SIFT-based Image Alignment

Jianping Fan Dept of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html

Project 2: SIFT-based Image Alignment

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Correspondence and Alignment

• **Correspondence**: matching points, patches, edges, or regions across images

DoG for identifying scaleinvariant local extrema

Extrema points

Keypoints after removing low contrast & edge points

Keypoints & SIFT Descriptors

Keypoint & SIFT Descriptor

- 16x16 Gradient window is taken. Partitioned into 4x4 subwindows.
- Histogram of 4x4 samples in 8 directions
- Gaussian weighting around center(σ is 0.5 times that of the scale of a keypoint)

Image alignment

www.cs.unc.edu/~lazebnik/spring10/lec10_alignment

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

A look into the past

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

A look into the past

• Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html

Bing streetside images

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bingmaps-application-streetside-photos.aspx

Image alignment: Applications

Panorama stitching

Recognition of object instances

Image alignment: Challenges

Small degree of overlap Intensity changes

Occlusion, clutter

Image alignment

- Two broad approaches:
 - Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
 - Feature-based alignment
 - Search for alignment where *extracted features* agree
 - Can be verified using pixel-based alignment

Image Alignment as Fitting

Alignment as fitting

Previous lectures: fitting a model to features in one image
 M
 Find model M that minimizes

 $\sum_{i} \operatorname{residual}(x_i, M)$

Alignment as fitting

Fitting a model to features in one image

Find model *M* that minimizes $\sum_{i} residual(x_i, M)$

 Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images

2D transformation models

• Similarity (translation, scale, rotation)

• Affine

 Projective (homography)

Parametric (global) warping

Transformation T is a coordinate-changing machine: p' = T(p)

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For **linear transformations**, we can represent T as a matrix

p' = Tp

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common transformations

original

Transformed

translation

rotation

aspect

affine

perspective

Slide credit (next few slides): A. Efros and/or S. Seitz

Original Image

translation

$$x' = x + v$$

$$y' = y + u$$

Original Image

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Original Image

x' = x/ry' = y/t

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Original Image

Transformed Image

Affine

Original Image

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

x' = ax• Scaling operation:

$$y' = by$$

• Or, in matrix form: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

scaling matrix S

2-D Rotation

2-D Rotation

This is easy to capture in matrix form:

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^{T}$

Basic 2D transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Affine

Shear

Translate

Affine is any combination of translation, scale, rotation, shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

or

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

2D image transformations (reference table)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Szeliski 2.1

Image matching under transformation

Transformation T is a coordinate-changing machine: p' = T(p)

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

p' = Tp

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Alignment as fitting

• Transformation between pairs of features (*matches*) in two images

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

Find transformation T that minimizes

 $\sum \operatorname{residual}(T(x_i), x'_i)$

Hough Transformation for Alignment

Hough transform

• Recall: Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with</u> <u>an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Hough transform

- Suppose our features are adapted to scale and rotation
 - Then a single feature match provides an alignment hypothesis (translation, scale, orientation)

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Hough transform

- Suppose our features are adapted to scale and rotation
 - Then a single feature match provides an alignment hypothesis (translation, scale, orientation)
 - Of course, a hypothesis obtained from a single match is unreliable
 - Solution: let each match vote for its hypothesis in a Hough space with very coarse bins

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

model

Hough transform details (D. Lowe's system)

- Modeling phase: For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- Test phase: Let each match between a test and a model feature vote in a 4D Hough space
 - Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
 - Vote for two closest bins in each dimension
- Find all bins with at least three votes and perform geometric verification
 - Estimate least squares affine transformation
 - Use stricter thresholds on transformation residual
 - Search for additional features that agree with the alignment

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Features for Image Alignment

• Extract features

- Extract features
- Compute *putative matches*

- Extract features
- Compute *putative matches*
- Loop:

- Hypothesize transformation T

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation *T*
 - Verify transformation (search for other matches consistent with T)

