
SIFT-based Image Alignment

Jianping Fan

Dept of Computer Science

UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Project 2: SIFT-based Image Alignment

Correspondence and Alignment

• Correspondence: matching points, patches,
edges, or regions across images

≈

DoG for

identifying scale-

invariant local

extrema

Extrema points

Keypoints after removing

low contrast & edge points

Keypoints & SIFT Descriptors

Keypoint & SIFT Descriptor
• 16x16 Gradient window is taken. Partitioned into 4x4

subwindows.

• Histogram of 4x4 samples in 8 directions

• Gaussian weighting around center(is 0.5 times that
of the scale of a keypoint)

• 4x4x8 = 128 dimensional feature vector



Keypoint Detection

& Orientation Determination

& Neighborhood Pattern

Image alignment

www.cs.unc.edu/~lazebnik/spring10/lec10_alignment

http://www.cs.unc.edu/~lazebnik/spring10/lec10_alignment.ppt

Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B

2. Match features between A and B

3. Compute homography between A and B
using least squares on set of matches

What could go wrong?

A look into the past

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

A look into the past

• Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html

http://komen-dant.livejournal.com/345684.html

Bing streetside images

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-

maps-application-streetside-photos.aspx

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-maps-application-streetside-photos.aspx

Image alignment: Applications

Panorama stitching

Recognition

of object

instances

Image alignment: Challenges

Small degree of overlap

Occlusion,

clutter

Intensity changes

Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree

– Feature-based alignment
• Search for alignment where extracted features

agree

• Can be verified using pixel-based alignment

Image Alignment as Fitting

Alignment as fitting

• Previous lectures: fitting a model to features in
one image


i

i Mx),(residual

Find model M that minimizes

M

xi

Alignment as fitting
• Fitting a model to features in one image

• Alignment: fitting a model to a transformation
between pairs of features (matches) in two
images


i

i Mx),(residual

 
i

ii xxT)),((residual

Find model M that minimizes

Find transformation T

that minimizes

M

xi

T

xi
xi

'

2D transformation models

• Similarity
(translation,
scale, rotation)

• Affine

• Projective
(homography)

Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
T

'

'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides):

A. Efros and/or S. Seitz

Transformations

translation

Original Image Transformed Image

𝑥′ = 𝑥 + 𝑣

𝑦′ = 𝑦 + 𝑢

Transformations

Rotation

Original Image Transformed Image

   

    














 










y

x

y

x





cossin

sincos

'

'

Transformations

Aspect

Original Image Transformed Image𝑥′ = 𝑥/𝑟

𝑦′ = 𝑦/𝑡



























y

x

b

a

y

x

0

0

'

'

Transformations

Affine

Original Image
Transformed Image







































1

y

x

fed

cba

y

x

Transformations

Original Image
Transformed Image

Perspective












































w

y
x

ihg

fed
cba

w

y
x

'

'
'

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx





'

'



























y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

T
RR 1

R

Basic 2D transformations

Translate
Rotate

ShearScale



























y

x

y

x

y

x

1

1

'

'



































y

x

y

x

cossin

sincos

'

'



























y

x

s

s

y

x

y

x

0

0

'

'







































1
10

01
y

x

t

t

y

x

y

x







































1

y

x

fed

cba

y

x

Affine

Affine is any combination of

translation, scale, rotation,

shear

Affine Transformations

Affine transformations are combinations of

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition







































1

y

x

fed

cba

y

x



















































11001

'

'

y

x

fed

cba

y

x

or

Projective Transformations












































w

y
x

ihg

fed
cba

w

y
x

'

'
'Projective transformations are combos of

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)

2D image transformations (reference table)

Szeliski 2.1

Image matching under transformation

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
T

'

'

affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly
planar objects and roughly orthographic
cameras

• Can be used to initialize fitting for more
complex models

Fitting an affine transformation

• Assume we know the correspondences, how
do we get the transformation?

