Interest Points for Image Representation

Jianping Fan Dept of Computer Science UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Corner Point Detection ----Harris Corner Detector

What edge image can tell us?

Object Boundaries \& Structures

What edge image can tell us?

Object Boundaries \& Structures

Corner Points on Edge

Polygon Approximation for Edge Representation

What edge image can tell us?

Image

Edge Image

Object Boundaries \& Surfaces

Interest Points
 (Corner Points)

Image Representation

Corner Points on Edge

More Compact Image Representation via Corners

Harris Detector: Intuition

"flat" region:
no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corner Detector

- Shift in any direction would result in a significant change at a corner.

flat

edge

Algorithm:
-Shift in horizontal, vertical, and diagonal directions by one pixel.
-Calculate the absolute value of the MSE for each shift.

- Take the minimum as the cornerness response.

How to define \& calculate cornerness response?

Harris Detector: Mathematics

Change of intensity for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Neighborhood pattern, weights,

Harris Detector: Mathematics

Apply Taylor series expansion of Intensity Change:

$$
\begin{aligned}
& E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2} \\
& =\sum_{x, y} w(x, y)\left[I_{x} u+I_{y} v+O\left(u^{2}, v^{2}\right)\right]^{2} \\
& E(u, v)=A u^{2}+2 C u v+B v^{2} \\
& A=\sum_{x, y} w(x, y) I_{x}^{2}(x, y) \quad E(u, v)=\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
A & C \\
C & B
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& B=\sum_{x, y} w(x, y) I_{y}^{2}(x, y) \\
& C=\sum_{x, y} w(x, y) I_{x}(x, y) I_{y}(x, y)
\end{aligned}
$$

Harris Detector: Mathematics

- Hessian Matrix

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Harris Detector: Mathematics

For small shifts $[u, v]$ we have the following approximation:

$$
E(u, v) \cong[u, v] \quad M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Corner Detection: Mathematics

Local quadratic approximation of $E(u, v)$ in the neighborhood of (0,0) is given by the second-order Taylor expansion:

$$
\begin{array}{cc}
E(u, v) \approx E(0,0)+\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{c}
E_{u}(0,0) \\
E_{v}(0,0)
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
u & v]
\end{array}\left[\begin{array}{ll}
E_{u u}(0,0) & E_{u v}(0,0) \\
E_{u v}(0,0) & E_{v v}(0,0)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]\right. \\
\text { Always } 0 & E(u, v) \\
& \begin{array}{c}
\text { First } \\
\text { derivative } \\
\text { is } 0
\end{array} \\
\end{array}
$$

Corner Detection: Mathematics

The quadratic approximation simplifies to

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a second moment matrix computed from image derivatives:

$$
\begin{gathered}
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \\
M=\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}
\end{gathered}
$$

Corners as distinctive interest points

$$
M=\sum w(x, y)\left[\begin{array}{ll}
I_{x} I_{x} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y} I_{y}
\end{array}\right]
$$

2×2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

$$
I_{x} \Leftrightarrow \frac{\partial I}{\partial x}
$$

$$
I_{y} \Leftrightarrow \frac{\partial I}{\partial y}
$$

$$
I_{x} I_{y} \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}
$$

Interpreting the second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form. Let's try to understand its shape.

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{gathered}
$$

Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v): \quad\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const
This is the equation of an ellipse.

Selecting Good Features

Selecting Good Features

Image patch

Selecting Good Features

Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

$$
E(u, v) \cong[u, v] \quad M\left[\begin{array}{l}
u \\
v
\end{array}\right] \quad \lambda_{1}, \lambda_{2} \text {-eigenvalues of } M
$$

> direction of the
> fastest change

Ellipse $E(u, v)=$ const

Harris Detector: Mathematics

Classification of image points using eigenvalues of M :

Harris corner detector

Measure of cornerness response R:

$$
\begin{gathered}
R=\operatorname{det} M-k(\operatorname{trace} M)^{2} \\
\operatorname{det} M=\lambda_{1} \lambda_{2} \\
\operatorname{trace} M=\lambda_{1}+\lambda_{2}
\end{gathered}
$$

(k - empirical constant, $k=0.04-0.06$)

No need to compute eigenvalues explicitly!

