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Corner Point Detection
----Harris Corner Detector



What edge image can tell us?

Object Boundaries & Structures



What edge image can tell us?

Object Boundaries & Structures



Corner Points on Edge 

Polygon Approximation for Edge Representation



What edge image can tell us?
Image 

Edge Image

Object Boundaries 

& Surfaces
Interest Points 

(Corner Points)

Image  Representation



Corner Points on Edge 

More Compact Image Representation via Corners



Harris Detector: Intuition

“flat” region:

no change 

in all 

directions

“edge”:

no change 

along the 

edge direction

“corner”:

significant 

change in all 

directions



Corner Detector
• Shift in any direction would result in a significant 

change at a corner.
Algorithm:

•Shift in horizontal, 

vertical, and 

diagonal directions

by one pixel.

•Calculate the 

absolute value of 

the MSE for each 

shift. 

•Take the minimum 

as the cornerness

response.

How to define & calculate cornerness response?



Harris Detector: Mathematics
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Change of intensity for the shift [u,v]:

Intensity
Shifted 

intensity
Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Neighborhood pattern, weights, …….



Harris Detector: Mathematics

Apply Taylor series expansion of Intensity Change:
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Harris Detector: Mathematics

• Hessian Matrix



Harris Detector: Mathematics
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For small shifts [u,v] we have the following approximation:
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where M is a 22 matrix computed from image derivatives:



Corner Detection: Mathematics

Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the second-order 

Taylor expansion:




























v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

E(u, v)
Always 0

First 

derivative 

is 0



Corner Detection: Mathematics
The quadratic approximation simplifies to
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where M is a second moment matrix computed from image 

derivatives:
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 

neighborhood of a point).

Notation:



The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Selecting Good Features

 1 and   2 are large

Image patch

Error surface
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http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt


Selecting Good Features

large  1, small  2

Image patch

Error surface
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Selecting Good Features

small  1, small  2

(contrast auto-scaled)

Image patch

Error surface

(vertical scale exaggerated relative to previous 

plots)
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Harris Detector: Mathematics
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Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of M

direction of the 

slowest change

direction of the 

fastest change

(max)
-1/2

(min)
-1/2

Ellipse E(u,v) = const



Harris Detector: Mathematics

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of 

image points using 

eigenvalues of M:



Harris corner detector

Measure of cornerness response R:

 
2

det traceR M k M 

1 2

1 2

det

trace

M

M
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(k – empirical constant, k = 0.04-0.06)

No need to compute eigenvalues explicitly!







Eliminate small responses.



Find local maxima of the remaining.





Harris Detector: Scale

Rmin= 0

Rmin= 1500



35

Harris corner detector algorithm

• Compute image gradients Ix Iy for all pixels

• For each pixel

– Compute 

by looping over neighbors x,y

– compute

• Find points with large corner response 
function  R (R > threshold)

• Take the points of locally maximum R as 
the detected feature points (ie, pixels where R is bigger 

than for all the 4 or 8 neighbors).
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Key Steps for Harris Detector

R is the cornerness response, corner points with local maximum of R



Summary of Harris Detector

• Determinant of Matrix

• Trace of Matrix  

In the case of a 2 × 2 matrix the determinant may be defined as

Let A be a matrix and its trace tr(A)



Selecting Good Features
• What’s a “good feature”?

– Satisfies brightness constancy—looks the same 
in both images

– Has sufficient texture variation

– Does not have too much texture variation

– Corresponds to a “real” surface patch—see 
below:

– Does not deform too much over time

Left eye 

view

Right 

eye view

Bad feature

Good feature



Properties of Corner Points

• Partial invariance to affine intensity change

• But: non-invariant to image scale!



Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains 

the same

Corner response R is invariant to image rotation



Harris Detector: Some Properties

• Partial invariance to affine intensity change

 Only derivatives are used => invariance to intensity shift I  I + b

 Intensity scale: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)



Harris Detector: Some Properties

• But: non-invariant to image scale!

All points will be 

classified as edges

Corner !



Harris Detector: Some Properties

• Quality of Harris detector for different scale changes

Repeatability rate:

# correspondences

# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Additional Invariances for Representation 

• Scale Invariance 

• Affine Invariance 



Scale Invariant Detection

• Consider regions (e.g. circles) of different sizes 
around a point

• Regions of corresponding sizes will look the same in 
both images



Scale Invariant Detection

• The problem: how do we choose corresponding 
circles independently in each image?