),(ii yx 
),(ii yx








































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly
independent equations: need at least three
to solve for the transformation parameters












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Alignment as fitting
• Transformation between pairs of features

(matches) in two images

 
i

ii xxT)),((residual

Find transformation T

that minimizes

T

xi

xi
'







































1

y

x

fed

cba

y

x

T

Hough Transformation for Alignment

Hough transform

• Recall: Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with

an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

model

visual codeword with

displacement vectors

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Hough transform
• Suppose our features are adapted to scale and rotation

– Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004.

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Hough transform
• Suppose our features are adapted to scale and rotation

– Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

– Of course, a hypothesis obtained from a single match is unreliable

– Solution: let each match vote for its hypothesis in a Hough space with
very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004.

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Hough transform details (D. Lowe’s system)

• Modeling phase: For each model feature, record 2D
location, scale, and orientation of model (relative to
normalized feature frame)

• Test phase: Let each match between a test and a
model feature vote in a 4D Hough space
– Use broad bin sizes of 30 degrees for orientation, a factor

of 2 for scale, and 0.25 times image size for location
– Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform
geometric verification
– Estimate least squares affine transformation
– Use stricter thresholds on transformation residual
– Search for additional features that agree with the

alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Features for Image Alignment

Feature-based alignment outline

Feature-based alignment outline

• Extract features

Feature-based alignment outline

• Extract features

• Compute putative matches

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

– Hypothesize transformation T

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T

– Verify transformation (search for other
matches consistent with T)

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T

– Verify transformation (search for other
matches consistent with T)

Generating putative correspondences

?

Generating putative correspondences

• Need to compare feature descriptors of local
patches surrounding interest points

() ()=
?

feature

descriptor
feature

descriptor

?

Feature descriptors
• Assuming the patches are already normalized

(i.e., the local effect of the geometric
transformation is factored out), how do we
compute their similarity?

• Want invariance to intensity changes, noise,
perceptually insignificant changes of the pixel
pattern

• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors?

– Sum of squared differences (SSD)

• Not invariant to intensity change

– Normalized correlation

• Invariant to affine intensity change

Feature descriptors

  
i

ii vuvu
2

),SSD(





































j

j

j

j

i ii

vvuu

vvuu
vu

22)()(

))((
),(

Feature descriptors
• Disadvantage of patches as descriptors:

– Small shifts can affect matching score a lot

• Solution: histograms

0 2 p

• Descriptor computation:

– Divide patch into 4x4 sub-patches

– Compute histogram of gradient orientations (8
reference angles) inside each sub-patch

– Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60

(2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

• Descriptor computation:
– Divide patch into 4x4 sub-patches

– Compute histogram of gradient orientations (8
reference angles) inside each sub-patch

– Resulting descriptor: 4x4x8 = 128 dimensions

• Advantage over raw vectors of pixel values
– Gradients less sensitive to illumination change

– Pooling of gradients over the sub-patches achieves
robustness to small shifts, but still preserves some
spatial information

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60

(2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Feature matching

?

• Generating putative matches: for each patch
in one image, find a short list of patches in
the other image that could match it based
solely on appearance

Feature space outlier rejection

• How can we tell which putative matches are more
reliable?

• Heuristic: compare distance of nearest neighbor to
that of second nearest neighbor
– Ratio of closest distance to second-closest distance will

be high for features that are not distinctive

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60

(2), pp. 91-110, 2004.

Threshold of 0.8

provides good

separation

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Reading

David G. Lowe. "Distinctive image features from scale-

invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

RANSAC Technique

What’s RANSAC ?

• RANSAC is an abbreviation for "RANdom
SAmple Consensus".

• It is an iterative method to estimate
parameters of a mathematical model from a
set of observed data which contains outliers.

• Non-deterministic algorithm.

63
http://en.wikipedia.org/wiki/RANSAC

Why RANSAC ?

• RANSAC can estimate a model which ignored
outliers.

• Example:

– To fit a line

• Least Squares method:
– Optimally fitted to all points including outliers.

• RANSAC:
– Only computed from the inliers.

64
http://en.wikipedia.org/wiki/RANSAC

Inliers vs. Outliers

RANSAC

General version:

1. Randomly choose s samples

• Typically s = minimum sample size that lets you fit a
model

2. Fit a model (e.g., line) to those samples

3. Count the number of inliers that approximately
fit the model

4. Repeat N times

5. Choose the model that has the largest set of
inliers

How big is s?

