Local Image Features

Jianping Fan Department of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html

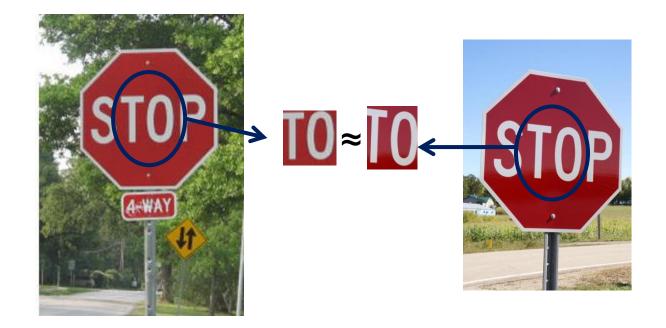
Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

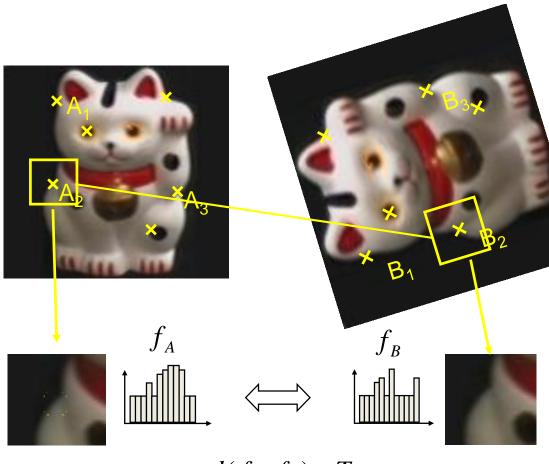
Project 2: Local Feature Matching CS 143: Introduction to Computer Vision

This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images



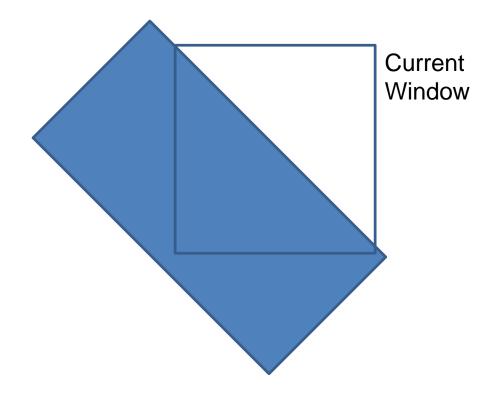
Overview of Keypoint Matching



 $d(f_A, f_B) < T$

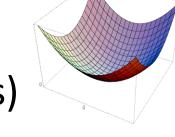
- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

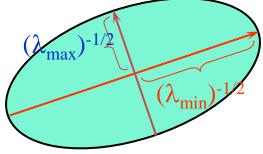
- Can't we just check for regions with lots of gradients in the x and y directions?
 - No! A diagonal line would satisfy that criteria



Review: Harris corner detector

- Approximate distinctiveness by local auto-correlation.
- Approximate local auto-correlation by second moment matrix
- Quantify distinctiveness (or cornerness) as function of the eigenvalues of the second moment matrix.
- But we don't actually need to compute the eigenvalues by using the determinant and trace of the second moment matrix.







Harris Detector [Harris88]

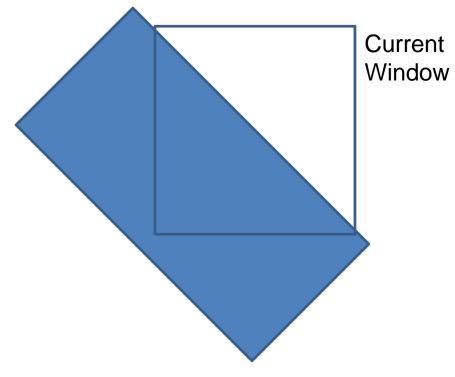
• Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
1. Image derivatives (optionally, blur first)
$$det M = \lambda_{1}\lambda_{2}$$
trace $M = \lambda_{1} + \lambda_{2}$
3. Gaussian filter $g(\sigma_{I})$
4. Cornerness function – both eigenvalues are strong

har

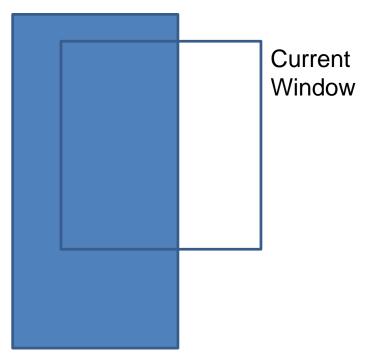
$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression



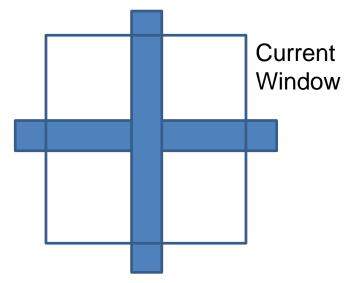
• What does the structure matrix look here?

$$\begin{bmatrix} C & -C \\ -C & C \end{bmatrix}$$



• What does the structure matrix look here?

$$\begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}$$

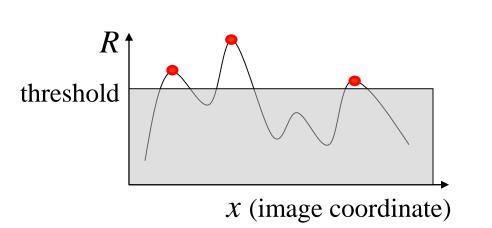


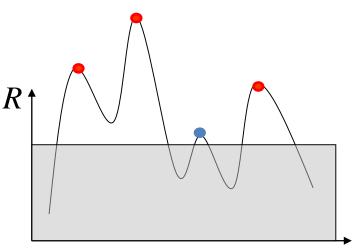
• What does the structure matrix look here?

$$\begin{bmatrix} C & 0 \\ 0 & C \end{bmatrix}$$

Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

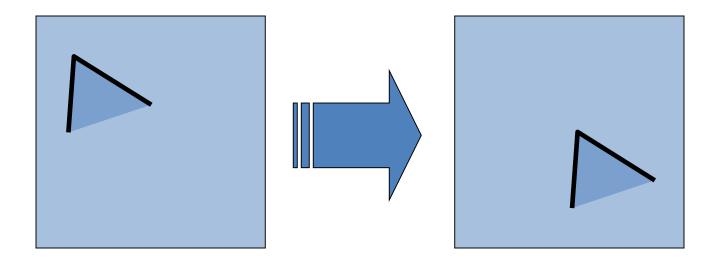




x (image coordinate)

Partially invariant to affine intensity change

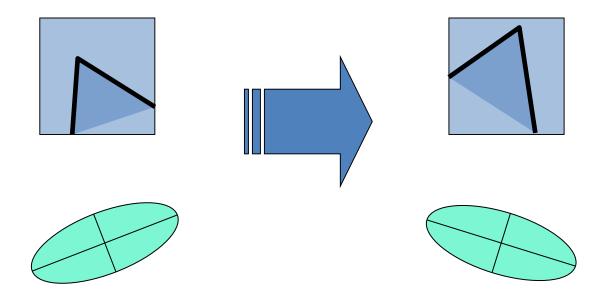
Image translation



· Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

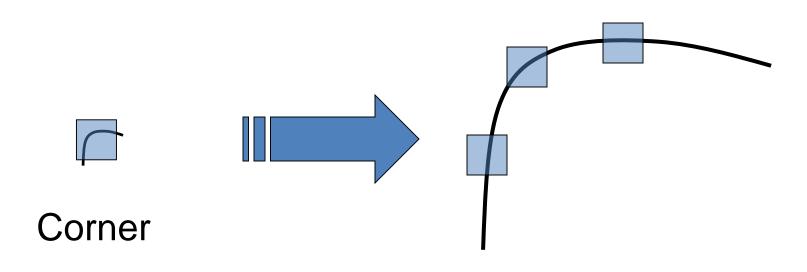
Image rotation



Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

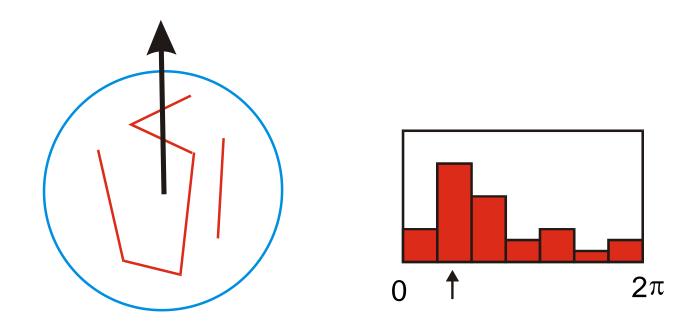


All points will be classified as edges

Corner location is not covariant to scaling!

