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Probabilistic Generative Models

Density Estimation

𝑷𝒓 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 = 𝑷𝒓(𝒔𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄 𝒐𝒃𝒔. )

Real world observations

Model
synthetic
observations

= goal of 
modeling



Synthesizing Examples
From Probabilistic Generative Model

𝑷𝒓(𝒐𝒃𝒔. )
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Goodfellow NIPS tutorial and accompanying  paper (arXiv:1701.00160v4 [cs.LG]) provided some figures



Maximum Likelihood Estimation
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Density function 𝑷𝒓model(𝒙|𝜽)

Explicit and analytical

 e.g., Gaussian

 can sample directly from model

Explicit and approximate

 e.g., Boltzmann machine

 can estimate probability by running Markov chain monte carlo

 Implicit

 GAN

 can’t estimate probability but can draw from distribution with given probability



Adversarial Networks

Generative
Model

Real world Discriminative
Model

real or fake?



Generative Model

How to make it generate different samples each time it is run?

 input to model is noise

Generative model as a neural network

 computes 𝒙 = 𝑮(𝒛|𝜽)

 differentiable

 does not have to be invertible

 𝒛 typically has very high dimensionality (higher than 𝒙)

Generative
Model

noise (𝒛)



Discriminative Model

Think of it as a critic

 a good critic can tell real from fake

Discriminative model as a neural net

 differentiable

 computes 𝑫(𝒙), with value 1 if real, 0 if fake

Discriminative
Model

real or fake?



Training Procedure: Basic Idea

G tries to fool D

D tries not to be fooled

Models are trained simultaneously

 As G gets better, D has a more challenging task

 As D gets better, G has a more challenging task

Ultimately, we don’t care about the D

 Its role is to force G to work harder

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world



Loss Functions

 Loss function for D

 maximize the likelihood that model says ‘real’ to samples from 
the world and ‘fake’ to generated samples

 𝓛𝑫 = −
𝟏

𝟐
𝔼𝒙~𝐰𝐨𝐫𝐥𝐝 𝐥𝐧 𝑫 𝒙 −

𝟏

𝟐
𝔼𝒛 𝐥𝐧 𝟏 − 𝑫(𝑮 𝒛 )

 What should the loss function be for G?

 𝓛𝑮 = −𝓛𝑫

 But because first term doesn’t matter for G (why?)

 𝓛𝑫 =
𝟏

𝟐
𝔼𝒛 𝐥𝐧 𝟏 − 𝑫(𝑮 𝒛 )

 Known as a minimax procedure

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world



Training Procedure

 Train both models simultaneously via stochastic gradient descent 
using minibatches consisting of

 some generated samples

 some real-world samples

 Training of D is straightforward

 Error for G comes via back propagation through D

 Two ways to think about training

(1) freeze D weights and propagate 𝓛𝑮 through D to determine 𝝏𝓛𝑮/𝝏𝒙

(2) Compute 𝝏𝓛𝑫/𝝏𝒙 and then Τ𝝏𝓛𝑮 𝝏𝒙 = −𝝏𝓛𝑫/𝝏𝒙

 D can be trained without altering G, and vice versa

 May want multiple training epochs of just D so it can stay ahead

 May want multiple training epochs of just G because it has a 
harder task

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world



The Discriminator Has a Straightforward Task

D has learned when 

 𝑫 𝒙 = 𝑷𝒓 𝐫𝐞𝐚𝐥 𝒙 =
𝑷𝒓(𝒙|𝐫𝐞𝐚𝐥)

𝑷𝒓(𝒙|𝐫𝐞𝐚𝐥)+𝑷𝒓(𝒙|𝐬𝐲𝐧𝐭𝐡𝐞𝐬𝐢𝐳𝐞𝐝)

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world

discriminator

real

model

G
o

o
d

fe
llo

w
(2

0
1

7
)



Three Reasons That It’s a Miracle GANs Work

G has a reinforcement learning task

 it knows when it does good (i.e., fools D) but it is 
not given a supervised signal

 reinforcement learning is hard

 back prop through D provides G with a supervised 
signal; the better D is, the better this signal will be

Can’t describe optimum via a single loss

 Will there be an equilibrium?

D is seldom fooled

 but G still learns because it gets a gradient telling it 
how to change in order to do better the next round.

