\right]_{\times}=\left[\begin{array}{ccc}
0 & -\theta_{i 3} & \theta_{i 2} \\
\theta_{i 3} & 0 & -\theta_{i 1} \\
-\theta_{i 2} & \theta_{i 1} & 0
\end{array}\right] \\
\mathbf{K}_{i}=\left[\begin{array}{ccc}
f_{i} & 0 & 0 \\
0 & f_{i} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- This gives pairwise homographies

$$
\tilde{\mathbf{u}}_{i}=\mathbf{H}_{i j} \tilde{\mathbf{u}}_{j}, \quad \mathbf{H}_{i j}=\mathbf{K}_{i} \mathbf{R}_{i} \mathbf{R}_{j}^{T} \mathbf{K}_{j}^{-1}
$$

Bundle Adjustment

- New images initialised with rotation, focal length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005

Bundle Adjustment

- New images initialised with rotation, focal length of best matching image

Multi-band Blending

- Burt \& Adelson 1983
- Blend frequency bands over range $\propto \lambda$

Results

Can we use homographies to create a 360 panorama?

- In order to figure this out, we need to learn what a camera is

360 panorama