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation



[Lowe, SIFT, 1999]

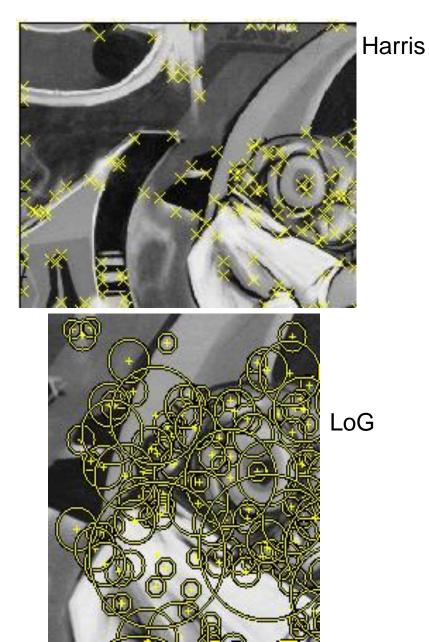
Maximally Stable Extremal Regions [Matas '02]

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

Example Results: MSER



Comparison



Hessian

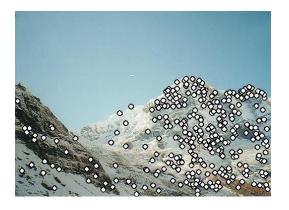
MSER

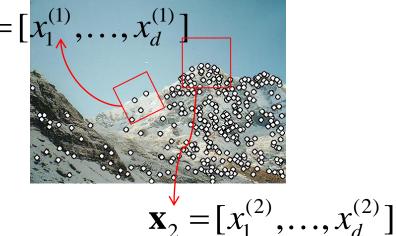
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ x_d \end{bmatrix}$

3) Matching: Determine correspondence between descriptors in two views





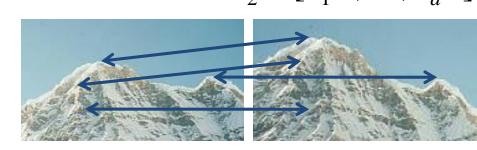


Image representations

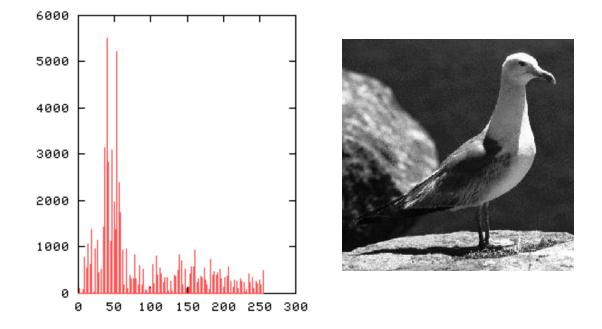
• Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Image Representations: Histograms



Global histogram

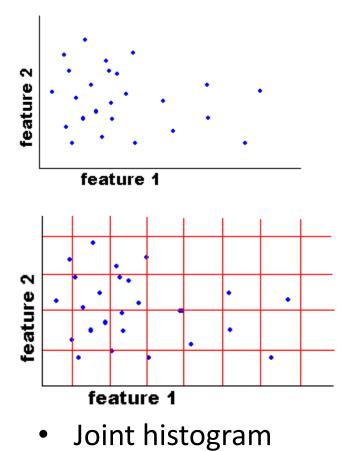
• Represent distribution of features

- Color, texture, depth, ...

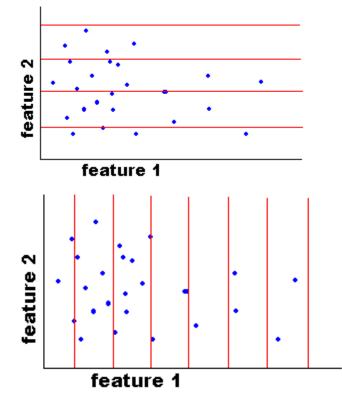
Images from Dave Kauchak

Image Representations: Histograms

Histogram: Probability or count of data in each bin



- Requires lots of data
- Loss of resolution to avoid empty bins



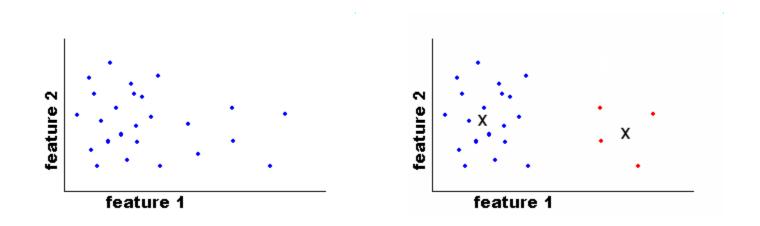
Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Images from Dave Kauchak