Generating putative correspondences

9

Generating putative correspondences

Need to compare *feature descriptors* of local patches surrounding interest points

Feature descriptors

- Assuming the patches are already normalized (i.e., the local effect of the geometric transformation is factored out), how do we compute their similarity?
- Want invariance to intensity changes, noise, perceptually insignificant changes of the pixel

pattern

Feature descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors?
 - Sum of squared differences (SSD)

$$SSD(u,v) = \sum_{i} (u_i - v_i)^2$$

- Not invariant to intensity change
- Normalized correlation

$$\rho(u,v) = \frac{\sum_{i} (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\left(\sum_{j} (u_j - \overline{u})^2\right)\left(\sum_{j} (v_j - \overline{v})^2\right)}}$$

• Invariant to affine intensity change

Feature descriptors

• Disadvantage of patches as descriptors:

- Small shifts can affect matching score a lot

• Solution: histograms

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions
- Advantage over raw vectors of pixel values
 - Gradients less sensitive to illumination change
 - Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Feature matching

 Generating *putative matches*: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance

Feature space outlier rejection

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor
 - Ratio of closest distance to second-closest distance will be *high* for features that are *not* distinctive

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Reading

David G. Lowe. "Distinctive image features from scaleinvariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

RANSAC Technique

What's RANSAC ?

 RANSAC is an abbreviation for "RANdom SAmple Consensus".

 It is an iterative method to estimate parameters of a mathematical model from a set of observed data which contains outliers.

• Non-deterministic algorithm.

Why RANSAC ?

• RANSAC can estimate a model which ignored outliers.

- Example:
 - To fit a line
 - Least Squares method:
 - Optimally fitted to all points including outliers.
 - RANSAC:
 - Only computed from the inliers.

Inliers vs. Outliers

http://en.wikipedia.org/wiki/RANSAC

RANSAC

General version:

1. Randomly choose *s* samples

- Typically s = minimum sample size that lets you fit a model
- 2. Fit a model (e.g., line) to those samples
- 3. Count the number of inliers that approximately fit the model
- 4. Repeat *N* times
- 5. Choose the model that has the **largest set of inliers**

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+ \cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\left[\left. s oldsymbol{R} \right oldsymbol{t} \right]_{2 imes 3} ight. ight.$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

• Select sample of m points at random

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis

Repeat sampling
Illustration of RANSAC

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

ALL-INLIER SAMPLE

RANSAC time complexity

$$t = k(t_M + \overline{m}_s N)$$

- k ... number of samples drawn
- N ... number of data points
- t_M ... time to compute a single model
- m_s ... average number of models per sample

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

RANSAC Algorithm

- Input:
 - data: a set of observations
 - model: a model that can be fitted to data
 - n: the minimum number of data required to fit the model
 - k: the maximum number of iterations allowed in the algorithm
 - t: a threshold value for determining when a datum fits a model
 - d: the number of close data values required to assert that a model fits well to data
- Output:
 - best_model : model parameters which best fit the data (or nil if no good model is found)
 - best_consensus_set : data point from which this model has been estimated
 - best_error : the error of this model relative to the data http://en.wikipedia.org/wiki/RANSAC

RANSAC Algorithm

```
iterations := 0
best model := nil
best consensus set := nil
best error := infinity
while iterations < k
    maybe inliers := n randomly selected values from data
    maybe model := model parameters fitted to maybe inliers
    consensus set := maybe inliers
    for every point in data not in maybe inliers
        if point fits maybe model with an error smaller than t
            add point to consensus set
    if the number of elements in consensus set is > d
        (this implies that we may have found a good model,
        now test how good it is)
        better model := model parameters fitted to all points in consensus set
        this error := a measure of how well better model fits these points
        if this error < best error
            (we have found a model which is better than any of the previous one
            keep it until a better one is found)
            best model := better model
            best consensus set := consensus set
            best error := this error
    increment iterations
return best model, best consensus set, best error
```

http://en.wikipedia.org/wiki/RANSAC

Parameters

$$1 - p = \left(1 - w^n\right)^k$$
$$k = \frac{\log(1 - p)}{\log(1 - w^n)}$$

- k: Iteration times.
- n: Selected points in one iteration.
- p: Probability in k iteration selects only inliers.
- w: Probability of a point which is a inlier.