Eliminate small responses.

Find local maxima of the remaining.

Harris Detector: Scale

Harris corner detector algorithm

- Compute image gradients $I_{x} I_{y}$ for all pixels
- For each pixel
- Compute

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

by looping over neighbors x, y

- compute

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

- Find points with large corner response function R ($R>$ threshold)
- Take the points of locally maximum R as the detected feature points (ie, pixels where R is bigger than for all the 4 or 8 neighbors).

Key Steps for Harris Detector

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x 2}=I_{x} \cdot I_{x} \quad I_{y 2}=I_{y} \cdot I_{y} \quad I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x 2}=G_{\sigma^{\prime}} * I_{x 2} \quad S_{y 2}=G_{\sigma \prime} * I_{y 2} \quad S_{x y}=G_{\sigma^{\prime}} * I_{x y}
$$

4. Define at each pixel (x, y) the matrix

$$
H(x, y)=\left[\begin{array}{cc}
S_{x 2}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y 2}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{Det}(H)-k(\operatorname{Trace}(H))^{2}
$$

6. Threshold on value of R. Compute nonmax suppression.
\mathbf{R} is the cornerness response, corner points with local maximum of \mathbf{R}

Summary of Harris Detector

- Determinant of Matrix

In the case of a 2×2 matrix the determinant may be defined as
$|A|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.

$$
\begin{aligned}
|A| & =\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|= \\
& =a e i+b f g+c d h-c e g-b d i-a f h
\end{aligned}
$$

- Trace of Matrix

Let \mathbf{A} be a matrix and its $\operatorname{trace} \operatorname{tr}(\mathbf{A})$

$$
\mathbf{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \longmapsto \operatorname{tr}(\mathbf{A})=\sum_{i=1}^{3} a_{i i}=a_{11}+a_{22}+a_{33}
$$

Selecting Good Features

- What's a "good feature"?
- Satisfies brightness constancy-looks the same in both images
- Has sufficient texture variation
- Does not have too much texture variation
- Corresponds to a "real" surface patch—see below:

- Does not deform too much over time

Properties of Corner Points

- Rotation invariance
- Partial invariance to affine intensity change
- But: non-invariant to image scale!

Harris Detector: Some Properties

- Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response \boldsymbol{R} is invariant to image rotation

Harris Detector: Some Properties

- Partial invariance to affine intensity change
\checkmark Only derivatives are used $=>$ invariance to intensity shift $I \rightarrow I+b$
\checkmark Intensity scale: $I \rightarrow$ a I

Harris Detector: Some Properties

- But: non-invariant to image scale!

All points will be classified as edges

Harris Detector: Some Properties

- Quality of Harris detector for different scale changes

Repeatability rate:
\# correspondences \# possible correspondences

C.Schmid et.al. "Evaluation of Interest Point Detectors". IJCV 2000

Additional Invariances for Representation

- Scale Invariance
- Affine Invariance

Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Scale Invariant Detection

- The problem: how do we choose corresponding circles independently in each image?

Scale Invariant Detection

- Solution:
- Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

- For a point in one image, we can consider it as a function of region size (circle radius)

Scale Invariant Detection

- Common approach:

Take a local maximum of this function

Observation: region size, for which the maximum is achieved, should be invariant to image scale.

Characteristic Scale

Ratio of scales corresponds to a scale factor between two images

Scale Invariant Detection

- A "good" function for scale detection: has one stable sharp peak

- For usual images: a good function would be a one which responds to contrast (sharp local intensity change)

Scale Invariant Detection

- Functions for determining scale

$f=$ Kernel $*$ Image

Kernels:

$L=\sigma^{2}\left(G_{x x}(x, y, \sigma)+G_{y y}(x, y, \sigma)\right)$
(Laplacian)
$D o G=G(x, y, k \sigma)-G(x, y, \sigma)$
(Difference of Gaussians)
where Gaussian

$$
G(x, y, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

L or DoG kernel is a matching filter. It finds blob-like structure. It turns out to be also successful in getting characteristic scale of other structures, such as corner regions.

