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Project 2: SIFT-based Image Alighment

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching



Correspondence and Alighment

* Correspondence: matching points, patches,
edges, or regions across images




DoG for
identifying scale-
invariant local
extrema

Extrema points

Keypoints after removing
low contrast & edge points

Keypoints & SIFT Descriptors



Keypomt & SIFT Descriptor

16x16 Gradient window is taken. Partitioned into 4x4
subwindows.

e Histogram of 4x4 samples in 8 directions

* Gaussian weighting around center( o is 0.5 times that
of the scale of a keypoint)
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Image alighment

www.cs.unc.edu/~lazebnik/spring10/lec10_alignment


http://www.cs.unc.edu/~lazebnik/spring10/lec10_alignment.ppt

Image Alighment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B

3. Compute homography between A and B
using least squares on set of matches

What could go wrong?



A look into the past

ARRRERNBTEY,.
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http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/



http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

A look into the past

* Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html|



http://komen-dant.livejournal.com/345684.html

Bing streetside images

http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-

maps-application-streetside-photos.aspx



http://www.bing.com/community/blogs/maps/archive/2010/01/12/new-bing-maps-application-streetside-photos.aspx

Image alignment: Applications
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Recognition
of object
Instances



Image alignment: Challenges
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aII degree of overlap
Intensity changes

Occlusion,
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Image alighment

e Two broad approaches:

— Direct (pixel-based) alignment
e Search for alignment where most pixels agree

— Feature-based alignment

* Search for alignment where extracted features
agree

* Can be verified using pixel-based alignment



Image Alighment as Fitting



Alignment as fitting

e Previous lectures: fitting a model to features in
one image M

Find model M that minimizes
> residual (x;, M)



Alignment as fitting
e Fitting a model to fl\e/latures in one image

Find model M that minimizes
> residual (x;, M)

e Alignment: fitting a model to a transformation
between pairs of features (matches) in two
Images

X, Find transformation T
g T o that minimizes
@ — @ -
o o > residual (T (x,), X))



2D transformation models

e Similarity

(translation, ] ". N "’

scale, rotation)

e Affine = ’

e Projective
(homography) M- -




Parametric (global) warping

Transformation T is a coordinate-changing machine:
P’ =T(p)

What does it mean that T is global?
— |Is the same for any point p
— can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p' =Tp

HaH



Common transformations

original

Transformed

perspective



Transformations

X+ v

=
|

Original Image Transformed Image

y+u

=
1



Transformations

y'| | sin(6)

Rotation

cos(6)

x| [cos(@) —sin(6)




Transformations

Original |
riginal Image x! = X/T

Transformed Image
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Transformations

Affine

Transformed Image
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Transformations

Transformed Image

x| [a b c|x
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Scaling

Scaling a coordinate means multiplying each of its components by a

scalar

Uniform scaling means this scalar is the same for all components:

X 2

N




Scaling

* Non-uniform scaling: different scalars per component:

X x 2,
Y x 0.5




Scaling

* Scaling operation: X'= ax
y'=Dby
* Or,in matrix form: - _ _
X a 0
y'| |0 b
a—/

scaling matrix S




2-D Rotation

o (X, Y')

(X, ¥)

o by,




2-D Rotation

This is easy to capture in matrix form:
x| [cos(@) —sin(8)] x
y'| |sin(@) cos(@) ||y

.