Scale Invariant Detection

• Solution:

– Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales)

Example: average intensity. For corresponding 

regions (even of different sizes) it will be the same.

scale = 1/2

– For a point in one image, we can consider it as a function of 

region size (circle radius) 

f

region size

Image 1 f

region size

Image 2



Scale Invariant Detection

• Common approach:

scale = 1/2

f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is achieved, 

should be invariant to image scale.

s1 s2



Characteristic Scale

Ratio of scales corresponds to a scale factor between 
two images



Scale Invariant Detection

• A “good” function for scale detection:
has one stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good !

• For usual images: a good function would be a 

one which responds to contrast (sharp local 

intensity change)



Scale Invariant Detection

• Functions for determining scale
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Kernel Imagef  
Kernels:

where Gaussian

(Laplacian)

(Difference of Gaussians)

L or DoG kernel is a matching filter. 

It finds blob-like structure. It turns 

out to be also successful in getting 

characteristic scale of other 

structures, such as corner regions. 



Difference-of-Gaussians

  IkG *        IGkGD * 

  IG *

  IkG *2



Scale-Space Extrema

• Choose all extrema within 3x3x3 neighborhood. 

 D

 kD

 2kD

X is selected if it is larger or smaller than all 26 neighbors



Affine Invariant Detection

• Above we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:

Affine transform (rotation + non-uniform scale)



Affine Invariant Detection

• Take a local intensity extremum as initial point

• Go along every ray starting from this point and stop when 

extremum of function f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 

Affinely Invariant Regions”. BMVC 2000.
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f
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ray



Affine Invariant Detection

• Such extrema occur at positions 
where intensity suddenly changes 
compared to the intensity changes 
up to that point. 

• In theory, leaving out the 
denominator would still give 
invariant positions. In practice, the 
local extrema would be shallow, 
and might result in inaccurate 
positions. 

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 

Affinely Invariant Regions”. BMVC 2000.
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Affine Invariant Detection

• The regions found may not exactly correspond, 
so we approximate them with ellipses

• Find the ellipse that best fits the region



Affine Invariant Detection

q Ap

2 1

TA A  

1

2 1Tq q 

2 region 2

Tqq 

• Covariance matrix of region points defines an ellipse:

1

1 1Tp p 

1 region 1

Tpp 

( p = [x, y]T is relative to 

the center of mass) 

Ellipses, computed for corresponding regions, 

also correspond!



Affine Invariant Detection

• Algorithm summary (detection of affine invariant region):

– Start from a local intensity extremum point

– Go in every direction until the point of extremum of some 
function  f

– Curve connecting the points is the region boundary

– Compute the covariance matrix

– Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 

Affinely Invariant Regions”. BMVC 2000.



Affine Invariant Detection
• Maximally Stable Extremal Regions

– Threshold image intensities: I > I0

– Extract connected components
(“Extremal Regions”)

– Find “Maximally Stable” regions

– Approximate a region with 
an ellipse

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. Research Report of 

CMP, 2001.



Affine Invariant Detection : Summary

• Under affine transformation, we do not know in advance 
shapes of the corresponding regions

• Ellipse given by geometric covariance matrix of a region 
robustly approximates this region

• For corresponding regions ellipses also correspond

Methods: 

1. Search for extremum along rays [Tuytelaars, Van Gool]:

2. Maximally Stable Extremal Regions [Matas et.al.]



Affine Invariant Descriptors
• Find affine normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 

2003

2

Tqq 
1

Tpp 

A

A1
1

1 1 1

TA A  A2
1

2 2 2

TA A 

rotation

• Compute rotational invariant descriptor in this 

normalized frame



Affine covariant regions



Question

Why invariant properties are important/attractive 

for image representation?



Keypoints and SIFT 
(Scale Invariant Feature Transform)



Keypoints & SIFT Descriptors



Keypoint & SIFT Descriptor
• 16x16 Gradient window is taken. Partitioned into 4x4 

subwindows.