Difference-of-Gaussians

Scale-Space Extrema

- Choose all extrema within $3 \times 3 \times 3$ neighborhood.

X is selected if it is larger or smaller than all 26 neighbors

Affine Invariant Detection

- Above we considered:

Similarity transform (rotation + uniform scale)

- Now we go on to:

Affine transform (rotation + non-uniform scale)

Affine Invariant Detection

- Take a local intensity extremum as initial point
- Go along every ray starting from this point and stop when extremum of function f is reached

$$
f(t)=\frac{\left|I(t)-I_{0}\right|}{\frac{1}{t} \int_{o}^{t}\left|I(t)-I_{0}\right| d t}
$$

T.Tuytelaars, L.V.Gool. "Wide Baseline Stereo Matching Based on Local, Affinely Invariant Regions". BMVC 2000.

Affine Invariant Detection

- Such extrema occur at positions where intensity suddenly changes compared to the intensity changes up to that point.
- In theory, leaving out the denominator would still give invariant positions. In practice, the local extrema would be shallow, and might result in inaccurate positions.

T.Tuytelaars, L.V.Gool. "Wide Baseline Stereo Matching Based on Local, Affinely Invariant Regions". BMVC 2000.

Affine Invariant Detection

- The regions found may not exactly correspond, so we approximate them with ellipses
- Find the ellipse that best fits the region

Affine Invariant Detection

- Covariance matrix of region points defines an ellipse:

($p=[x, y]^{\top}$ is relative to the center of mass)

$$
\Sigma_{2}=A \Sigma_{1} A^{T}
$$

Ellipses, computed for corresponding regions, also correspond!

Affine Invariant Detection

- Algorithm summary (detection of affine invariant region):
- Start from a local intensity extremum point
- Go in every direction until the point of extremum of some function f
- Curve connecting the points is the region boundary
- Compute the covariance matrix
- Replace the region with ellipse

T.Tuytelaars, L.V.Gool. "Wide Baseline Stereo Matching Based on Local, Affinely Invariant Regions". BMVC 2000.

Affine Invariant Detection

- Maximally Stable Extremal Regions
- Threshold image intensities: I> Io
- Extract connected components ("Extremal Regions")
- Find "Maximally Stable" regions
- Approximate a region with an ellipse

J.Matas et.al. "Distinguished Regions for Wide-baseline Stereo". Research Report of

Affine Invariant Detection : Summary

- Under affine transformation, we do not know in advance shapes of the corresponding regions
- Ellipse given by geometric covariance matrix of a region robustly approximates this region
- For corresponding regions ellipses also correspond

Methods:

1. Search for extremum along rays [Tuytelaars, Van Gool]:
2. Maximally Stable Extremal Regions [Matas et.al.]

Affine Invariant Descriptors

- Find affine normalized frame

$$
\Sigma_{1}=\left\langle p p^{T}\right\rangle
$$

$$
\Sigma_{2}=\left\langle q q^{T}\right\rangle
$$

- Compute rotational invariant descriptor in this normalized frame
J.Matas et.al. "Rotational Invariants for Wide-baseline Stereo". Research Report of CMP, מחתח

Affine covariant regions

Question

Why invariant properties are important/attractive for image representation?

Keypoints and SIFT
 (Scale Invariant Feature Transform)

Keypoints \& SIFT Descriptors

Keypoint \& SIFT Descriptor

- 16×16 Gradient window is taken. Partitioned into 4×4 subwindows.
- Histogram of 4×4 samples in 8 directions
- Gaussian weighting around center(σ is 0.5 times that of the scale of a keypoint)
- $4 \times 4 \times 8=128$

Image gradients

Keypoint descriptor

Keypoints \& SIFT Descriptors

Scale-space Extrema Detection

- DoG images are grouped by octaves (i.e., doubling of σ_{0})
- Fixed number of levels per octave