• For alignment, depends on the motion model
– Here, each sample is a correspondence (pair of

matching points)

RANSAC pros and cons

• Pros

– Simple and general

– Applicable to many different problems

– Often works well in practice

• Cons

– Parameters to tune

– Sometimes too many iterations are required

– Can fail for extremely low inlier ratios

– We can often do better than brute-force sampling

Illustration of RANSAC

68cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

69

• Select sample of m

points at random

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

70

• Select sample of m points

at random

• Calculate model

parameters that fit the

data in the sample

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

71cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

72

• Select sample of m points

at random

• Calculate model

parameters that fit the data

in the sample

• Calculate error function

for each data point

• Select data that support

current hypothesis

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

73

• Select sample of m points

at random

• Calculate model

parameters that fit the data

in the sample

• Calculate error function

for each data point

• Select data that support

current hypothesis

• Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

74

• Select sample of m points

at random

• Calculate model

parameters that fit the data

in the sample

• Calculate error function

for each data point

• Select data that support

current hypothesis

• Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

Illustration of RANSAC

75

RANSAC time complexity

k … number of samples

drawn

N … number of data points

tM … time to compute a single

model

mS … average number of

models per sample

ALL-INLIER SAMPLE

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

RANSAC Algorithm
• Input:

– data: a set of observations
– model: a model that can be fitted to data
– n: the minimum number of data required to fit the model
– k: the maximum number of iterations allowed in the

algorithm
– t: a threshold value for determining when a datum fits a

model
– d: the number of close data values required to assert that

a model fits well to data
• Output:

– best_model : model parameters which best fit the data (or
nil if no good model is found)

– best_consensus_set : data point from which this model
has been estimated

– best_error : the error of this model relative to the data
76

http://en.wikipedia.org/wiki/RANSAC

RANSAC Algorithm

77
http://en.wikipedia.org/wiki/RANSAC

Parameters

78

 knwp  11

 
)1log(

1log
nw

p
k






k: Iteration times.

n: Selected points in one iteration.

p: Probability in k iteration selects

only inliers.

w: Probability of a point which is

a inlier.

In general, the p is unknown. If we fixed p,

the k increased when n increased.

http://en.wikipedia.org/wiki/RANSAC

RANSAC for Image Alignment

RANSAC
RANSAC loop:

1. Randomly select a seed group of matches

2. Compute transformation from seed group

3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of
transformation on all of the inliers

• Keep the transformation with the largest
number of inliers

RANSAC example: Translation

Putative matches

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select translation with the most inliers

Problem with RANSAC

• In many practical situations, the percentage of
outliers (incorrect putative matches) is often
very high (90% or above)

• Alternative strategy: Hough transform

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from M. Pollefeys
For p = 0.99

RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than

Hough transform
• Optimization parameters are easier to choose than Hough

transform

Bad
• Computational time grows quickly with fraction of outliers

and number of parameters
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)

Alignment

• Alignment: find parameters of model that maps
one set of points to another

• Typically want to solve for a global transformation
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%)

– Many-to-one matches or multiple objects

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or

eigenvalue decomposition 




























































A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

ICP for Image Alignment

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚
2. Compute initial transformation (e.g., compute translation and scaling

by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence

Applications of Feature Matching

Scalability: Alignment to large databases
• What if we need to align a test image with

thousands or millions of images in a model
database?

– Efficient putative match generation

• Fast nearest neighbor search, inverted indexes

Model

database

?

Test image

Scalability of SIFT Matching

Scalability: Alignment to large databases
• What if we need to align a test image with

thousands or millions of images in a model
database?