Y
R

Even though sin(0) and cos(0) are nonlinear functions of 6,
— x’is a linear combination of x and y
— y’is alinear combination of x and y

What is the inverse transformation?
— Rotation by —0
— For rotation matrices R_l — RT



Basic 2D transformations

X' - COS® —sIin® || X
y'| |sin® cos® |y

Rotate

{x’}_{a b c} y
|| d f

Affine

Shear
0
= y
’ 0 1 t
y y 1
Translate

Affine is any combination of
translation, scale, rotation,
shear



Affine Transformations

Affine transformations are combinations of
e Linear transformations, and
 Translations

Properties of affine transformations:
* Lines map to lines
« Parallel lines remain parallel
» Ratios are preserved
» Closed under composition




Projective Transformations

Projective transformations are combos of X,
- Affine transformations, and yl B
* Projective warps W] L

Properties of projective transformations:
* Lines map to lines
« Parallel lines do not necessarily remain parallel
« Ratios are not preserved
» Closed under composition
* Models change of basis
» Projective matrix is defined up to a scale (8 DOF)
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2D image transformations (reference table)

A
) similarity P1o) ﬂm ©
translation
/"y
Euclidean aﬂme >
~— x
Name Matrix # D.O.F. | Preserves: Icon
translation [ I ‘ t ]2 ; 2 orientation + - - -
oy
rigid (Euclidean) [ R ‘ t ]2 ; 3 lengths + - - - O
oy
similarity [ sR | t ]2 \ 4 angles + - - - O
oy
afline [ A ]ng 6 parallelism + - - - E
projective [ H ]3){3 8 straight lines E|

Szeliski 2.1



Image matching under transformation

Transformation T is a coordinate-changing machine:
P’ =T(p)

What does it mean that T is global?
— |Is the same for any point p
— can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p'=Tp

HaH



affine transformations

e Simple fitting procedure (linear least squares)

e Approximates viewpoint changes for roughly
planar objects and roughly orthographic
cameras

e Can be used to initialize fitting for more
complex models




Fitting an affine transformation

e Assume we know the correspondences, how

do we get the transformation?
(Xi’yi).
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Fitting an affine transformation

1

3

N

. 'y, 0 0 1 0

0 0 x vy, 01

3 3 3
>

SN
S

o

~t -
N

e Linear system with six unknowns

e Each match gives us two linearly
independent equations: need at least three
to solve for the transformation parameters



Alignment as fitting

e Transformation between pairs of features
(matches) in two images

Find transformation T
that minimizes X

> residual (T (x,), X)) vITld e




Hough Transformation for Alighment



Hough transform

e Recall: Generalized Hough transform

m =

visual codeword with
displacement vectors

test image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Cateqgorization and Segmentation with
an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Hough transform

e Suppose our features are adapted to scale and rotation

— Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Hough transform

e Suppose our features are adapted to scale and rotation

— Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

— Of course, a hypothesis obtained from a single match is unreliable

— Solution: let each match vote for its hypothesis in a Hough space with
very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Hough transform details (D. Lowe’s system)

e Modeling phase: For each model feature, record 2D
location, scale, and orientation of model (relative to
normalized feature frame)

e Test phase: Let each match between a test and a
model feature vote in a 4D Hough space

— Use broad bin sizes of 30 degrees for orientation, a factor
of 2 for scale, and 0.25 times image size for location

— Vote for two closest bins in each dimension
e Find all bins with at least three votes and perform
geometric verification
— Estimate least squares affine transformation
— Use stricter thresholds on transformation residual

— Search for additional features that agree with the
alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Features for Image Alighment



Feature-based alighment outline




eature-based alignment outline

e Extract features



eature-based alignment outline

-0 P

-

e Extract features
e Compute putative matches



eature-based alignment outline

e Extract features
e Compute putative matches
e |Loop:
— Hypothesize transformation T



Feature-based alignment outline

e Extract features
e Compute putative matches
e |Loop:
— Hypothesize transformation T

— Verify transformation (search for other
matches consistent with T)



Feature-based alignment outline

e Extract features
e Compute putative matches
e |Loop:

— Hypothesize transformation T

— Verify transformation (search for other
matches consistent with T)



Generating putative correspondences




Generating putative correspondences

feature feature
descriptor descriptor

e Need to compare feature descriptors of local
patches surrounding interest points



Feature descriptors

e Assuming the patches are already normalized
(i.e., the local effect of the geometric
transformation is factored out), how do we
compute their similarity?