• Histogram of 4x4 samples in 8 directions

• Gaussian weighting around center(       is 0.5 times that 
of the scale of a keypoint)

• 4x4x8 = 128 dimensional feature vector



Keypoint Detection

& Orientation Determination

& Neighborhood Pattern



DoG for 

identifying scale-

invariant local 

extrema

Extrema points

Keypoints after removing 

low contrast & edge points

Keypoints & SIFT Descriptors



Scale-space Extrema Detection

• DoG images are grouped by octaves (i.e., doubling of σ0)

• Fixed number of levels per octave

σ0

2σ0

22σ0

( , , )

( , , )* ( , )

L x y

G x y I x y







( , , )

( , , ) ( , , )

D x y

L x y k L x y



 




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where



Scale space images

…

first octave

…

…

second octave

…

…

third octave

…

fourth octave

…

…



Difference-of-Gaussian images

…

first octave

…

…

second octave

…

…

third octave

…

fourth octave

…

…



Scale-space extrema detection

• Find the points, whose surrounding patches (with some 

scale) are distinctive

• An approximation to the scale-normalized Laplacian of 

Gaussian



Scale-space Extrema Detection

• Images within each octave are 

separated by a constant factor k

• If each octave is divided in s intervals:

ks=2 or k=21/s

k0σ0

ksσ0

k1σ0

k2σ0

…

(ks=2)



Choosing SIFT parameters

• Parameters (i.e., scales per octave, σ0 etc.)  can be chosen 

experimentally based on keypoint (i) repeatability, (ii) 

localization, and (iii) matching accuracy.

• In Lowe’s paper:
- Keypoints extracted from 32 real images (outdoor, faces, 

aerial etc.)

- Images were subjected to a wide range of transformations 

(i.e., rotation, scaling, shear, change in brightness, noise).



σ0

2σ0

kσ0

k2σ0

…
• Pre-smoothing discards high frequencies.

• Double the size of the input image

(i.e., using linear interpolation) prior to

building the first level of the DoG 

pyramid. 

• Increases the number of stable 

keypoints by a factor of 4.

Scale-space Extrema Detection



Scale-space Extrema Detection (cont’d)

• Extract local extrema (i.e., minima or maxima) in DoG pyramid.
-Compare each point to its 8 neighbors at the same level, 9 neighbors

in the level above, and 9 neighbors in the level below (i.e., 26 total).



1/30/2020 77

Scale-space extrema detection

• Goal: Identify locations and scales that can be repeatably 
assigned under different views of the same scene or 
object.

• Method: search for stable features across multiple scales 
using a continuous function of scale.

• Prior work has shown that under a variety of 
assumptions, the best function is a Gaussian function. 

• The scale space of an image is a function L(x,y,) that is 
produced from the convolution of a Gaussian kernel (at 
different scales) with the input image.
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Aside: Image Pyramids

Bottom level is the original image.

2nd level is derived from the

original image according to

some function

3rd level is derived from the

2nd level according to the same

funtion

And so on.
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Aside: Mean Pyramid

Bottom level is the original image.

At 2nd level, each pixel is the mean

of 4 pixels in the original image.

At 3rd level, each pixel is the mean

of 4 pixels in the 2nd level.

And so on.

mean
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Aside: Gaussian Pyramid
At each level, image is smoothed and reduced 
in size.

Bottom level is the original image.

At 2nd level, each pixel is the result

of applying a Gaussian mask to

the first level and then subsampling

to reduce the size.

And so on.

Apply Gaussian filter



1. Keypoint Localization (Detection)

• Determine the location and scale of 
keypoints to sub-pixel and sub-scale
accuracy by fitting a 3D quadratic 
polynomial:

i iX X X 

( , , )i i iX x x y y       offset 

keypoint

location

sub-pixel, sub-scale 

Estimated location
Substantial improvement 

to matching and stability!

( , , )i i i iX x y 



• Use Taylor expansion to locally approximate D(x,y,σ) (i.e., DoG
function) and estimate Δx:

• Find the extrema of D(ΔX):
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1. Keypoint Localization (Detection)



• ΔX can be computed by solving a 3x3 linear system:
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If                   in  any dimension, repeat.0.5X 

1. Keypoint Localization (Detection)



• Reject keypoints having low contrast.

– i.e., sensitive to noise

If reject keypoint

– i.e., assumes that image values have been normalized in [0,1] 

| ( ) | 0.03iD X X 

1. Keypoint Localization (Detection)



• Reject points lying on edges (or being close to 
edges)

• Harris uses the auto-correlation matrix:

2

2
,

( , )
x x y

W

x W y W x y y

f f f
A x y

f f f 

 
  

  


R(AW) = det(AW) – α trace2(AW)

or R(AW) = λ1 λ2- α (λ1+ λ2)
2

1. Keypoint Localization (Detection)



• SIFT uses the Hessian matrix (for efficiency).