– Efficient putative match generation

• Fast nearest neighbor search, inverted indexes

D. Nistér and H. Stewénius, Scalable

Recognition with a Vocabulary Tree,

CVPR 2006

Test image

Database

Vocabulary

tree with

inverted

index

http://www.vis.uky.edu/~dnister/Publications/2006/VocTree/nister_stewenius_cvpr2006.pdf

Descriptor space
Slide credit: D. Nister

Hierarchical partitioning
of descriptor space
(vocabulary tree)

Slide credit: D. Nister

Slide credit: D. Nister
Vocabulary tree/inverted index

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Looking up a test image
Slide credit: D. Nister

Test imageModel images

Indexing with geometric invariants
• A match between invariant descriptors can yield a transformation

hypothesis

model

index

Indexing with geometric invariants
• A match between invariant descriptors can yield a transformation

hypothesis

model

test image

index

Indexing with geometric invariants
• When we don’t have feature descriptors, we can take n-tuples of

neighboring features and compute invariant features from their
geometric configurations

• Application: searching the sky: http://www.astrometry.net/

A

B

C

D

http://www.astrometry.net/

Projective (Homography) Transformation

Beyond affine transformations

• Homography: plane projective transformation
(transformation taking a quad to another
arbitrary quad)

Homography
• The transformation between two views of a

planar surface

• The transformation between images from two
cameras that share the same center

Application: Panorama stitching

Fitting a homography

• Recall: homogenenous coordinates

Converting to homogenenous

image coordinates

Converting from homogenenous

image coordinates

Fitting a homography

• Recall: homogeneous coordinates

• Equation for homography:

Converting to homogeneous

image coordinates

Converting from homogeneous

image coordinates























































11 333231

232221

131211

y

x

hhh

hhh

hhh

y

x



Fitting a homography

• Equation for homography:

ii xHx 























































11 333231

232221

131211

i

i

i

i

y

x

hhh

hhh

hhh

y

x


0 ii xHx































































i

T

ii

T

i

i

T

ii

T

i

T

i

T

i

i

T

i

T

i

T

i

i

yx

x

y

y

x

xhxh

xhxh

xhxh

xh

xh

xh

3

2

1

12

31

23

1

0

0

0

0

3

2

1








































h

h

h

xx

xx

xx

TT

ii

T

ii

T

ii

TT

i

T

ii

T

i

T

xy

x

y
3 equations,

only 2 linearly

independent

Direct linear transform

• H has 8 degrees of freedom (9 parameters, but
scale is arbitrary)

• One match gives us two linearly independent
equations

• Four matches needed for a minimal solution
(null space of 8x9 matrix)

• More than four: homogeneous least squares

0

0

0

0

0

3

2

1111

111
















































h

h

h

xx

xx

xx

xx

T

nn

TT

n

T

nn

T

n

T

TTT

TTT

x

y

x

y

 0hA

RANSAC for Estimating Homography

RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where SSD(pi’, H pi) < ε

4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all
of the inliers

RANSAC

Why “Recognising Panoramas”?

• 1D Rotations ()

– Ordering  matching images

Computational Photography, Alexei Efros, CMU, Fall 2005

Why “Recognising Panoramas”?

• 1D Rotations ()

– Ordering  matching images

Why “Recognising Panoramas”?

• 2D Rotations (, f)

– Ordering  matching images

• 1D Rotations ()

– Ordering  matching images

Why “Recognising Panoramas”?

• 1D Rotations ()

– Ordering  matching images

• 2D Rotations (, f)

– Ordering  matching images

Why “Recognising Panoramas”?

• 1D Rotations ()

– Ordering  matching images

• 2D Rotations (, f)

– Ordering  matching images

Why “Recognising Panoramas”?

Overview of Image Alignment

• Feature Matching

• Image Matching

• Bundle Adjustment

• Multi-band Blending

Computational Photography, Alexei Efros, CMU, Fall 2005

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Probabilistic model for verification

Finding the panoramas

Finding the panoramas

Finding the panoramas

Finding the panoramas

• Parameterise each camera by rotation and
focal length

• This gives pairwise homographies

Homography for Rotation

Bundle Adjustment

• New images initialised with rotation, focal
length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005

Bundle Adjustment

• New images initialised with rotation, focal
length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005

Multi-band Blending

• Burt & Adelson 1983

– Blend frequency bands over range  

Results

• In order to figure this out, we need to learn what a camera
is

Can we use homographies to create a 360
panorama?

360 panorama

