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TRAINING DEEP NEURAL NETWORKS ON NOISY LABELS WITH 

BOOTSTRAPPING, ICLR 2015

Current state-of-the-art deep learning systems for visual object 

recognition and detection use purely supervised training with 

regularization such as dropout to avoid overfitting. The 

performance depends critically on the amount of labeled 

examples, and in current practice the labels are assumed to be 

unambiguous and accurate. However, this assumption often 

does not hold; e.g. in recognition, class labels may be missing; 

in detection, objects in the image may not be localized; and in 

general, the labeling may be subjective.

It is very interesting to develop new technologies that can 

directly learn from large-scale images with noisy labels!



TRAINING DEEP NEURAL NETWORKS ON NOISY LABELS WITH 

BOOTSTRAPPING, ICLR 2015

One generic way to handle noisy and incomplete labeling is to augment the 

prediction objective with a notion of consistency

If the same prediction is made given similar percepts, a prediction consistent can 

be considered; if the same prediction is made given similar percepts, the deep 

features computed from the input data could be similar. 

This paper develops a simple consistency objective that does not require an explicit 

noise distribution or a reconstruction term. The idea is to dynamically update the 

targets of the prediction objective based on the current state of the model. The 

resulting targets are a convex combination of (1) the noisy training label, and (2) the 

current prediction of the model. Intuitively, as the learner improves over time, its 

predictions can be trusted more. This mitigates the damage of incorrect labeling, 

because incorrect labels are likely to be eventually highly inconsistent with other 

stimuli predicted to have the same label by the model.
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BOOTSTRAPPING, ICLR 2015

A cross-entropy objective is used, but generate new regression targets for each SGD 

mini-batch based on the current state of the model. We empirically evaluated two 

types of bootstrapping. 

“Soft” bootstrapping uses predicted class probabilities q directly to generate 

regression targets for each batch as follows:

When used with mini-batch stochastic gradient descent, this leads to an EM-like 

algorithm: In the E-step, estimate the “true” confidence targets as a convex combination 

of training labels and model predictions; in the M-step, update the model parameters to 

better predict those generated targets.
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Deep Learning from Noisy Image Labels with Quality Embedding

Analysis about back-propagation in previous methods that model the latent label, as 

well as our idea to avoid the effect of label noise. (a) All images are forward into the 

model and the mismatch error caused by both label estimation and label noise are 

back-propagated. (b) With quality embedding as a control from latent labels to 

predictions, the negative effect of label noise is reduced in the back-propagation.



Deep Learning from Noisy Image Labels with Quality Embedding

Fig. 1 illustrates the idea of this paper as well as its advantage to reduce the noise 

effect. 

In Fig. 1(a), the latent labels and predictions of the first three cat images must 

approximately consistent due to their content similarity. However, mismatch will 

occur between the second prediction and the corresponding annotation by virtue of 

the label noise. For the fourth image, the prediction induced by the estimation error 

of the latent label, also has conflict with the fourth annotation. As a result, these two 

mismatches will mix together for back-propagation. 

On the other hand, if we explicitly introduce a quality variable to model the 

trustworthiness of noisy labels like Fig. 1(b), label noise can be reduced more 

effectively. For example, if the quality variable of the second sample is embedded in 

the non-trustworthy subspace, the latent label can be disturbed accordingly to 

prevent mismatch error caused by the label noise from back-propagation. While for 

the fourth sample whose quality variable is estimated in the trustworthy subspace, 

the latent label still transits to the final prediction causing the mismatch. Then 

supervision from the correct annotations is normally fed back.



Deep Learning from Noisy Image Labels with Quality Embedding

The network consists of four modules, encoder, sampler, decoder and classifier, 

which are trained end-to-endly. Encoder tries to learn latent labels and evaluate the 

quality of noisy labels; sampler is used to generate samples from encoder outputs; 

decoder tries to recover noisy labels from samples. Meanwhile, our classifier is 

learned based on KL-divergence between q(z) and P(z).



Learning to Learn from Noisy Labeled Data

Despite the success of deep neural networks (DNNs) in image classification 

tasks, the human-level performance relies on massive training data with high-

quality manual annotations, which are expensive and time-consuming to collect. 

There exist many inexpensive data sources on the web, but they tend to contain 

inaccurate labels. Training on noisy labeled datasets causes performance 

degradation because DNNs can easily overfit to the label noise. 

To overcome this problem, we propose a noise-tolerant training algorithm, where 

a meta-learning update is performed prior to conventional gradient update. The 

proposed meta-learning method simulates actual training by generating synthetic 

noisy labels, and train the model such that after one gradient update using each 

set of synthetic noisy labels, the model does not overfit to the specific noise. 



Learning to Learn from Noisy Labeled Data

Illustration of the proposed meta-learning based noise-tolerant (MLNT) training. For 

each mini-batch of training data, a meta loss is minimized before training on the 

conventional classification loss. We first generate multiple mini-batches of synthetic 

noisy labels with random neighbor label transfer (marked by orange arrow). The 

random neighbor label transfer can preserve the underlying noise transition (e.g. 

DEER → HORSE, CAT ↔ DOG), therefore generating synthetic label noise in a similar 

distribution as the original data. For each synthetic mini-batch, we update the 

parameters with gradient descent, and enforce the updated model to give consistent 

predictions with a teacher model. 



Our method can learn the parameters of a DNN model in such a way as to 

“prepare” the model for label noise. The intuition behind our method is that 

when training with a gradient-based rule, some network parameters are 

more tolerant to label noise than others. 