e Want invariance to intensity changes, noise,
perceptually insignificant changes of the pixel
pattern W




Feature descriptors

e Simplest descriptor: vector of raw intensity values

e How to compare two such vectors?
— Sum of squared differences (SSD)

SSD(u,v) = ) (u; —v )

* Not invariant to intensity change

— Normalized correlation

p(u,V) _ Zi (ui _U)(Vi _\7)
[l

* Invariant to affine intensity change




Feature descriptors
e Disadvantage of patches as descriptors:

— Small shifts can affect matching score a lot

PR

e Solution: histograms
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Feature descriptors: SIFT

e Descriptor computation:
— Divide patch into 4x4 sub-patches

— Compute histogram of gradient orientations (8
reference angles) inside each sub-patch

— Resulting descriptor: 4x4x8 = 128 dimensions

7

# K>
> % L

KK X

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Feature descriptors: SIFT

e Descriptor computation:
— Divide patch into 4x4 sub-patches

— Compute histogram of gradient orientations (8
reference angles) inside each sub-patch

— Resulting descriptor: 4x4x8 = 128 dimensions

e Advantage over raw vectors of pixel values
— Gradients less sensitive to illumination change

— Pooling of gradients over the sub-patches achieves
robustness to small shifts, but still preserves some
spatial information

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Feature matching

e Generating putative matches: for each patch
in one image, find a short list of patches in
the other image that could match it based
solely on appearance




Feature space outlier rejection

e How can we tell which putative matches are more
reliable?

e Heuristic: compare distance of nearest neighbor to
that of second nearest neighbor

— Ratio of closest distance to second-closest distance will
be high for features that are not distinctive

0.8

0.7 +

el PDF for noortot matohes '~ | Threshold of 0.8
0 | provides good
= M separation

0.3 | A

0.2 + ]

0.1 f_x';fj \“x
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Ratio of distances (closest/next closest)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Reading

David G. Lowe. "Distinctive image features from scale-

invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

RANSAC Technique



What’s RANSAC ?

is an abbreviation for " dom
mple Consensus".

e |tis an iterative method to estimate
parameters of a mathematical model from a
set of observed data which contains

* Non-deterministic algorithm.

http://en.wikipedia.org/wiki/RANSAC



Why RANSAC ?

* RANSAC can estimate a model which ignhored
outliers.

 Example:

— To fit a line
* Least Squares method:

— Optimally fitted to all points including outliers.

* RANSAC:

— Only computed from the inliers.

Inliers vs. Outliers

http://en.wikipedia.org/wiki/RANSAC



RANSAC

General version:

1. Randomly choose s samples

 Typically s = minimum sample size that lets you fit a
model

2. Fit a model (e.g., line) to those samples

3. Count the number of inliers that approximately
fit the model

Repeat N times

5. Choose the model that has the largest set of
inliers



How big is s?

* For alignment, depends on the motion model
— Here, each sample is a correspondence (pair of

matching points)

translation
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translation [ I ‘ t L .\ 2 orientation 4+ - - - D
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RANSAC pros and cons

* Pros
— Simple and general
— Applicable to many different problems
— Often works well in practice

e Cons
— Parameters to tune
— Sometimes too many iterations are required
— Can fail for extremely low inlier ratios
— We can often do better than brute-force sampling



lllustration of RANSAC

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



lllustration of RANSAC

. d « Select sample of m
* o points at random
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cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



lllustration of RANSAC

» Select sample of m points
at random

 Calculate model
parameters that fit the
data in the sample

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt 70



lllustration of RANSAC
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» Select sample of m points
at random

 Calculate model
parameters that fit the data
in the sample

> Calculate error function
for each data point

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt

71



lllustration of RANSAC

» Select sample of m points
at random

 Calculate model
parameters that fit the data
In the sample

» Calculate error function
for each data point

» Select data that support
current hypothesis

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



lllustration of RANSAC

. ~ +Select sample of m points
. . at random

» Calculate model

. 2 * . parameters that fit the data
. 2. . In the sample
>
o .. « Calculate error function
. ’ for each data point
. » Select data that support
’ . o current hypothesis
$e . .

* Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



lllustration of RANSAC

2 . . e | » Select sample of m points
.. L at random
‘ S « Calculate model
. * . parameters that fit the data

. @ . ) . .
3 in the sample
b et M p
. oo \ . Calculate error function

. . for each data point

s  Select data that support
. current hypothesis

* Repeat sampling

cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



lllustration of RANSAC

L L ® //
. / | ALL-INLIER SAMPLE
. b ** RANSAC time complexity
™ ® 7/ ) .

, t = k(tpr +msN)
. 7z .. Kk ...number of samples
a ‘ drawn

. °. N ... number of data points
/ . ty ... ime to compute a single
‘ R model
7 e e ] . ms ... average number of

models per sample
cmp.felk.cvut.cz/~matas/papers/presentations/viva.ppt



RANSAC Algorithm

* |nput:
— data: a set of observations
— model: a model that can be fitted to data
— n: the minimum number of data required to fit the model

— k: the maximum number of iterations allowed in the
algorithm

— t: a threshold value for determining when a datum fits a
model

— d: the number of close data values required to assert that
a model fits well to data

* Qutput:
— best_model : model parameters which best fit the data (or
nil if no good model is found)

— best _consensus_set : data point from which this model
has been estimated

— best _error : the error of this model relative to the data
http://en.wikipedia.org/wiki/RANSAC



RANSAC Algorithm

iterations

best model := nll

hest consensus Set := nil

hest error := 1nf1nity

while iteraticns < k
maybe inliers = n randomly selected valuss from data
maybhe model := model parameters fitted to mayhe inliers
cnnseﬁsus_set := waybe inliers B

for every point in data not in maybe inliers
if point fits maybe model with an error smaller than t
add point to consensus set

if the number of elewments in COnSeEnsus set i= > d
fthis implies that we m3v have found 3 good model,

now test how good 1t 313)
better model := model parameters fitted to all points in consensus set

this error := a weasure of how well better _model fits these pulnts

if this error < best error
{WE have Ffound a model which is better than Fny of the previous onie
keep 2t until 3 better one 1s Ffound)

hest deEl t= hetter mudel
hest consensus sSet = CONSensus set
hest_errur := this _Brror

incremwment iterations

return best model, best consensus set, hest error

http://en.wikipedia.org/wiki/RANSAC



Parameters

k: Iteration times.

k o7 . .
n n: Selected points in one iteration.
1—p:@—w) Pbo!

p: Probability in k iteration selects
only inliers.

|Og (1 _ p) w: Probability of a point which is

a inlier.
log(1-w")

In general, the p is unknown. If we fixed p,
the k increased when n increased.

http://en.wikipedia.org/wiki/RANSAC



RANSAC for Image Alignment



RANSAC
RANSAC loop:

Randomly select a seed group of matches
Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-
compute least-squares estimate of
transformation on all of the inliers

P wnh e

 Keep the transformation with the largest
number of inliers



RANSAC example: Translation
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Putative matches




RANSAC example: Translation

Select one match, count inliers




RANSAC example: Translation

Select one match, count inliers




RANSAC example: Translation
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Select translation with the most inliers




Problem with RANSAC

e In many practical situations, the percentage of
outliers (incorrect putative matches) is often
very high (90% or above)

e Alternative strategy: Hough transform



RANSAC ° o
| O o ©
(RANdom SAmple Consensus) : ‘
Fischler & Bolles in ‘81. “ ‘
¢ O
o ©
@ ® 0
O O
O

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC ° o
o o ®
Line fitting example O
.‘:
o ©
@ ® 0
O .
.