Discriminative
Model

real or fake?

Generative
Model

noise (𝒛)

Real world



Do Generator Losses Matter?
(Goodfellow, 2014)

All losses seem to produce sharp samples



Deconvolutional GANs (DCGAN)
(Radford et al., 2015)

Batch normalization important here, apparently
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Using Labels Can Improve Generated Samples

Generative
Model

noise
(𝒛)

class
(𝒚)

 Denton et al. (2015)                                           Salimans et al. (2016)

Discriminative
Model

fake
real

class 1
real

class 𝒏



Using Labels Can Improve Generated Samples
(Denton et al., 2015)

 LAPGAN: 
multiresolution 
deconvolutional
pyramid

 CC-LAPGAN: 
class conditional 
LAPGAN

 GAN: original 
Goodfellow
model



Beyond Labels: Providing Images as Input to Generator:
Next Video Frame Prediction (Lotter et al., 2016)

MSE tends to produce blurry images on any task

 when you can’t predict well, predict the expectation



Beyond Labels: Providing Images as Input to Generator:
Image Super-Resolution (Ledig et al., 2016)



Visually-Aware Fashion Recommendation and Design
With GANs (Kang et al., 2017)

Recommender systems predict how much a particular user will like a 
particular item

 Can predict based on features of item (e.g., movie director, dress length)

 Can also predict directly from images

Twist here is that instead of 
predicting from a predefined set,
generate images that would be liked.



Visually-Aware Fashion Recommendation and Design
With GANs (Kang et al., 2017)

Use class-conditional generator and discriminator



Visually-Aware Fashion Recommendation and Design
With GANs (Kang et al., 2017)

Optimize with GAN

 find latent 
representation 𝒛 that 
obtains the highest 
recommendation score

 gradient ascent search





Cycle GANs
(Zhu et al., 2017; arXiv:1703:10593v2 [cs.CV])

 Given two 
image 
collections

 algorithm 
learns to 
translate an 
image from 
one 
collection 
to the other

 does not 
require 
corres-
pondence
between 
images



Photos
to paintings



Paintings
to photos





Star GAN

High resolution image synthesis



Slide credit – Victor Garcia

Components of GANs

Noise



Overview of GANs
Source: https://ishmaelbelghazi.github.io/ALI

https://ishmaelbelghazi.github.io/ALI


Discriminative Models

A discriminative model learns a function that maps the input data (x) 
to some desired output class label (y). 

In probabilistic terms, they directly learn the conditional 
distribution P(y|x).



Generative Models

A generative model tries to learn the joint probability of the input 
data and labels simultaneously i.e. P(x,y).

Potential to understand and explain the underlying structure of the 
input data even when there are no labels.



How GANs are being used?

Applied for modelling natural images. 

Performance is fairly good in comparison to other 
generative models. 

Useful for unsupervised learning tasks.



Why GANs?

Use a latent code.

Asymptotically consistent (unlike variational methods) .

No Markov chains needed. 

Often regarded as producing the best samples.





How to train GANs?

Objective of generative network - increase the error rate of the 
discriminative network.

Objective of discriminative network – decrease binary classification 
loss.

Discriminator training - backprop from a binary classification loss.

Generator training - backprop the negation of the binary 
classification loss of the discriminator.



Generator Discriminator

Loss Functions



Generated bedrooms. Source: “Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks” https://arxiv.org/abs/1511.06434v2

https://arxiv.org/abs/1511.06434v2


“Improved Techniques for Training GANs” by Salimans et. al

One-sided Label smoothing - replaces the 0 and 1 targets for a classifier 
with smoothed values, like .9 or .1 to reduce the vulnerability of neural 
networks to adversarial examples.

Virtual batch Normalization - each example x is normalized based on 
the statistics collected on a reference batch of examples that are 
chosen once and fixed at the start of training, and on x itself.



Original CIFAR-10 vs. Generated CIFAR-10 samples 
Source: “Improved Techniques for Training GANs” https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1606.03498


Variations to GANs

Several new concepts built on top of GANs have been introduced –

 InfoGAN – Approximate the data distribution and learn 
interpretable, useful vector representations of data.

 Conditional GANs - Able to generate samples taking into account 
external information (class label, text, another image). Force G to 
generate a particular type of output.