Scale space images

first octave

second octave

third octave

fourth octave

Difference-of-Gaussian images

first octave

second octave

third octave

fourth octave

Scale-space extrema detection

- Find the points, whose surrounding patches (with some scale) are distinctive
- An approximation to the scale-normalized Laplacian of Gaussian

$$
\begin{gathered}
L(x, y, \sigma)=G(x, y, \sigma) * I(x, y) \\
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}} \\
\begin{aligned}
D(x, y, \sigma) & =(G(x, y, k \sigma)-G(x, y, \sigma)) * I(x, y) \\
& =L(x, y, k \sigma)-L(x, y, \sigma) .
\end{aligned}
\end{gathered}
$$

Scale-space Extrema Detection

Choosing SIFT parameters

- Parameters (i.e., scales per octave, σ_{0} etc.) can be chosen experimentally based on keypoint (i) repeatability, (ii) localization, and (iii) matching accuracy.
- In Lowe's paper:
- Keypoints extracted from 32 real images (outdoor, faces, aerial etc.)
- Images were subjected to a wide range of transformations (i.e., rotation, scaling, shear, change in brightness, noise).

Scale-space Extrema Detection

Scale-space Extrema Detection (cont'd)

- Extract local extrema (i.e., minima or maxima) in DoG pyramid. -Compare each point to its $\mathbf{8}$ neighbors at the same level, $\mathbf{9}$ neighbors in the level above, and $\mathbf{9}$ neighbors in the level below (i.e., 26 total).

Scale-space extrema detection

- Goal: Identify locations and scales that can be repeatably assigned under different views of the same scene or object.
- Method: search for stable features across multiple scales using a continuous function of scale.
- Prior work has shown that under a variety of assumptions, the best function is a Gaussian function.
- The scale space of an image is a function $L(x, y, \sigma)$ that is produced from the convolution of a Gaussian kernel (at different scales) with the input image.

Aside: Image Pyramids

And so on.
$3^{\text {rd }}$ level is derived from the $2^{\text {nd }}$ level according to the same funtion
$2^{\text {nd }}$ level is derived from the original image according to some function

Bottom level is the original image.

Aside: Mean Pyramid

And so on.

At $3^{\text {rd }}$ level, each pixel is the mean of 4 pixels in the $2^{\text {nd }}$ level.

At $2^{\text {nd }}$ level, each pixel is the mean of 4 pixels in the original image.

Bottom level is the original image.

Aside: Gaussian Pyramid

 At each level, image is smoothed and reduced in size.

And so on.

At $2^{\text {nd }}$ level, each pixel is the result of applying a Gaussian mask to the first level and then subsampling to reduce the size.

Bottom level is the original image.

1. Keypoint Localization (Detection)

- Determine the location and scale of keypoints to sub-pixel and sub-scale accuracy by fitting a 3D quadratic polynomial:

$$
X_{i}=\left(x_{i}, y_{i}, \sigma_{i}\right) \quad \begin{aligned}
& \text { keypoint } \\
& \text { location }
\end{aligned}
$$

$$
\Delta X=\left(x-x_{i}, y-y_{i}, \sigma-\sigma_{i}\right) \quad \text { offset }
$$

$$
X_{i} \leftarrow X_{i}+\Delta X \quad \begin{aligned}
& \text { sub-pixel, sub-scale } \\
& \text { Estimated location }
\end{aligned}
$$

Substantial improvement to matching and stability!

1. Keypoint Localization (Detection)

- Use Taylor expansion to locally approximate $D(x, y, \sigma)$ (i.e., DoG function) and estimate Δx :

$$
D(\Delta X)=D\left(X_{i}\right)+\frac{\partial D^{T}\left(X_{i}\right)}{\partial \mathrm{X}} \Delta \mathrm{X}+\frac{1}{2} \Delta \mathrm{X}^{T} \frac{\partial^{2} D\left(X_{i}\right)}{\partial \mathrm{X}^{2}} \Delta \mathrm{X}
$$

- Find the extrema of $D(\Delta X)$:

$$
\frac{\partial D\left(X_{i}\right)}{\partial X}+\frac{\partial^{2} D\left(X_{i}\right)}{\partial X^{2}} \Delta X=0
$$