In general, the p is unknown. If we fixed p, the k increased when n increased.

RANSAC for Image Alignment

RANSAC loop:

- 1. Randomly select a *seed group* of matches
- 2. Compute **transformation** from seed group
- 3. Find *inliers* to this transformation
- **4. If the number of inliers is sufficiently large**, recompute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

Select translation with the most inliers

Problem with RANSAC

- In many practical situations, the percentage of outliers (incorrect putative matches) is often very high (90% or above)
- Alternative strategy: Hough transform

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

 $N_I = 6$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of samples *N*
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points *s*
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²

$$N = log(1-p)/log(1-(1-e)^{s})$$

	proportion of outliers <i>e</i>						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

For p = 0.99

modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Alignment

• Alignment: find parameters of model that maps one set of points to another

• Typically want to solve for a global transformation that accounts for *most* true correspondences

- Difficulties
 - Noise (typically 1-3 pixels)
 - Outliers (often 50%)
 - Many-to-one matches or multiple objects

Given matched points in {A} and {B}, estimate the translation of the object

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or eigenvalue decomposition

Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers

Problem: no initial guesses for correspondence

ICP for Image Alignment

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- **1. Initialize** transformation (e.g., compute difference in means and scale)
- **2.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- **3.** Estimate transformation parameters
 - e.g., least squares or robust least squares
- 4. Transform the points in {Set 1} using estimated parameters
- 5. Repeat steps 2-4 until change is very small

Example: aligning boundaries

- 1. Extract edge pixels $p_1 \dots p_n$ and $q_1 \dots q_m$
- 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
- 3. Get nearest neighbors: for each point p_i find corresponding match(i) = argmin dist(pi, qj)
- 4. Compute transformation *T* based on matches
- 5. Warp points **p** according to **T**
- 6. Repeat 3-5 until convergence

Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence

Applications of Feature Matching

Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
 - Efficient putative match generation
 - Fast nearest neighbor search, inverted indexes

Test image

Scalability of SIFT Matching

Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
 - Efficient putative match generation
 - Fast nearest neighbor search, inverted indexes

D. Nistér and H. Stewénius, <u>Scalable</u> <u>Recognition with a Vocabulary Tree</u>, CVPR 2006

Slide credit: D. Nister

Slide credit: D. Nister

Vocabulary tree/inverted index

Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index

Populating the vocabulary tree/inverted index

Populating the vocabulary tree/inverted index

Populating the vocabulary tree/inverted index

Looking up a test image

Indexing with geometric invariants

• A match between invariant descriptors can yield a transformation hypothesis

Indexing with geometric invariants

• A match between invariant descriptors can yield a transformation hypothesis

Indexing with geometric invariants

- When we don't have feature descriptors, we can take n-tuples of neighboring features and compute invariant features from their geometric configurations
- Application: searching the sky: <u>http://www.astrometry.net/</u>

Projective (Homography) Transformation

Beyond affine transformations

 Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Homography

• The transformation between two views of a planar surface

 The transformation between images from two cameras that share the same center

Application: Panorama stitching

Fitting a homography

• Recall: homogenenous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Converting *to* homogenenous image coordinates

Converting *from* homogenenous image coordinates

Fitting a homography

• Recall: homogeneous coordinates

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Converting *to* homogeneous image coordinates

Converting *from* homogeneous image coordinates

• Equation for homography:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Fitting a homography