Major Difficulties

Networks are difficult to converge.

Ideal goal – Generator and discriminator to reach some 
desired equilibrium but this is rare.

GANs are yet to converge on large problems (E.g. Imagenet).



Common Failure Cases

The discriminator becomes too strong too quickly and the generator 
ends up not learning anything.

The generator only learns very specific weaknesses of the 
discriminator.

The generator learns only a very small subset of the true data 
distribution.



So what can we do?

Normalize the inputs

A modified loss function

Use a spherical Z

BatchNorm

Avoid Sparse Gradients: ReLU, MaxPool

Use Soft and Noisy Labels

DCGAN / Hybrid Models



Autoencoder

As close as possible

NN
Encoder

NN
Decoder

c
o
d
e

NN
Decoder

c
o
d
e

Randomly 

generate a vector 

as code

Image ?



Autoencoder with 3 fully connected layers

Large  small, learn to compress

Training: model.fit(X,X)

Cost function: Σk=1..N (xk – x’k)
2



Auto-encoder

NN
Decoder

code

2D code

-1.5 1.5

NN
Decoder

NN
Decoder



Auto-encoder

-1.5 1.5



NN
Encoder

NN
Decoder

code

input output

Auto-encoder

VAE

NN
Encoder

input NN
Decoder

output

m1
m2
m3

From a normal 

distribution

X

+

Minimize 
reconstruction error

ex

p

Minimize

Auto-Encoding Variational Bayes, 

https://arxiv.org/abs/1312.6114

σ1

σ2

σ3

e3

e2

e1

ci = exp(σi)ei + mi

Σi=1..3 [exp(σi)−(1+σi)+(mi)
2 ]

c3

c2

c1

This constrains σi approacing 0 is good



Problems of VAE

It does not really try to simulate real images

NN
Decoder

code

Output As close as 

possible

One pixel difference to 

the target
Also one pixel 

difference to the target

Realistic Fake

VAE treats these the same



Gradual and step-wise generation

NN
Generator

v1

Discri-
minator

v1

Real images:

NN
Generator

v2

Discri-
minator

v2

NN
Generator

v3

Discri-
minator

v3

Generated

images

These are

Binary classifiers



GAN – Learn a discriminator

NN
Generator

v1

Real images

Sampled from 

DB:

Discri-
minator

v1
image 1/0 (real or fake)

Something like 

Decoder in VAE

Randomly 

sample a 

vector

1 1 1 1

0 0 0 0



GAN – Learn a generator

Discri-
minator

v1

NN
Generator

v1

Randomly sample 

a vector

0.13

Updating the parameters of 

generator 

The output be classified 

as “real” (as close to 1 

as possible)

Generator + Discriminator = 

a network

Using gradient descent to 

update the parameters in the 

generator, but fix the 

discriminator 1.0

v2

Train 

this

Do not

Train

This

They have

Opposite

objectives



Generating 2nd element figures

Source of images: https://zhuanlan.zhihu.com/p/24767059

From Dr. HY Lee’s notes.

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

You can use the following to start a project (but this is in Chinese):

https://zhuanlan.zhihu.com/p/24767059
https://github.com/carpedm20/DCGAN-tensorflow


GAN – generating 2nd element figures

100 rounds

This is fast, I think you can use your CPU



GAN – generating 2nd element figures

1000 rounds



GAN – generating 2nd element figures

2000 rounds



GAN – generating 2nd element figures

5000 rounds



GAN – generating 2nd element figures

10,000 rounds



GAN – generating 2nd element figures

20,000 rounds



GAN – generating 2nd element figures

50,000 rounds



Next few images from Goodfellow lecture

Traditional mean-squared

Error, averaged, blurry



Last 2 are by deep learning approaches.







Similar to word embedding (DCGAN paper)



256x256 high resolution pictures
by Plug and Play generative network



From natural language to pictures



Deriving GAN

During the rest of this lecture, we will go thru the original ideas and derive 
GAN.

I will avoid the continuous case and stick to simple explanations.



Maximum Likelihood Estimation

 Give a data distribution Pdata(x)

 We use a distribution PG(x;θ) parameterized by θ to approximate it

 E.g. PG(x;θ) is a Gaussian Mixture Model, where θ contains means and variances of 
the Gaussians.

