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Project 2: SIFT-based Image Alignment



Correspondence and Alignment

• Correspondence: matching points, patches, 
edges, or regions across images

≈



DoG for 

identifying scale-

invariant local 

extrema

Extrema points

Keypoints after removing 

low contrast & edge points

Keypoints & SIFT Descriptors



Keypoint & SIFT Descriptor
• 16x16 Gradient window is taken. Partitioned into 4x4 

subwindows.

• Histogram of 4x4 samples in 8 directions

• Gaussian weighting around center(       is 0.5 times that 
of the scale of a keypoint)

• 4x4x8 = 128 dimensional feature vector



Keypoint Detection

& Orientation Determination

& Neighborhood Pattern



Image alignment

www.cs.unc.edu/~lazebnik/spring10/lec10_alignment

http://www.cs.unc.edu/~lazebnik/spring10/lec10_alignment.ppt


Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B

2. Match features between A and B

3. Compute homography between A and B 
using least squares on set of matches

What could go wrong?



A look into the past

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/


A look into the past

• Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html

http://komen-dant.livejournal.com/345684.html


Bing streetside images

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-

maps-application-streetside-photos.aspx

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-maps-application-streetside-photos.aspx


Image alignment: Applications

Panorama stitching

Recognition

of object

instances



Image alignment: Challenges

Small degree of overlap

Occlusion,

clutter

Intensity changes



Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree

– Feature-based alignment
• Search for alignment where extracted features

agree

• Can be verified using pixel-based alignment



Image Alignment as Fitting



Alignment as fitting

• Previous lectures: fitting a model to features in 
one image
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Alignment as fitting
• Fitting a model to features in one image

• Alignment: fitting a model to a transformation 
between pairs of features (matches) in two 
images
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2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)



Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): 

A. Efros and/or S. Seitz



Transformations

translation

Original Image Transformed Image

𝑥′ = 𝑥 + 𝑣

𝑦′ = 𝑦 + 𝑢



Transformations

Rotation

Original Image Transformed Image
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Transformations

Aspect

Original Image Transformed Image𝑥′ = 𝑥/𝑟

𝑦′ = 𝑦/𝑡
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Transformations

Affine

Original Image
Transformed Image
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Transformations

Original Image
Transformed Image

Perspective
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Scaling
• Scaling a coordinate means multiplying each of its components by a 

scalar

• Uniform scaling means this scalar is the same for all components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices
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Basic 2D transformations

Translate
Rotate

ShearScale
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Affine

Affine is any combination of 

translation, scale, rotation, 

shear



Affine Transformations

Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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Projective Transformations
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'Projective transformations are combos of 

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)



2D image transformations (reference table)

Szeliski 2.1



Image matching under transformation

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly 
planar objects and roughly orthographic 
cameras

• Can be used to initialize fitting for more 
complex models



Fitting an affine transformation

• Assume we know the correspondences, how 
do we get the transformation?
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Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly 
independent equations: need at least three 
to solve for the transformation parameters












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100



Alignment as fitting
• Transformation between pairs of features 

(matches) in two images
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Hough Transformation for Alignment



Hough transform

• Recall: Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with 

an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

model

visual codeword with

displacement vectors

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Hough transform
• Suppose our features are adapted to scale and rotation

– Then a single feature match provides an alignment hypothesis 
(translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004. 

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Hough transform
• Suppose our features are adapted to scale and rotation

– Then a single feature match provides an alignment hypothesis 
(translation, scale, orientation)

– Of course, a hypothesis obtained from a single match is unreliable

– Solution: let each match vote for its hypothesis in a Hough space with 
very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004. 

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Hough transform details (D. Lowe’s system)

• Modeling phase: For each model feature, record 2D 
location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match between a test and a 
model feature vote in a 4D Hough space
– Use broad bin sizes of 30 degrees for orientation, a factor 

of 2 for scale, and 0.25 times image size for location
– Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
geometric verification 
– Estimate least squares affine transformation 
– Use stricter thresholds on transformation residual
– Search for additional features that agree with the 

alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”

IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Features for Image Alignment



Feature-based alignment outline



Feature-based alignment outline

• Extract features



Feature-based alignment outline

• Extract features

• Compute putative matches



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

– Hypothesize transformation T



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T

– Verify transformation (search for other 
matches consistent with T)



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T

– Verify transformation (search for other 
matches consistent with T)



Generating putative correspondences

?



Generating putative correspondences

• Need to compare feature descriptors of local 
patches surrounding interest points

( ) ( )=
?

feature

descriptor
feature

descriptor

?



Feature descriptors
• Assuming the patches are already normalized 

(i.e., the local effect of the geometric 
transformation is factored out), how do we 
compute their similarity?

• Want invariance to intensity changes, noise, 
perceptually insignificant changes of the pixel 
pattern



• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors?