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (#=
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

 Number of samples N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e )

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose 0 so that a good point with noise is likely (e.g., prob=0.95) within threshold
— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

proportion of outliers €

N =log(1-p)/ log (1—(1—9)8)

S 5% 10% 20% 25% 30% 40% 50%
2 2 3 ) 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 12
) 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 ) 9 26 44 (8 272 1177
For p =0.99

modified from M. Pollefeys



RANSAC conclusions
Good

e Robust to outliers

* Applicable for larger number of model parameters than
Hough transform

* Optimization parameters are easier to choose than Hough
transform

Bad

 Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting multiple fits

Common applications
 Computing a homography (e.g., image stitching)
e Estimating fundamental matrix (relating two views)



Alignment

* Alignment: find parameters of model that maps
one set of points to another

* Typically want to solve for a global transformation
that accounts for *most* true correspondences

* Difficulties
— Noise (typically 1-3 pixels)
— QOutliers (often 50%)
— Many-to-one matches or multiple objects



Example: solving for translation




Example: solving for translation

(to t)

Least squares solution B A t
1. Write down objective function X; — X, +|
2. Derived solution y_B y_A t
a) Compute derivative o ! g
b) Compute solution 1 0] X) =%
3. Computational solution 0 1pq | —¥
a) Write in form Ax=b P LX} :
b) Solve using pseudo-inverse or 1 07 [xP-x2
eigenvalue decomposition 0 1] ye—yr ]




Example: solving for translation

(to t)

Problem: outliers

RANSAC solution xB x A
1. Sample a set of matching points (1 pair) 'B = IA +

2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times



Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution ¥ B wA1 Tt

1. Initialize a grid of parameter values 3 A +

2. Each matched pair casts a vote for Yi Y. L
consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers



Example: solving for translation




ICP for Image Alighment



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}
3. Estimate transformation parameters

— e.g., least squares or robust least squares
4. Transform the points in {Set 1} using estimated parameters
5. Repeat steps 2-4 until change is very small



Example: aligning boundaries

Extract edge pixels p,..p,and q,..q,,

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches

5. Warp points p accordingto T
Repeat 3-5 until convergence




Example: solving for translation

(to t)

Problem: no initial guesses for correspondence

ICP solution ¥ B A t
1. Find nearest neighbors for each point 'B = 'A +

2. Compute transform using matches Yi Yi L
3. Move points using transform

4. Repeat steps 1-3 until convergence



Applications of Feature Matching



Scalability: Alignment to large databases

e What if we need to align a test image with
thousands or millions of images in a model
database?

— Efficient putative match generation

* Fast nearest neighbor search, inverted indexes
Test image

~
]

Model
database

~



Scalability of SIFT Matching



Scalability: Alignment to large databases

e What if we need to align a test image with
thousands or millions of images in a model
database?

— Efficient putative match generation

* Fast nearest neighbor search, inverted indexes

: AU AR - — = 2
Testimage & =S4 3, .
v | D. Nistér and H. Stewénius, Scalable

5 Recognition with a Vocabulary Tree,
tree with

Inverted
index

Database h."x


http://www.vis.uky.edu/~dnister/Publications/2006/VocTree/nister_stewenius_cvpr2006.pdf
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Descriptor space .

Slide credit: D. Nister



Hierarchical partitioning °
of descriptor space ° o ®

(vocabulary tree) O
Slide credit: D. Nister



Vocabulary tree/inverted index
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index | o
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



Model images

L

Populating the vocabulary tree/inverted index
Slide credit: D. Nister



3 IR A Q= A A a X LN
¢ g P AL =

Y LAl ey PO e e, oL |
AR e e

Model images Test image

Looking up a test image Slide credit: D. Nister



Indexing with geometric invariants

* A match between invariant descriptors can yield a transformation
hypothesis

iIndex




Indexing with geometric invariants

* A match between invariant descriptors can yield a transformation

hypothesis

index

test image
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Indexing with geometric invariants

When we don’t have feature descriptors, we can take n-tuples of
neighboring features and compute invariant features from their
geometric configurations

Application: searching the sky: http://www.astrometry.net/



http://www.astrometry.net/

Projective (Homography) Transformation



Beyond affine transformations

e Homography: plane projective transformation
(transformation taking a quad to another
arbitrary quad)

-||q .




