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Deep Learning for Noise Reduction

To support noise reduction or obtain original image from

its noisy image (observed image), we can have two

approaches:

(a) learning the denoising function F;

(b) learning the noise image (residual image) n.

(1)  We can use deep network to learn the denoising
function F, after F is available, we can generate the 
original image X from the noisy image Y as: X = F(Y) 
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(2) We can use deep network to learn the noise image
(residual image) n, after n is available, we can obtain the
original image X from the noisy image Y as:

X = Y – n.



Deep Learning for Noise Reduction
The input of DnCNN is a noisy observation y = x + v.

Discriminative denoising models such as MLP and

CSF aim to learn a mapping function

F(y) = x

to predict the latent clean image.

For DnCNN, we adopt the residual learning

formulation to train a residual mapping

R(y) ≈ v

and then we have

x = y −R(y)



Deep Learning for Noise Reduction

The objective function for learning the denoising function F is defined as: 

The objective function for learning the residual image n is defined as: 
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The problem of denoising can be considered as a 
designing task in which an appropriate filter is 
constructed to remove the noise. This view aligns well 
with CNN in which a combination of filters in different 
layers is learned through real examples. The nonlinear 
property of the overall filter lends itself to complex 
distributions, which otherwise are hard to design. 

The denoising function F depends on the noise level
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The objective here is to determine the function F that

creates the closest image to 𝑋 from noisy image 𝑌. The

denoising function 𝐹 can be considered as a nonlinear

filter whose coefficients are not known but can be learned

through training images. In this study, convolutional

neural networks are used to learn such a filter. The

denoising convolutional neural network is a modified CNN

whose its parameters, e.g. weights and biases should be

learned and calculated with the backpropagation training.
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The network for denoising consists of four layers. Each of these layers consists of a

number of convolution filters followed by an activation layer.

The loss function is calculated at the end of every feed-forward step to update the

parameters (weights and biases). The number of feature maps that are used from

the first to the last layer is 64, 32, 32, and 1 respectively. The size of all

convolutional filters is 9 × 9. The input of the network is the low-dose noisy image

(𝑌), that passes through some convolutional layers to extract sets of feature maps

to produce a denoised image (𝑌). Hence, a number of feature maps, which require

going through the activation function, form the first convolutional layer. The

subsequent convolutional layers receive the output of the previous layer then pass

its results through activation functions for nonlinear processing to make higher-

level feature maps in order to create a corresponding noise free image. As a result,

the network trained hierarchically structured feature maps from low-level (blobs,

edges, etc.) to high-level (more complex and detailed shapes). Moreover, we came

up with a pre-train convolutional network, which can be used as a transfer

learning.



De-Mosaicking
Demosaicking and denoising are among the most crucial 
steps of modern digital camera pipelines and their joint 
treatment is a highly ill-posed inverse problem where at-
least two-thirds of the information are missing and the 
rest are corrupted by noise. This poses a great challenge in 
obtaining meaningful reconstructions and a special care 
for the efficient treatment of the problem is required. 
While there are several machine learning approaches that 
have been recently introduced to deal with joint image 
demosaicking-denoising. 



De-Mosaicking
Due to the modular nature of the camera processing 
pipelines, demosaicking and denoising were traditionally 
dealt in the past in a sequential manner. In detail, 
demosaicking algorithms reconstruct the image from 
unreliable spatially-shifted sensor data which introduce 
non-linear pixel noise, casting denoising an even harder 
problem.

To solve the joint demosaicking-denoising problem, one

of the most frequently used approaches in the literature

relies on the following linear observation model
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Recovering x from the measurements y belongs to the

broad class of linear inverse problems. For the problem

under study, the operator M is clearly singular. This fact

combined with the presence of noise perturbing the

measurements leads to an ill-posed problem where a

unique solution does not exist. One popular way to deal

with this, is to adopt a Bayesian approach and seek for the

Maximum A Posteriori (MAP) estimator



Demosaicking is further complicated by the presence of 
noise. Estimates of edge orientation in noisy data are less 
reliable which leads to noticeable artifacts in the 
demosaicked image. The techniques that perform these 
steps sequentially usually start with denoising. Recent 
attempts have shown the advantages of joint approaches. 

Jeon and Dubois [2013] optimize a set of filters for discrete 
noise levels. Heide et al [2014] use a global primal-dual 
optimization with a self-similarity prior. The nearest 
neighbor search and the iterative nature of the algorithm 
makes it slow and somewhat impractical. 



Demosaicking and denoising have traditionally been 
addressed using nonlinear filter design, incorporating 
prior heuristics about interand intra-channel correlation, 
behavior around edges, and exploiting intra-image patch 
similarity. 

A convolutional network seems a natural choice for the 
problem in this context. First, it enables discovery of 
natural correlations in the data. Second, the network 
can represent a superset of the pipelines implemented 
by many previous techniques while all its parameters 
are optimized jointly to minimize a single objective.



We cast joint denoising and demosaicking as a supervised 
learning problem: we train our algorithm on a set of input 
measurements for which the desired output is known. We 
create the training set from millions of sRGB images, 
generating the corresponding mosaicked arrays by leaving 
out two color channels per pixel and adding noise. We 
then build a convolutional neural network and train it in an 
end-to-end fashion. The inputs are the mosaicked array M 
with a single channel per pixel and an estimate σ of the 
noise level; the output is an image O of the same size with 
a RGB triplet per pixel. We start our exposition focusing on 
demosaicking and then discuss noise.



The first layer of the network packs 2 × 2 blocks in the 
Bayer image into a 4D vector to restore translation 
invariance and speed up the processing. We augment each 
vector with the noise parameter σ to form 5D vectors. 

A series of convolutional layers filter the image to 
interpolate the missing color values. We finally unpack the 
12 color samples back to the original pixel grid and 
concatenate a masked copy of the input mosaick. We 
linearly combine them to produce the demosaicked output. 









Conventional pipelines for capturing, displaying, and 
storing images are usually defined as a series of 
cascaded modules, each responsible for addressing a 
particular problem. While this divide-and-conquer 
approach offers many benefits, it also introduces a 
cumulative error, as each step in the pipeline only 
considers the output of the previous step, not the 
original sensor data. 

An end-to-end solution is to jointly consider the steps 
like demosaicking, denoising, deconvolution, and so 
forth, all directly in a given output representation (e.g., 
YUV, DCT). 



Addressing subproblems separately does not yield the best-quality 
reconstructions, especially for complex image formation models. 
Recently, a number of researchers have identified this problem, and 
proposed joint solutions to several subproblems



Due to the linear nature of these optical processes, the image transformation can be 
expressed as a matrix B operating on the image vector. We subsume these transformations 
in a matrix A, and express our observation model as

Our goal is to find the underlying latent image x from the (usually) sparse and noisy 
observations z. Given the Gaussian noise model, this can be achieved with a standard l2 
minimization.