Image Representations: Histograms

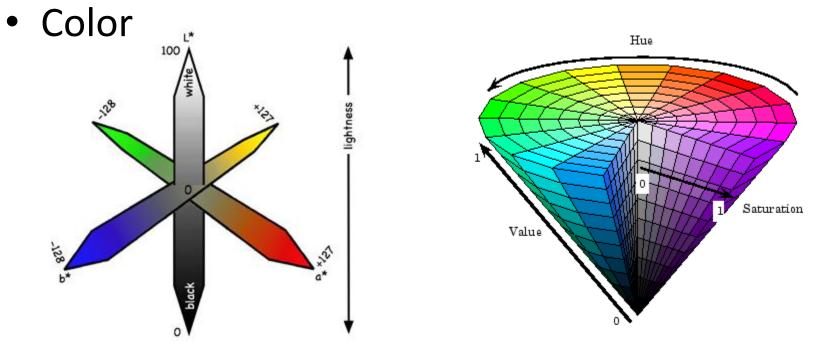
Clustering



Use the same cluster centers for all images

Images from Dave Kauchak

What kind of things do we compute histograms of?



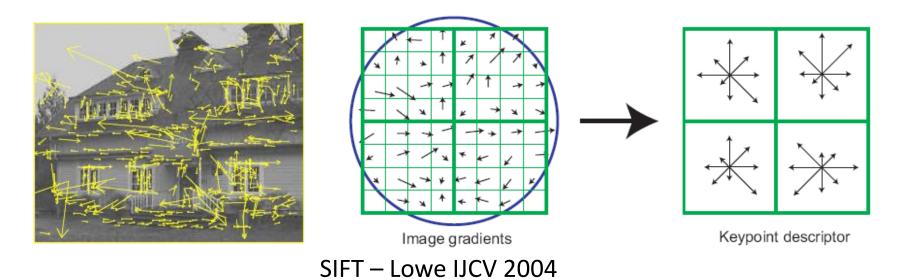
L*a*b* color space

HSV color space

• Texture (filter banks or HOG over regions)

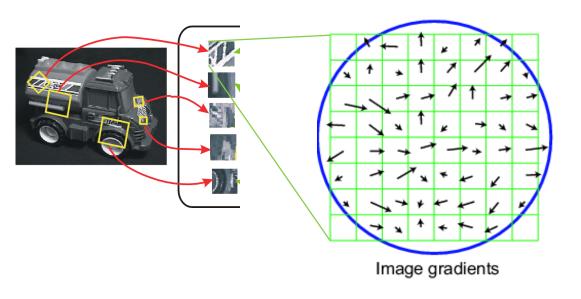
What kind of things do we compute histograms of?

• Histograms of oriented gradients



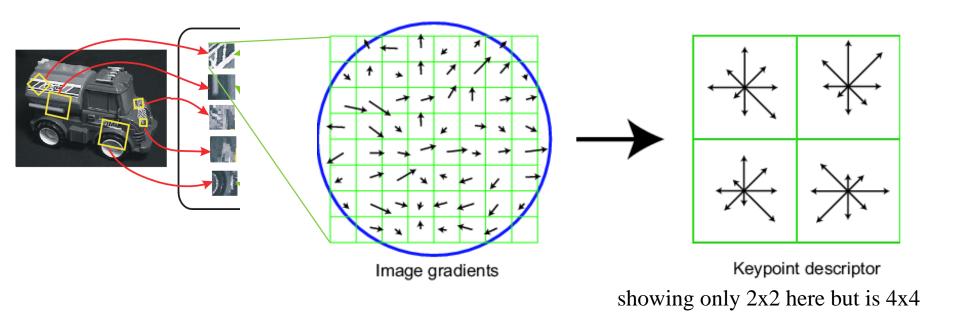
SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)



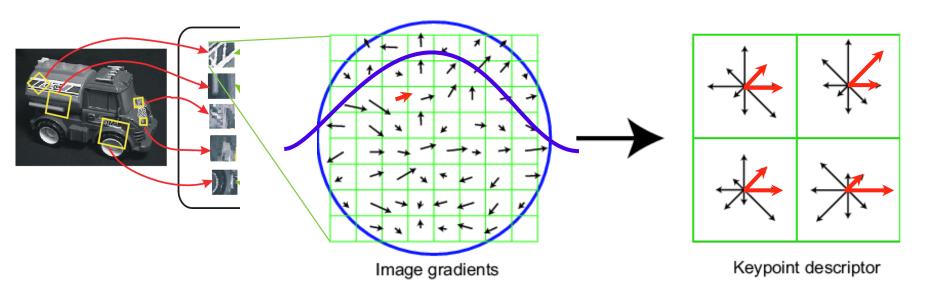
SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.