1. Keypoint Localization (Detection)

$$
\frac{\partial^{2} D\left(X_{i}\right)}{\partial X^{2}} \Delta X=-\frac{\partial D\left(X_{i}\right)}{\partial X} \rightarrow \Delta X=-\frac{\partial^{2} D^{-1}\left(X_{i}\right)}{\partial X^{2}} \frac{\partial D\left(X_{i}\right)}{\partial X}
$$

- ΔX can be computed by solving a $3 x 3$ linear system:

If $\Delta X>0.5$ in any dimension, repeat.

1. Keypoint Localization (Detection)

- Reject keypoints having low contrast.
- i.e., sensitive to noise

If $\left|D\left(X_{i}+\Delta X\right)\right|<0.03$ reject keypoint

- i.e., assumes that image values have been normalized in $[0,1]$

1. Keypoint Localization (Detection)

- Reject points lying on edges (or being close to edges)
- Harris uses the auto-correlation matrix:

$$
A_{W}(x, y)=\sum_{x \in W, y \in \mathbb{W}}\left[\begin{array}{cc}
f_{x}^{2} & f_{x} f_{y} \\
f_{x} f_{y} & f_{y}^{2}
\end{array}\right]
$$

$$
\mathbf{R}\left(A_{W}\right)=\operatorname{det}\left(A_{W}\right)-\alpha \operatorname{trace}^{2}\left(A_{W}\right)
$$

or

$$
\mathbf{R}\left(\mathbf{A}_{W}\right)=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{\dot{2}}
$$

1. Keypoint Localization (Detection)

- SIFT uses the Hessian matrix (for efficiency).
- i.e., Hessian encodes principal curvatures

$$
\mathrm{H}=\left[\begin{array}{ll}
D_{x x} & D_{x y} \\
D_{x y} & D_{y y}
\end{array}\right] \quad \begin{aligned}
& \alpha: \text { largest eigenvalue }\left(\lambda_{\max }\right) \\
& \beta: \text { smallest eigenvalue }\left(\lambda_{\min }\right) \\
& \text { (proportional to principal curvatures) }
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Tr}(\mathbf{H})=D_{x x}+D_{y y}=\alpha+\beta, \\
\operatorname{Det}(\mathbf{H})=D_{x x} D_{y y}-\left(D_{x y}\right)^{2}=\alpha \beta .
\end{gathered} \rightarrow \frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=\frac{(r \beta+\beta)^{2}}{r \beta^{2}}=\frac{(r+1)^{2}}{r},
$$

Reject keypoint if: $\frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}<\frac{(r+1)^{2}}{r} \quad($ SIFT uses $\mathrm{r}=10)$

1. Keypoint Localization (Detection)

(a) 233×189 image
(b) 832 DoG extrema
(c) 729 left after low contrast threshold
(d) 536 left after testing ratio based on Hessian

Keypoint images

2. Orientation Assignment

- Create histogram of gradient directions, within a region around the keypoint, at selected scale:

$$
L(x, y, \sigma)=G(x, y, \sigma) * I(x, y)
$$

$$
\begin{aligned}
& m(x, y)=\sqrt{(L(x+1, y)-L(x-1, y))^{2}+(L(x, y+1)-L(x, y-1))^{2}} \\
& \theta(x, y)=a \tan 2((L(x, y+1)-L(x, y-1)) /(L(x+1, y)-L(x-1, y)))
\end{aligned}
$$

36 bins (i.e., 10° per bin)

- Histogram entries are weighted by (i) gradient magnitude and (ii) a Gaussian function with σ equal to 1.5 times the scale of the keypoint.

2. Orientation Assignment (cont'd)

- Assign canonical orientation at peak of smoothed histogram (fit parabola to better localize peak).

- In case of peaks within 80% of highest peak, multiple orientations assigned to keypoints.
- About 15\% of keypoints has multiple orientations assigned.
- Significantly improves stability of matching.