• Equation for homography: $\lambda \begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{21} & h_{22} & h_{23} \end{bmatrix} \begin{bmatrix} y_i \\ y_i \end{bmatrix}$

$$\lambda \mathbf{x}_i' = \mathbf{H} \mathbf{x}_i$$

$$\mathbf{x}_i' \times \mathbf{H} \mathbf{x}_i = \mathbf{0}$$

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{h}_1^T \mathbf{x}_i \\ \mathbf{h}_2^T \mathbf{x}_i \\ \mathbf{h}_3^T \mathbf{x}_i \end{bmatrix} = \begin{bmatrix} y_i' \mathbf{h}_3^T \mathbf{x}_i - \mathbf{h}_2^T \mathbf{x}_i \\ \mathbf{h}_1^T \mathbf{x}_i - x_i' \mathbf{h}_3^T \mathbf{x}_i \\ x_i' \mathbf{h}_2^T \mathbf{x}_i - y_i' \mathbf{h}_1^T \mathbf{x}_i \end{bmatrix}$$

$$\begin{bmatrix} 0^T & -\mathbf{x}_i^T & y_i' \mathbf{x}_i^T \\ \mathbf{x}_i^T & 0^T & -x_i' \mathbf{x}_i^T \\ -y_i' \mathbf{x}_i^T & x_i' \mathbf{x}_i^T & 0^T \end{bmatrix} \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{pmatrix} = 0$$

3 equations, only 2 linearly independent

Direct linear transform

$$\begin{bmatrix} 0^T & \mathbf{x}_1^T & -y_1' \, \mathbf{x}_1^T \\ \mathbf{x}_1^T & 0^T & -x_1' \, \mathbf{x}_1^T \\ \cdots & \cdots & \\ 0^T & \mathbf{x}_n^T & -y_n' \, \mathbf{x}_n^T \\ \mathbf{x}_n^T & 0^T & -x_n' \, \mathbf{x}_n^T \end{bmatrix} \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{pmatrix} = 0 \qquad \mathbf{A} \, \mathbf{h} = 0$$

- H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
- One match gives us two linearly independent equations
- Four matches needed for a minimal solution (null space of 8x9 matrix)
- More than four: homogeneous least squares

RANSAC for Estimating Homography

RANSAC loop:

- *1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
 - 3. Compute *inliers* where $SSD(p_i', H p_i) < \varepsilon$
 - 4. Keep largest set of inliers
 - 5. Re-compute least-squares H estimate on all of the inliers

RANSAC

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

Computational Photography, Alexei Efros, CMU, Fall 2005

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images

Overview of Image Alignment

• Feature Matching

Image Matching

• Bundle Adjustment

• Multi-band Blending

Computational Photography, Alexei Efros, CMU, Fall 2005

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Probabilistic model for verification

Homography for Rotation

Parameterise each camera by rotation and focal length

$$\mathbf{R}_{i} = e^{[\boldsymbol{\theta}_{i}]_{\times}}, \quad [\boldsymbol{\theta}_{i}]_{\times} = \begin{bmatrix} 0 & -\theta_{i3} & \theta_{i2} \\ \theta_{i3} & 0 & -\theta_{i1} \\ -\theta_{i2} & \theta_{i1} & 0 \end{bmatrix}$$
$$\mathbf{K}_{i} = \begin{bmatrix} f_{i} & 0 & 0 \\ 0 & f_{i} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• This gives pairwise homographies

$$\tilde{\mathbf{u}}_i = \mathbf{H}_{ij} \tilde{\mathbf{u}}_j$$
, $\mathbf{H}_{ij} = \mathbf{K}_i \mathbf{R}_i \mathbf{R}_j^T \mathbf{K}_j^{-1}$

Bundle Adjustment

 New images initialised with rotation, focal length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005

Bundle Adjustment

 New images initialised with rotation, focal length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005
Multi-band Blending

Burt & Adelson 1983

– Blend frequency bands over range $\propto \lambda$

Results

Can we use homographies to create a 360 panorama?

In order to figure this out, we need to learn what a camera is

360 panorama