 We wish to find θ s.t. PG(x;θ) is close to Pdata(x)

 In order to do  this, we can sample 

{x1,x2, … xm} from Pdata(x)

 The likelihood of generating these

xi’s under PG is

L= Πi=1…m PG(xi; θ)

 Then we can find θ* maximizing the L.



KL (Kullback-Leibler) divergence

 Discrete: 

DKL(P||Q) = ΣiP(i)log[P(i)/Q(i)]

 Continuous:

DKL(P||Q) =     p(x)log [p(x)/q(x)] 

 Explanations: 

Entropy: - ΣiP(i)logP(i) - expected code length (also optimal)

Cross Entropy: - ΣiP(i)log Q(i) – expected coding 

length using optimal code for Q

DKL= ΣiP(i)log[P(i)/Q(i)] = ΣiP(i)[logP(i) – logQ(i)], extra bits 

JSD(P||Q) = ½ DKL(P||M)+ ½ DKL(Q||M), M= ½ (P+Q), symmetric KL

* JSD = Jensen-Shannon Divergency 

−∞

∞



Maximum Likelihood Estimation

θ* = arg maxθ Πi=1..mPG(xi; θ) 

arg maxθ log Πi=1..mPG(xi; θ)

= arg maxθ Σi=1..m log PG(xi; θ),  {x1,..., xm} sampled from Pdata(x)

= arg maxθ Σi=1..m Pdata(xi) log PG(xi; θ)     --- this is cross entropy

≅ arg maxθ Σi=1..m Pdata(xi) log PG(xi; θ) - Σi=1..m Pdata(xi )logPdata(x i)

= arg minθ KL (Pdata(x) || PG(x; θ))           --- this is KL divergence

Note:  PG is Gaussian mixture model, finding best θ will still be Gaussians, this only can generate a few blubs. Thus this above 
maximum likelihood approach does not work well.

Next we will introduce GAN that will change PG, not just estimating PG is parameters We will find best PG , which is more 
complicated and structured, to approximate Pdata. 



https://blog.openai.com/generative-models/

PG(x,θ)

How to compute the 

likelihood?

Thus let’s use an NN as PG(x; θ)

Pdata(x)

G

θ

Smaller

dimension
Larger

dimension

Prior 

distribution 

of z

PG(x) = Integrationz Pprior(z) I[G(z)=x]dz



Basic Idea of GAN

Generator G

 G is a function, input z, output x 

 Given a prior distribution Pprior(z), a probability distribution PG(x) is 
defined by function G

Discriminator D

 D is a function, input x, output scalar

 Evaluate the “difference” between PG(x) and Pdata(x)

 In order for D to find difference between Pdata from PG, we 
need a cost function V(G,D):

G*=arg minGmaxDV(G,D)

Hard to learn PG by maximum likelihood



Basic Idea
G* = arg minGmaxD V(G,D)

V(G1,D) V(G3,D)V(G2,D)

G1 G2 G3

Given a generator G, maxDV(G,D) evaluates the 

“difference” between PG and Pdata

Pick JSD function: V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

Pick the G s.t. PG is most similar to Pdata



 Given G, what is the optimal D* maximizing

 Given x, the optimal D* maximizing is:

f(D) = alogD + blog(1-D)  D*=a/(a+b)

Assuming D(x) can have any value here

MaxDV(G,D),  G*=arg minGmaxDV(G,D)

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

= Σ [ Pdata(x) log D(x) + PG(x) log(1-D(x) ]

Thus: D*(x) = Pdata(x) / (Pdata(x)+PG(x))



V(G1,D)

V(G1,D*1)

“difference” between 

PG1 and Pdata

maxDV(G,D), G* = arg minGmaxD V(G,D)

D1*(x) = Pdata(x) / (Pdata(x)+PG_1(x))
D2*(x) = Pdata(x) / (Pdata(x)+PG_2(x))

V(G2,D) V(G3,D)



maxDV(G,D)
V = Ex~P_data [log D(x)] 

+ Ex~P_G[log(1-D(x))]

maxD V(G,D) 

= V(G,D*),  where D*(x) = Pdata / (Pdata + PG), and 

1-D*(x) = PG / (Pdata + PG)

= Ex~P_data log D*(x) + Ex~P_G log (1-D*(x))

≈ Σ [ Pdata (x) log D*(x) + PG(x) log (1-D*(x)) ]

= -2log2 + 2 JSD(Pdata || PG ),  

JSD(P||Q) = Jensen-Shannon divergence

= ½ DKL(P||M)+ ½ DKL(Q||M)

where M= ½ (P+Q).