3. Keypoint Descriptor

8 bins

3. Keypoint Descriptor (cont'd)

1. Take a 16×16 window around detected interest point.
2. Divide into a 4 x 4 grid of cells.
3. Compute histogram in each cell.

Image gradients

Keypoint descriptor
16 histograms x 8 orientations $=128$ features

3. Keypoint Descriptor (cont'd)

- Each histogram entry is weighted by (i) gradient magnitude and (ii) a Gaussian function with σ equal to 0.5 times the width of the descriptor window.

3. Keypoint Descriptor (cont'd)

- Partial Voting: distribute histogram entries into adjacent bins (i.e., additional robustness to shifts)
- Each entry is added to all bins, multiplied by a weight of 1-d, where d is the distance from the bin it belongs.

SIFT Steps - Review

(1) Scale-space extrema detection

- Extract scale and rotation invariant interest points (i.e., keypoints).
(2) Keypoint localization
- Determine location and scale for each interest point.
- Eliminate "weak" keypoints
(3) Orientation assignment
- Assign one or more orientations to each keypoint.
(4) Keypoint descriptor
- Use local image gradients at the selected scale.
D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60(2):91-110, 2004.

Scale Invariant Detectors

- Harris-Laplacian ${ }^{1}$

Find local maximum of:

- Harris corner detector in space (image coordinates)
- Laplacian in scale

- SIFT (Lowe) ${ }^{2}$

Find local maximum of:

- Difference of Gaussians in space and scale

${ }^{1}$ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 200
² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV

Harris-Laplacian vs. SIFT (Lowe)

 Harris-Laplacian Corner Detector:- Rotation invariance
- Partial invariance to affine intensity change
- But: non-invariant to image scale!

SIFT (Lowe) Detector:

- Affine Invariance (including rotation)
- Scale Invariance
- Intensity Change Invariance

Applications of Keypoints \& SIFT

Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Panorama stitching

(a) Matar data set 7 images)

(b) Matier final stikh

Brown, Szeliski, and Winder, 2005

Recognition under occlusion

Recognition of categories

Constellation model

Weber et al. (2000)
Fergus et al. (2003)

Bags of words

	\checkmark	
	NE	
	28	ctur
--	dso	\|17\%
	NaN	cey
	\#M	

Csurka et al. (2004)
Dorko \& Schmid (2005)
Sivic et al. (2005)
Lazebnik et al. (2006), ...
[Slide from Lazebnik, Sicily 2006$]$

Correspondence across views

- Correspondence: matching points, patches, edges, or regions across images

Example: estimating "fundamental matrix" that corresponds two views

Applications

- Feature points are used for:
- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval

- Object recognition

Overview of Keypoint Matching

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Compute a local descriptor from the normalized region

$$
d\left(f_{A}, f_{B}\right)<T
$$

4. Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Local features: main components

1) Detection: Identify the interest points
2) Description: Extract vector feature descriptor surrounding each interest point.
3) Matching: Determine correspondence between descriptors in two views

Matching could be very time-consuming!

Characteristics of good features

- Repeatability
- The same feature can be found in several images despite geometric and photometric transformations
- Saliency
- Each feature is distinctive
- Compactness and efficiency
- Many fewer features than image pixels
- Locality
- A feature occupies a relatively small area of the image; robust to clutter and occlusion

Goal: interest operator repeatability

- We want to detect (at least some of) the same points in both images.

No chance to find true matches!

- Yet we have to be able to run the detection procedure independently per image.

Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.
3) Matching: Determine correspondence between descriptors in two views

Matching could be very time-consuming!

Many Existing Detectors Available

Hessian \& Harris
Laplacian, DoG
Harris-/Hessian-Laplace
Harris-/Hessian-Affine
EBR and IBR
MSER
Salient Regions
Others...
[Beaudet '78], [Harris '88]
[Lindeberg '98], [Lowe 1999]
[Mikolajczyk \& Schmid '01]
[Mikolajczyk \& Schmid '04]
[Tuytelaars \& Van Gool '04]
[Matas ‘02]
[Kadir \& Brady ‘01]

Some Matching Results from Matt Brown

Some Matching Results