– i.e., Hessian encodes principal curvatures

α: largest eigenvalue (λmax)

β: smallest eigenvalue (λmin)
(proportional to principal curvatures)

(SIFT uses r = 10)

(r = α/β)

Reject keypoint if:

1. Keypoint Localization (Detection)



(a) 233x189 image

(b) 832 DoG extrema

(c) 729 left after low 
contrast  threshold

(d) 536 left after testing
ratio based on Hessian

1. Keypoint Localization (Detection)



Keypoint images



2. Orientation Assignment

• Create histogram of gradient directions, within a region 
around the keypoint, at selected scale:

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))

( , ) tan 2(( ( , 1) ( , 1)) / ( ( 1, ) ( 1, )))

m x y L x y L x y L x y L x y

x y a L x y L x y L x y L x y

       

      

36 bins (i.e., 10o per bin)

• Histogram entries are weighted by (i) gradient magnitude and (ii) a

Gaussian function with σ equal to 1.5 times the scale of the keypoint.

0 2

( , , ) ( , , )* ( , )L x y G x y I x y 



2. Orientation Assignment (cont’d)

• Assign canonical orientation at peak of smoothed 
histogram (fit parabola to better localize peak).

• In case of peaks within 80% of highest peak, 
multiple orientations assigned to keypoints. 
– About 15% of keypoints has multiple orientations 

assigned.
– Significantly improves stability of matching.

0 2



3. Keypoint Descriptor

8 bins



3. Keypoint Descriptor (cont’d)

16 histograms x 8 orientations 

= 128 features

1. Take a 16 x16 

window around 

detected interest 

point.

2. Divide into a 

4x4 grid of 

cells.

3. Compute 

histogram in 

each cell.

(8 bins)



3. Keypoint Descriptor (cont’d)

• Each histogram entry is weighted by (i) gradient magnitude 
and (ii) a Gaussian function with σ equal to 0.5 times the 
width of the descriptor window.



3. Keypoint Descriptor (cont’d)

• Partial Voting: distribute histogram entries into adjacent bins 
(i.e., additional robustness to shifts)
– Each entry is added to all bins, multiplied by a weight of 1-d, 

where d is the distance from the bin it belongs.





SIFT Steps - Review

(1) Scale-space extrema detection
– Extract scale and rotation invariant interest points (i.e., 

keypoints). 

(2) Keypoint localization
– Determine location and scale for each interest point.
– Eliminate “weak” keypoints

(3) Orientation assignment
– Assign one or more orientations to each keypoint.

(4) Keypoint descriptor
– Use local image gradients at the selected scale.

D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal 

of Computer Vision, 60(2):91-110, 2004. 
Cited 9589 times  (as of 3/7/2011)



Scale Invariant Detectors

• Harris-Laplacian1

Find local maximum of:

– Harris corner detector in space 
(image coordinates)

– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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• SIFT (Lowe)2

Find local maximum of:

– Difference of Gaussians in 
space and scale
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Harris-Laplacian vs. SIFT (Lowe)

Harris-Laplacian Corner Detector:

SIFT (Lowe) Detector:

• Affine Invariance (including rotation)

• Scale Invariance

• Intensity Change Invariance



Applications of Keypoints & SIFT







Recognition under occlusion





Correspondence across views

• Correspondence: matching points, patches, 
edges, or regions across images

≈



Example: estimating “fundamental matrix” 
that corresponds two views

Slide from Silvio Savarese



Applications  

• Feature points are used for:
– Image alignment 

– 3D reconstruction

– Motion tracking

– Robot navigation

– Indexing and database retrieval

– Object recognition



Overview of Keypoint Matching

K. Grauman, B. Leibe

Af
Bf

A1

A2 A3

Tffd BA ),(

1. Find a set of   

distinctive key-

points 

2. Define a region 

around each 

keypoint   

3. Compute a local 

descriptor from the 

normalized region

4. Match local 

descriptors



Goals for Keypoints

Detect points that are repeatable and distinctive



Invariant Local Features

Image content is transformed into local feature coordinates that are 

invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors



Local features: main components

1) Detection: Identify the 

interest points

2) Description: Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views

],,[ )1()1(

11 dxx x

],,[ )2()2(

12 dxx x

Matching could be very time-consuming!



Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Goal: interest operator repeatability

• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 

procedure independently per image.

No chance to find true matches!

Kristen Grauman



Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views

Matching could be very time-consuming!



Many Existing Detectors Available

K. Grauman, B. Leibe

Hessian & Harris [Beaudet ‘78], [Harris ‘88]
Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace       [Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
EBR and IBR [Tuytelaars & Van Gool ‘04]
MSER [Matas ‘02]
Salient Regions [Kadir & Brady ‘01] 
Others…
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Some Matching Results from Matt Brown
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Some Matching Results