How can we encourage the emergence of such noise-tolerant parameters? 

We achieve this by introducing a meta-learning update before the 

conventional update for each mini-batch. The meta-learning update 

simulates the process of training with label noise and makes the network 

less prone to over-fitting. Specifically, for each mini-batch of training data, 

we generate a variety of synthetic noisy labels on the same images. With 

each set of synthetic noisy labels, we update the network parameters using 

one gradient update, and enforce the updated network to give consistent 

predictions with a teacher model unaffected by the synthetic noise. As 

shown in Figure 1, the meta-learning update optimizes the model so that it 

can learn better with conventional gradient update on the original mini-

batch. In effect, we aim to find model parameters that are less sensitive to 

label noise and can consistently learn the underlying knowledge from data 

despite label noise. 

Learning to Learn from Noisy Labeled Data



NLNL: Negative Learning for Noisy Labels, ICCV 2019

Convolutional Neural Networks (CNNs) provide excellent performance when used 

for image classification. The classical method of training CNNs is by labeling 

images in a supervised manner as in “input image belongs to this label” (Positive 

Learning; PL), which is a fast and accurate method if the labels are assigned 

correctly to all images. However, if inaccurate labels, or noisy labels, exist, training 

with PL will provide wrong information, thus severely degrading performance. 

To address this issue, we start with an indirect learning method called Negative 

Learning (NL), in which the CNNs are trained using a complementary label as in 

“input image does not belong to this complementary label.” Because the chances of 

selecting a true label as a complementary label are low, NL decreases the risk of 

providing incorrect information. Furthermore, to improve convergence, we extend 

our method by adopting PL selectively, termed as Selective Negative Learning and 

Positive Learning (SelNLPL). PL is used selectively to train upon expected-to-be-

clean data, whose choices become possible as NL progresses, thus resulting in 

superior performance of filtering out noisy data.



NLNL: Negative Learning for Noisy Labels, ICCV 2019

Conceptual comparison between Positive Learning (PL) and Negative Learning 

(NL). Regarding noisy data, while PL provides CNN the wrong information (red 

balloon), with a higher chance, NL can provide CNN the correct information (blue 

balloon) because a dog is clearly not a bird.



NLNL: Negative Learning for Noisy Labels, ICCV 2019

Pseudo labeling for semi-supervised learning. (a): Division of 

training data into either clean or noisy data with CNN trained 

with SelNLPL. (b): Training initialized CNN with clean data 

from (a), then noisy data’s label is updated following the output 

of CNN trained with clean data. (c): Clean data and label-

updated noisy data are both used for training initialized CNN in 

the final step.



Deep Self-Learning From Noisy Labels, ICCV 2019

An example of solving two classes classification problem using different number of 

prototypes. Left: Original data distribution. Data points with the same color belong 

to the same class. Upper Right: The decision boundary obtained by using a single 

prototype for each class. Lower Right: The decision boundary obtained by two 

prototypes for each class. Two prototypes for each class leads to a better decision 

boundary.



Deep Self-Learning From Noisy Labels, ICCV 2019

Illustration of the pipeline of iterative self-learning framework on the noisy dataset. (a) 

shows the training phase and (b) shows the label correction phase, where these two 

phases proceed iteratively. The deep network G can be shared, such that only a 

single model needs to be evaluated in testing.



CleanNet: Transfer Learning for Scalable Image Classifier Training with Label 

Noise, CVPR 2018

CleanNet architecture for 

learning a class 

embedding vector  and 

a query embedding vector 

with a similarity matching 

constraint. There exists 

one class embedding for 

each of the L classes.



The overall architecture of CleanNet consists of two parts: (1) 

a reference set encoder and (2)a query encoder. 

The reference set encoder fs(·) learns to focus on 

representative features in a noisy reference image set, which 

is collected for a specific class, and outputs a class-level 

embedding vector. Since using all the images in the reference 

set is computationally expensive, we first create a 

representative subset, and extract one visual feature vector 

from each image in that subset to form a representative 

feature vector set, i.e., let  denotes the representative 

reference feature vector set for class c (reference feature set). 

CleanNet: Transfer Learning for Scalable Image Classifier Training with Label 

Noise, CVPR 2018



CleanNet: Transfer Learning for Scalable Image Classifier Training with Label 

Noise, CVPR 2018

Reference set encoder fs(·)



CleanNet: Transfer Learning for Scalable Image Classifier Training with Label 

Noise, CVPR 2018

Illustration of integrating 

CleanNet for training the CNN-

based image classifier with label 

noise.



Iterative Learning with Open-set Noisy Labels, CVPR 2018

An illustration of closed-set vs open-set noisy labels.



Iterative Learning with Open-set Noisy Labels, CVPR 2018

An overview of our framework that iteratively learns 

discriminative representations on a “jasmine-cat” dataset with 

openset noisy labels. It not only learns a proper decision 

boundary (the black line separating jasmine and cat) but also 

pulls away noisy samples (green and purple) from clean 

samples (blue and red).



Iterative Learning with Open-set Noisy Labels, CVPR 2018

The framework of the proposed iterative learning approach. Iterative noisy 

label detection module and discriminative feature learning module form a 

closed-loop, i.e., one module’s inputs are the other module’s output, which 

can benefit from each other and be jointly enhanced. The network is jointly 

optimized by two types of losses: reweighted softmax loss and contrastive 

loss.



Learning from Noisy Labels with Distillation, ICCV2017
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Darian Frajberg, Applying Deep Learning with Weak and Noisy labels
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