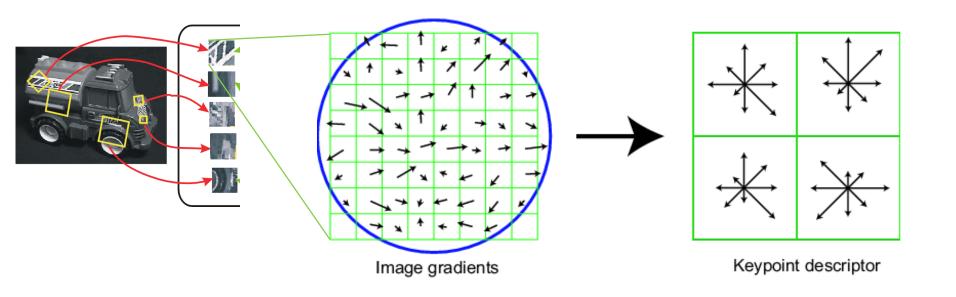
Ensure smoothness

- Gaussian weight
- Interpolation
 - a given gradient contributes to 8 bins:4 in space times 2 in orientation

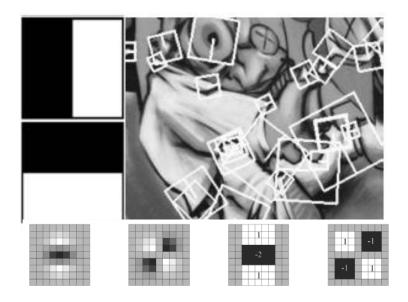


Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize



Local Descriptors: SURF



Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images ⇒ 6 times faster than SIFT Equivalent quality for object identification

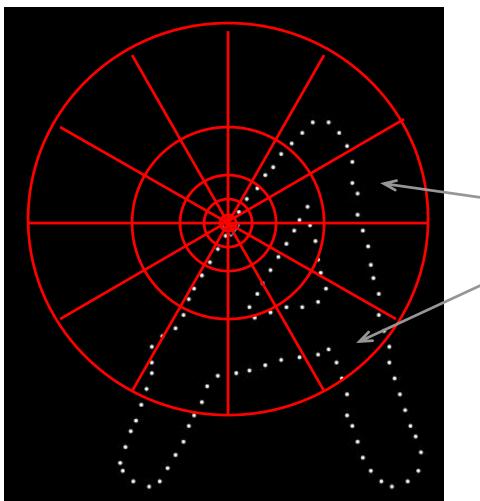
GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

Local Descriptors: Shape Context



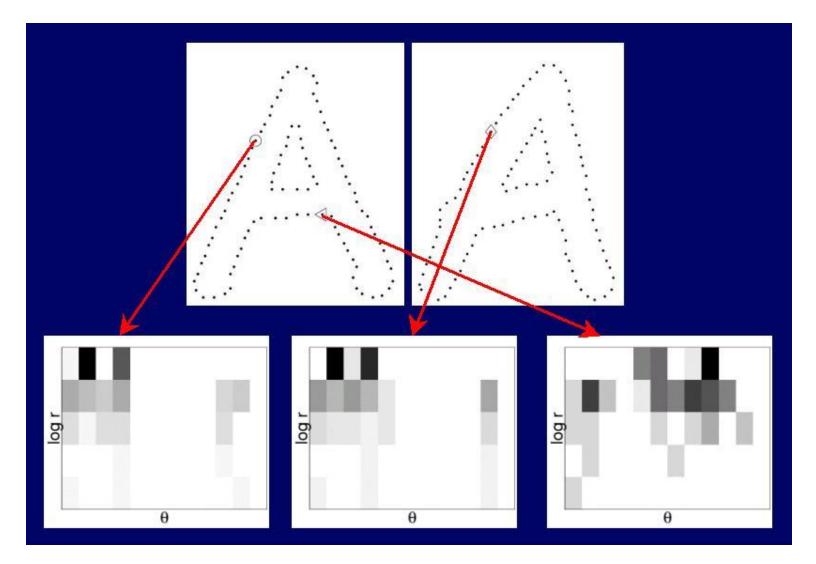
Count the number of points inside each bin, e.g.:

Count = 4 : Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001

Shape Context Descriptor

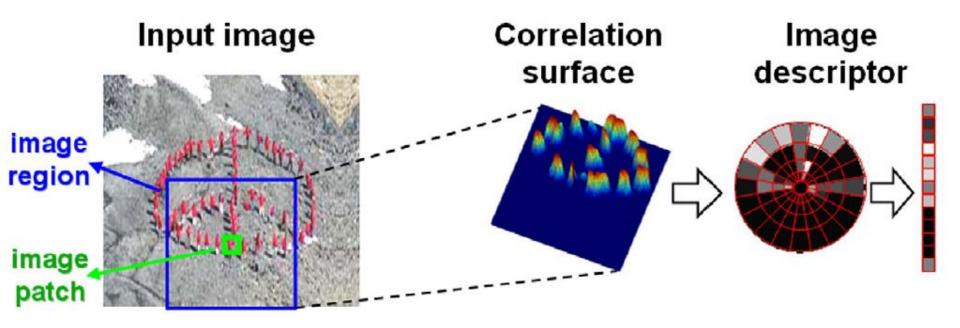


Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

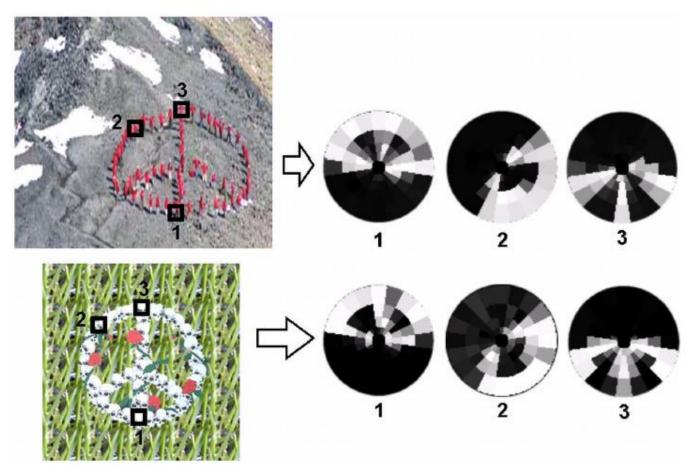
Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



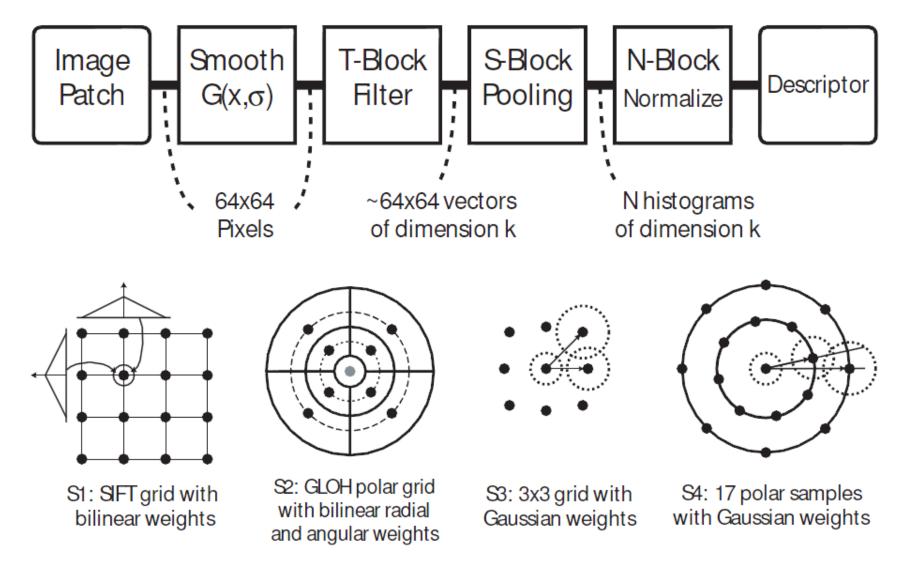
Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, 2007



Local Descriptors

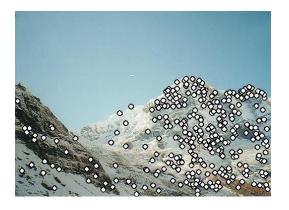
- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

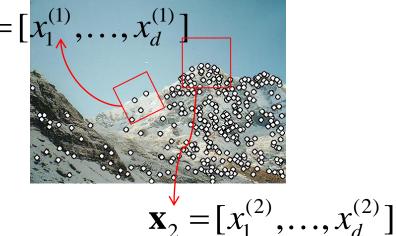
Local features: main components

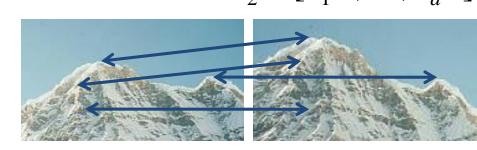
1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ x_d \end{bmatrix}$