DKL(P||Q) = Σ P(x) log P(x) /Q(x)



Summary:

Generator G, Discriminator D

Looking for G* such that

Given G, maxD V(G,D)

= -2log2 + 2JSD(Pdata(x) || PG(x)) 

What is the optimal G? It is G that makes JSD smallest = 0:

PG(x) = Pdata (x)

V = Ex~P_data [log D(x)] 

+ Ex~P_G[log(1-D(x))]

G* = arg minGmaxD V(G,D)



Algorithm

To find the best G minimizing the loss function L(G):

θG  θG =−η L(G)/   θG  , θG defines G

Solved by gradient descent. Having max ok. Consider simple 
case:

f(x) = max {D1(x), D2（x), D3(x)}

dD1(x)/dx dD2(x)/dx dD3(x)/dx

If Di(x) is the 

Max in that region, 

then do dDi(x)/dx

L(G), this is the 

loss function

G* = arg minGmaxD V(G,D)

D1(x)

D2(x)

D3(x)



AlgorithmG* = arg minGmaxD V(G,D)

L(G)

 Given G0

 Find D*0 maximizing V(G0,D)

V(G0,D0*) is the JS divergence between Pdata(x) and PG0(x)

 θG θG −η ΔV(G,D0*) / θG    Obtaining G1 (decrease JSD)

 Find D1* maximizing V(G1,D)

V(G1,D1*) is the JS divergence between Pdata(x) and PG1(x)

 θG θG −η ΔV(G,D1*) / θG    Obtaining G2 (decrease JSD)

And so on …



In practice …

Minimize Cross-entropy

This is what a Binary Classifier do

Output is D(x)

Minimize –log D(x)If x is a positive example

If x is a negative example Minimize –log(1-D(x))

V = Ex~P_data [log D(x)] 

+ Ex~P_G[log(1-D(x))]

Given G, how to compute maxDV(G,D)?

 Sample {x1, … ,xm} from Pdata

 Sample {x*1, … ,x*m} from generator PG

Maximize:

V’ = 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

Positive example

D must accept
Negative example

D must reject



{x1,x2, … xm}  from Pdata (x) 

D is a binary classifier (can be deep) with parameters θd

Positive examples

Negative examples

Maximize

Minimize L = - V’

Minimize Cross-entropy

Binary Classifier

Output is f(x)

Minimize –log f(x)If x is a positive example

If x is a negative example Minimize –log(1-f(x))

{x*1,x*2, … x*m} from PG(x)

V’ = Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

or



Algorithm

Repeat 

k times

Learning D

Learning G

Initialize θd for D and θg for G

Can only find  lower bound 

of JSD or  maxDV(G,D)

Only 

Once

 In each training iteration

 Sample m examples {x1,x2, … xm} from data distribution Pdata(x)

 Sample m noise samples {z1, … , zm} from a simple prior Pprior(z)

 Obtain generated data {x*1, … , x*m}, x*i=G(zi)

 Update discriminator parameters θd to maximize 

V’ ≈ 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

θd  θd + ηΔV’(θd)   (gradient ascent)

 Simple another m noise samples {z1,z2, … zm} from the prior Pprior(z)，G(zi)=x*i

 Update generator parameters θg to minimize 

V’= 1/mΣi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

θg  θg − ηΔV’(θg)   (gradient descent)

Ian Goodfellow

comment: this

is also done once



Objective Function for Generator
in Real Implementation

Real implementation: 

label x from PG as positive

Training slow at the beginning

V = Ex~P_data [log D(x)

+ Ex~P_G[log(1-D(x))]

V = Ex~P_G [ − log (D(x)) ]



Some issues in training GAN

M. Arjovsky, L. Bottou, Towards principled methods for training generative 
adversarial networks, 2017.



Evaluating JS divergence

Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training 

Generative Adversarial Networks, 2017, arXiv preprint

Discriminator is too strong: for all three

Generators, JSD = 0



Evaluating JS divergence

JS divergence estimated by discriminator telling little information

https://arxiv.org/a

bs/1701.07875

Weak Generator Strong Generator



Discriminator

Reason 1. Approximate by sampling

1 for all positive examples 0 for all negative examples

= 0

log 2 when Pdata and PG differ 
completely

Weaken your discriminator?