– Sum of squared differences (SSD)

• Not invariant to intensity change

– Normalized correlation

• Invariant to affine intensity change

Feature descriptors
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Feature descriptors
• Disadvantage of patches as descriptors: 

– Small shifts can affect matching score a lot

• Solution: histograms

0 2 p



• Descriptor computation:

– Divide patch into 4x4 sub-patches

– Compute histogram of gradient orientations (8 
reference angles) inside each sub-patch

– Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 

(2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• Descriptor computation:
– Divide patch into 4x4 sub-patches

– Compute histogram of gradient orientations (8 
reference angles) inside each sub-patch

– Resulting descriptor: 4x4x8 = 128 dimensions

• Advantage over raw vectors of pixel values
– Gradients less sensitive to illumination change

– Pooling of gradients over the sub-patches achieves 
robustness to small shifts, but still preserves some 
spatial information

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 

(2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Feature matching

?

• Generating putative matches: for each patch 
in one image, find a short list of patches in 
the other image that could match it based 
solely on appearance



Feature space outlier rejection

• How can we tell which putative matches are more 
reliable?

• Heuristic: compare distance of nearest neighbor to 
that of second nearest neighbor
– Ratio of closest distance to second-closest distance will 

be high for features that are not distinctive

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 

(2), pp. 91-110, 2004. 

Threshold of 0.8 

provides good 

separation

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Reading

David G. Lowe. "Distinctive image features from scale-

invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


RANSAC   Technique



What’s RANSAC ?

• RANSAC is an abbreviation for "RANdom
SAmple Consensus".

• It is an iterative method to estimate 
parameters of a mathematical model from a 
set of observed data which contains outliers.

• Non-deterministic algorithm.

63
http://en.wikipedia.org/wiki/RANSAC



Why RANSAC ?

• RANSAC can estimate a model which ignored 
outliers.

• Example: 

– To fit a line

• Least Squares method: 
– Optimally fitted to all points including outliers. 

• RANSAC:
– Only computed from the inliers.

64
http://en.wikipedia.org/wiki/RANSAC

Inliers   vs. Outliers



RANSAC

General version:

1. Randomly choose s samples

• Typically s = minimum sample size that lets you fit a 
model

2. Fit a model (e.g., line) to those samples

3. Count the number of inliers that approximately 
fit the model

4. Repeat N times

5. Choose the model that has the largest set of 
inliers



How big is s?

• For alignment, depends on the motion model
– Here, each sample is a correspondence (pair of 

matching points)



RANSAC pros and cons

• Pros

– Simple and general

– Applicable to many different problems

– Often works well in practice

• Cons

– Parameters to tune

– Sometimes too many iterations are required

– Can fail for extremely low inlier ratios

– We can often do better than brute-force sampling



Illustration of RANSAC

68cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

69

• Select sample of m 

points at random

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

70

• Select sample of m points 

at random

• Calculate model 

parameters that fit the 

data in the sample

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

71cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

72

• Select sample of m points 

at random

• Calculate model 

parameters that fit the data 

in the sample

• Calculate error function 

for each data point

• Select data that support 

current hypothesis

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

73

• Select sample of m points 

at random

• Calculate model 

parameters that fit the data 

in the sample

• Calculate error function 

for each data point

• Select data that support 

current hypothesis

• Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

74

• Select sample of m points 

at random

• Calculate model 

parameters that fit the data 

in the sample

• Calculate error function 

for each data point

• Select data that support 

current hypothesis

• Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



Illustration of RANSAC

75

RANSAC time complexity

k  … number of samples 

drawn

N … number of data points

tM … time to compute a single          

model

mS … average number of 

models per sample

ALL-INLIER SAMPLE

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



RANSAC Algorithm
• Input:

– data: a set of observations
– model: a model that can be fitted to data
– n: the minimum number of data required to fit the model
– k: the maximum number of iterations allowed in the 

algorithm 
– t: a threshold value for determining when a datum fits a 

model
– d: the number of close data values required to assert that 

a model fits well to data
• Output:

– best_model : model parameters which best fit the data (or 
nil if no good model is found)

– best_consensus_set : data point from which this model 
has been estimated

– best_error : the error of this model relative to the data
76

http://en.wikipedia.org/wiki/RANSAC



RANSAC Algorithm

77
http://en.wikipedia.org/wiki/RANSAC



Parameters

78
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k: Iteration times.

n: Selected points in one iteration.

p: Probability in k iteration selects   

only inliers.  

w: Probability of a point which is  

a inlier.