3) Matching: Determine correspondence between descriptors in two views

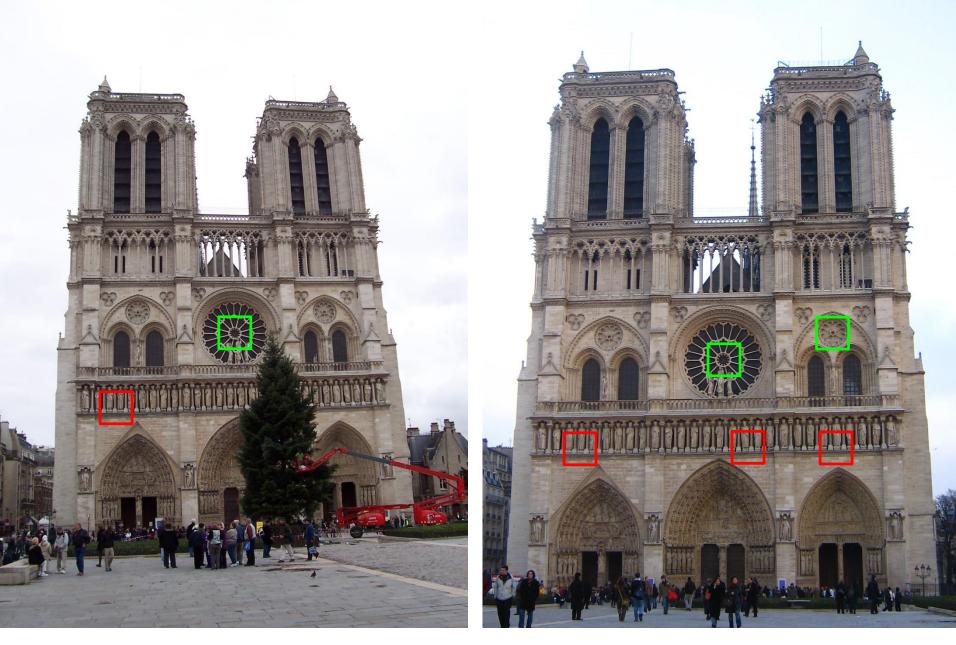






Matching

- Simplest approach: Pick the nearest neighbor. Threshold on absolute distance
- Problem: Lots of self similarity in many photos



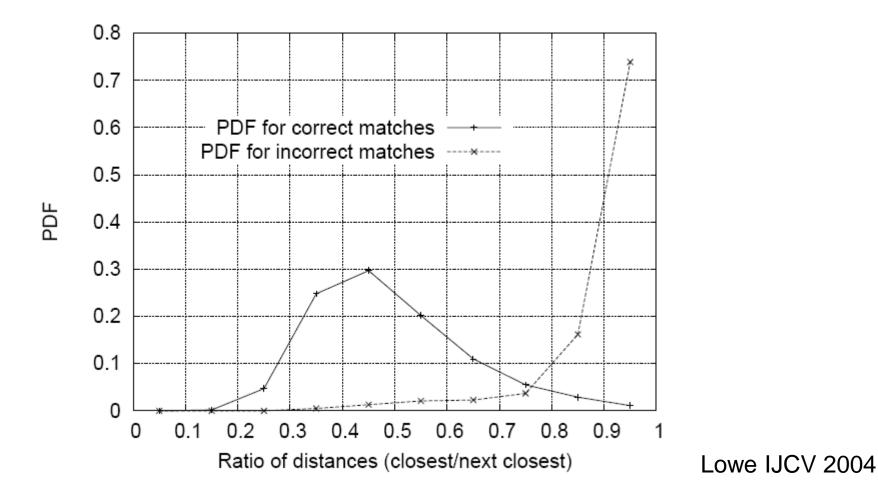
Distance: 0.34, 0.30, 0.40 Distance: 0.61 Distance: 1.22

Nearest Neighbor Distance Ratio

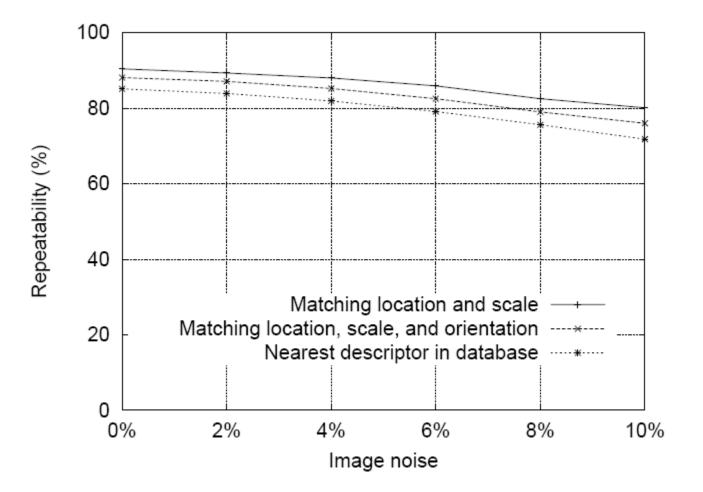
- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio puts matches in order of confidence.