Can weak discriminator 

compute JS divergence?

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

= 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

maxDV(G,D) = -2log2 + 2 JSD(Pdata || PG )



Discriminator

Reason 2. the nature of data

1 0

= 0

log2

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

= 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

maxDV(G,D) = -2log2 + 2 JSD(Pdata || PG )

Pdata(x) and PG(x) have very little

overlap in high dimensional space

Theoretical estimation

GAN implementation

estimation

≈ 0



Evolution
http://www.guokr.com/post/773890/

Better



Evolution needs to be smooth:

PG_0(x)

PG_50(x)

PG_100(x)

Better

…
…

…
…

Not really 

better ……

Pdata(x)

Pdata(x)

Pdata(x)

JSD(PG_0 || Pdata) = log2

JSD(PG_100 || Pdata) = 0

JSD(PG_50 || Pdata) = log2



One simple solution: add noise

Add some artificial noise to the inputs of 
discriminator

Make the labels noisy for the discriminator

Pdata(x) and PG(x) have 

some overlap

Discriminator cannot perfectly separate real and generated 

data

Noises need to decay over time



Mode Collapse 

Data 

Distribution

Generated 

Distribution

Sometimes, this is hard to tell since 

one sees only what’s generated, but not what’s missed.

Converge to same faces



Mode Collapse Example 
8 Gaussian distributions:

What we 

want …

In reality …

Pdata



Text to Image, by conditional GAN



Text to Image
- Results

"red flower with 

black center"

Project topic: Code and data are all on web, many possibilities!

From CY Lee lecture



Algorithm 

Repeat 

k times

Learning D

Learning G

Only 

Once

 In each training iteration

 Sample m examples {x1,x2, … xm} from data distribution Pdata(x)

 Sample m noise samples {z1, … , zm} from a simple prior Pprior(z)

 Obtain generated data {x*1, … , x*m}, x*i=G(zi)

 Update discriminator parameters θd to maximize 

V’ ≈ Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

θd  θd + ηΔV’(θd)   (gradient ascent plus weight clipping) 

Simple another m noise samples {z1,z2, … zm} from the prior Pprior(z)，G(zi)=x*i

 Update generator parameters θg to minimize 

V’= 1/mΣi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

θg  θg − ηΔV’(θg)   (gradient descent)

Ian Goodfellow

comment: this

is also done once

WGAN



Experimental Results

Approximate a mixture of Gaussians by single mixture



WGAN Background

We have seen that JSD does not give GAN a smooth and continuous 
improvement curve.

We would like to find another distance which gives that. 

This is the Wasserstein Distance or earth mover’s distance.



Earth Mover’s Distance

Considering one distribution P as a pile of earth (total amount 
of earth is 1), and another distribution Q (another pile of earth) 
as the target

The “earth mover’s distance” or “Wasserstein Distance” is the 
average distance the earth mover has to move the earth in an 
optimal plan.

d



Earth Mover’s Distance: best plan to move

P

Q



JS vs Earth Mover’s Distance

PG_50…… ……
d50

W(PG_0, Pdata)=d0

d0 d100

PG_0 Pdata PG_100 PdataPdata

JS(PG_0, Pdata) = log2 JS(PG_50, Pdata) = log2 JS(PG_100, Pdata) = 0

W(PG_100, Pdata)=0W(PG_50, Pdata)=d50



Explaining WGAN

 Let W be the Wasserstein distance.

W(Pdata, PG) = maxD is 1-Lipschitz[Ex~P_data D(x) – Ex~P_G D(x)]

Where a function f is a 

k-Lipschitz function if

||f(x1) – f(x2) ≤ k||x1 – x2 ||

How to guarantee this?

Weight clipping:  for all 

parameter updates, if w>c

Then w=c, if w<-c, then w=-c. WGAN will provide gradient to 

push PG towards Pdata

Blue: D(x) for original GAN

Green: D(x) for WGAN



Earth Mover Distance Examples:

Multi-layer perceptron