In general, the p is unknown. If we fixed p, 

the k increased when n increased. 

http://en.wikipedia.org/wiki/RANSAC



RANSAC for Image Alignment



RANSAC
RANSAC loop:

1. Randomly select a seed group of matches

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of 
transformation on all of the inliers

• Keep the transformation with the largest 
number of inliers



RANSAC example: Translation

Putative matches



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select translation with the most inliers



Problem with RANSAC

• In many practical situations, the percentage of 
outliers (incorrect putative matches) is often 
very high (90% or above)

• Alternative strategy: Hough transform



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys
For p = 0.99



RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than 

Hough transform
• Optimization parameters are easier to choose than Hough 

transform

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)



Alignment

• Alignment: find parameters of model that maps 
one set of points to another

• Typically want to solve for a global transformation 
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%) 

– Many-to-one matches or multiple objects



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or 

eigenvalue decomposition 
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution
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(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4



Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values

2. Each matched pair casts a vote for 

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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ICP for Image Alignment



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets 
of points

1. Initialize transformation (e.g., compute difference in means 
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters 
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small



Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚
2. Compute initial transformation (e.g., compute translation and scaling 

by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding 
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence



Applications of Feature Matching



Scalability: Alignment to large databases
• What if we need to align a test image with 

thousands or millions of images in a model 
database?

– Efficient putative match generation

• Fast nearest neighbor search, inverted indexes

Model 

database

?

Test image



Scalability of SIFT Matching



Scalability: Alignment to large databases
• What if we need to align a test image with 

thousands or millions of images in a model 
database?

– Efficient putative match generation

• Fast nearest neighbor search, inverted indexes

D. Nistér and H. Stewénius, Scalable 

Recognition with a Vocabulary Tree, 

CVPR 2006

Test image

Database

Vocabulary 

tree with 

inverted 

index

http://www.vis.uky.edu/~dnister/Publications/2006/VocTree/nister_stewenius_cvpr2006.pdf


Descriptor space
Slide credit: D. Nister



Hierarchical partitioning 
of descriptor space 
(vocabulary tree)

Slide credit: D. Nister



Slide credit: D. Nister
Vocabulary tree/inverted index



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Looking up a test image
Slide credit: D. Nister

Test imageModel images



Indexing with geometric invariants
• A match between invariant descriptors can yield a transformation 

hypothesis
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index



Indexing with geometric invariants
• A match between invariant descriptors can yield a transformation 

hypothesis

model

test image

index



Indexing with geometric invariants
• When we don’t have feature descriptors, we can take n-tuples of 

neighboring features and compute invariant features from their 
geometric configurations

• Application: searching the sky: http://www.astrometry.net/

A

B

C

D

http://www.astrometry.net/


Projective (Homography) Transformation



Beyond affine transformations

• Homography: plane projective transformation 
(transformation taking a quad to another 
arbitrary quad)



Homography
• The transformation between two views of a 

planar surface

• The transformation between images from two 
cameras that share the same center



Application: Panorama stitching



Fitting a homography

• Recall: homogenenous coordinates

Converting to homogenenous

image coordinates

Converting from homogenenous

image coordinates



Fitting a homography

• Recall: homogeneous coordinates

• Equation for homography:

Converting to homogeneous

image coordinates

Converting from homogeneous

image coordinates
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Fitting a homography

• Equation for homography:

ii xHx 
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Direct linear transform

• H has 8 degrees of freedom (9 parameters, but 
scale is arbitrary)

• One match gives us two linearly independent 
equations

• Four matches needed for a minimal solution 
(null space of 8x9 matrix)

• More than four: homogeneous least squares
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RANSAC for Estimating Homography

RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where  SSD(pi’, H pi) < ε

4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all 
of the inliers



RANSAC



Why “Recognising Panoramas”?

• 1D Rotations ()

– Ordering  matching images

Computational Photography, Alexei Efros, CMU, Fall 2005
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Why “Recognising Panoramas”?

• 2D Rotations (, f)

– Ordering  matching images
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Why “Recognising Panoramas”?
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– Ordering  matching images
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– Ordering  matching images



Why “Recognising Panoramas”?

• 1D Rotations ()

– Ordering  matching images

• 2D Rotations (, f)

– Ordering  matching images



Why “Recognising Panoramas”?



Overview of Image Alignment

• Feature Matching

• Image Matching

• Bundle Adjustment

• Multi-band Blending

Computational Photography, Alexei Efros, CMU, Fall 2005



RANSAC for Homography



RANSAC for Homography



RANSAC for Homography



Probabilistic model for verification



Finding the panoramas



Finding the panoramas



Finding the panoramas



Finding the panoramas



• Parameterise each camera by rotation and 
focal length

• This gives pairwise homographies

Homography for Rotation



Bundle Adjustment

• New images initialised with rotation, focal 
length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005



Bundle Adjustment

• New images initialised with rotation, focal 
length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005



Multi-band Blending

• Burt & Adelson 1983

– Blend frequency bands over range  



Results



• In order to figure this out, we need to learn what a camera
is

Can we use homographies to create a 360 
panorama?



360 panorama