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

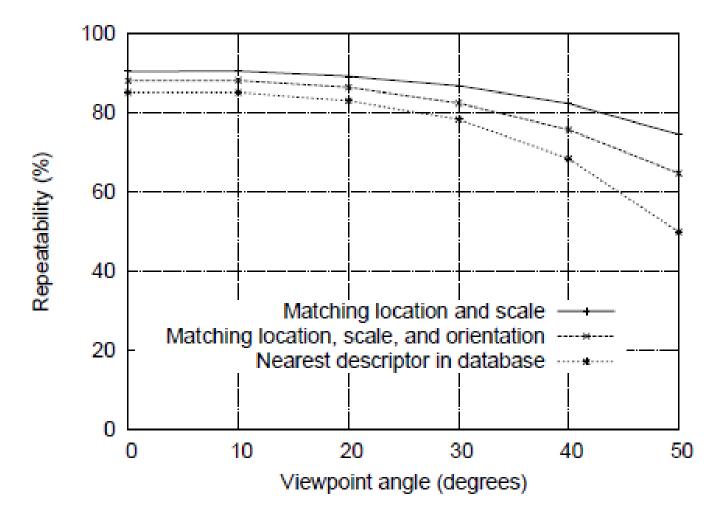


SIFT Repeatability

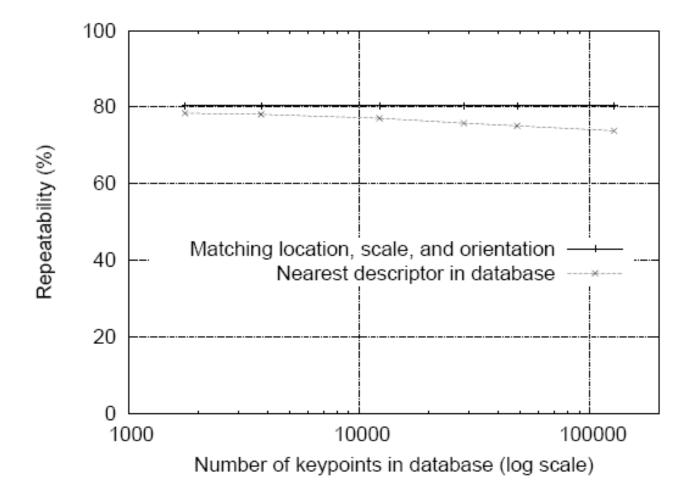


Lowe IJCV 2004

SIFT Repeatability



SIFT Repeatability



Lowe IJCV 2004

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

	1			Rotation	Scale	Affine		Localization		
Feature Detector	Corner	Blob	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	\checkmark			\checkmark			+++	+++	+++	++
Hessian	1		ļ	\checkmark			++	++	++	+
SUSAN	\sim		ļ	\checkmark			++	++	++	+++
Harris-Laplace	\checkmark	(√)		\checkmark	\checkmark		+++	+++	++	+
Hessian-Laplace	()		ļ	\checkmark	\checkmark		+++	+++	+++	+
DoG	()		ļ	\checkmark	\checkmark		++	++	++	++
SURF	()			\checkmark	\checkmark		++	++	++	+++
Harris-Affine	\checkmark	(√)		\checkmark	\checkmark	\checkmark	+++	+++	++	++
Hessian-Affine	()		ļ	\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	()	\checkmark	ļ	\checkmark	\checkmark	()	+	+	++	+
Edge-based	\checkmark			\checkmark	\checkmark	\checkmark	+++	+++	+	+
MSER	[\checkmark	\checkmark	\checkmark	\checkmark	+++	+++	++	+++
Intensity-based	1		\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	()	()	+	+	+	+

Tuytelaars Mikolajczyk 2008

Choosing a descriptor

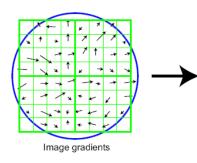
• Again, need not stick to one

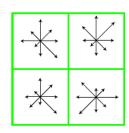
For object instance recognition or stitching,
 SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT





Keypoint descriptor