Homography
e The transformation between two views of a
planar surface .

e The transformatlon between |mages from two
cameras that share the same center




Application: Panorama stitching




Fitting a homography

* Recall: homogenenous coordinates
o .
(z,y) = | y y | = (@/w,y/w)
1 | W
Converting to homogenenous Converting from homogenenous

Image coordinates Image coordinates



Fitting a homography

e Recall: homogeneous coordinates

7 T
(z,y) = | y y | = (@/w,y/w)
1 | W
Converting to homogeneous Converting from homogeneous
Image coordinates Image coordinates

e Equation for homography:




Fitting a homography

e Equation for homography:
X M M Dhg || X ﬂ,x: - H X
A yi’ = Moy Ty s |IY;
X:xHX. =0
_1_ RLTERLY 133__1_ ! !
] kT | [ T T |
X; N, X Yi hBXi _hZXi
yi [x|haxi [=] hix—x h;x,
T A A
_1_ _13Xi_ _XihZXi_yi hlxi_
B T T r T ]
0 — X yixi |(hy)
T T v T _ 3 equations,
X 0 Xi X N, |= 0 only 2 linearly
T T T i
__ yi’Xi Xi’Xi 0 _kqu independent




Direct linear transform

T T r T
0 X1 _ylxl

x;, 0" —x'x [h
N, |=0 Ah=0
0" x, -y x [hy

]
n
x 0" —x'x!

e H has 8 degrees of freedom (9 parameters, but
scale is arbitrary)

* One match gives us two linearly independent
equations

e Four matches needed for a minimal solution
(null space of 8x9 matrix)

e More than four: homogeneous least squares



RANSAC for Estimating Homography

RANSAC loop:

1. Select four feature pairs (at random)
<2. Compute homography H (exact)

3. Compute inliers where SSD(p;’, H py <¢

4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all
of the inliers



RANSAC
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Why “Recognising Panoramas”?

* 1D Rotations (0)
— Ordering = matching images

P )

Computational Photography, Alexei Efros, CMU, Fall 2005
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Why “Recognising Panoramas”?

* 1D Rotations (0)

e 2D Rotations (6, ¢)
— Ordering & matching images



Why “Recognising Panoramas”?

* 1D Rotations (0)
— Ordering = matching images
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e 2D Rotations (6, ¢)
— Ordering & matching images




Why “Recognising Panoramas”?

* 1D Rotations (0)

— Ordering = matching images

272 B o it 5
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e 2D Rotations (6, ¢)
— Ordering & matching images




“Recognising Panoramas”?




Overview of Image Alignment

* Feature Matching
* |[mage Matching
* Bundle Adjustment

 Multi-band Blending

Computational Photography, Alexei Efros, CMU, Fall 2005



RANSAC for Homography
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RANSAC for Homography
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Finding the panoramas




Finding the panoramas




Finding the panoramas




Finding the panoramas




Homography for Rotation

* Parameterise each camera by rotation and
focal length

0 —0;3 0
Rize[gilxa [0:]x = | 0;3 0 -0
—0i> 0;7 O
fi 0 0
Kf,;: 0) fz 0]
0 0 1

* This gives pairwise homographies

i, = H.i;, H

_ Tyo—1
ij o = K;R;R; K;

vJ



Bundle Adjustment

* New images initialised with rotation, focal
length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005



Bundle Adjustment

* New images initialised with rotation, focal
length of best matching image

Computational Photography, Alexei Efros, CMU, Fall 2005



Multi-band Blending

e Burt & Adelson 1983

— Blend frequency bands over range o«c A







Can we use homographies to create a 360
panorama?

* |In order to figure this out, we need to learn what a camera
IS



360 panorama




