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Generative Adversarial Nets, NIPS 2014

GANs (Generative Adversarial Nets) simultaneously train two
models: a generative model G that captures the data distribution,
and a discriminative model D that estimates the probability that a
sample came from the training data rather than G.

The training procedure for G is to maximize the probability of D
making a mistake. This framework corresponds to a minimax two-
player game. In the space of arbitrary functions G and D, a unique
solution exists, with G recovering the training data distribution and D
equal to 1/2 everywhere. In the case where G and D are defined by
multilayer perceptrons, the entire system can be trained with
backpropagation. There is no need for any Markov chains or unrolled
approximate inference networks during either training or generation
of samples.



Generative Adversarial Nets, NIPS 2014

GANS

* Generative
* Learn a generative model

 Adversarial
* Trained in an adversarial setting

* Networks
* Use Deep Neural Networks
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Why Generative Models?

* We've only seen discriminative models so far

* Given an image X, predicta label Y
 Estimates P(Y|X)

* Discriminative models have several key limitations
* Can’t model P(X), i.e. the probability of seeing a certain image
* Thus, can’t sample from P(X), i.e.can’t generate new images

* Generative models (in general) cope with all of above
* Can model P(X)
* Can generate new images
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Magic of GANs.

Ground Truth

Adversarial
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Magic of GANSs...

Which one is Computer generated?
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Magic of GANSs...

User edits Generated images

http://people.eecs.berkeley.edu/~junyanz/projects/gvm/




Adversarial Training

* In the last lecture, we saw:
* We can generate adversarial samples to fool a discriminative model
* We can use those adversarial samples to make models robust
We then require more effort to generate adversarial samples
Repeat this and we get better discriminative model

* GANs extend that idea to generative models:
* Generator: generate fake samples, tries to fool the Discriminator
* Discriminator: tries to distinguish between real and fake samples
* Train them against each other
* Repeat this and we get better Generator and Discriminator



GAN’s Architecture
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* Z can be thought as the latent representation of the image.
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Generator in action




GAN’s formulation
mGin max V(D,G)
* |t is formulated as a minimax game, where:

* The Discriminatoris trying to maximize its reward V(D, G)
* The Generator is trying to minimize Discriminator’s reward (or maximize its loss)

V(D, G) = [Ex~;t)(x) [logD(x)] ~+

E,—qn[log(1 — D(G(2)))]

* The Nash equilibrium of this particular game is achieved at:

* Pyata(x) = Pgen(x) Vx
* D(x) =% Vx



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior py(2).
Discilininatos e Sample minibatch of m examples {z*),...,2(™)} from data generating distribution

pdata(m)-
updates e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3" [iogD (=) +10 (1- D (6 (=9)))]

=

end for
e Sample minibatch of m noise samples {2'"/, ..., 2"/} from noise prior py(2).
Generator e Update the generator by descending its stochastic gradient:
updates 1M 5
Vo,— Y log (1-D (G (7).
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




V(D, G) = Ey_pex[log D (x)] +HE, g [log(1 — D (G(2)))]

Vanishing gradient strikes back again...

minmaxV (D, G)
G D

A log(l — J(a)) =

Vo V(D,G) = Vg E;q(z) [log(l - D(G(Z)))]

—Vao(a) _

1-o(a) o

—o(a) (1—0‘(0.)) _ _
1-o(a) =—a(a)= D(G(Z))

 Gradient goes to 0 if D is confident, i.e. D(G(z)) -0

* Minimize

—Ez-q(»)|log D (6(2))]

for Generator instead (keep Discriminatoras it is)









UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS, ICLR 2016

16

Stride 2

CONV 2

CONV4 -
G(2)

DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform
distribution Z is projected to a small spatial extent convolutional representation
with many feature maps. A series of four fractionally-strided convolutions (in some
recent papers, these are wrongly called deconvolutions) then convert this high
level representation into a 64 x 64 pixel image. Notably, no fully connected or
pooling layers are used.



UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS, ICLR 2016

Deep Convolutional GANs (DCGANSs)

Key ideas:

_ * Replace FC hidden layers with
Generator Architecture Convolutions

* Generator: Fractional-Strided
convolutions

e Use Batch Normalization after
each layer

* Inside Generator

* Use RelLU for hidden layers
* Use Tanh for the output layer

Stride 2 16

CONV 2




Generated bedrooms after one training pass through the dataset. Theoretically, the
model could learn to memorize training examples, but this is experimentally unlikely
as we train with a small learning rate and minibatch SGD. We are aware of no prior
empirical evidence demonstrating memorization with SGD and a small learning rate.



Generated bedrooms after five epochs of training. There appears to be evidence of
visual under-fitting via repeated noise textures across multiple samples such as the
base boards of some of the beds.



Random filters Trained filters




smiling neutral neutral

smiling man
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Advantages of GANS

* Plenty of existing work on Deep Generative Models
* Boltzmann Machine
* Deep Belief Nets
* Variational AutoEncoders (VAE)

* Why GANs?
* Sampling (or generation) is straightforward.
* Training doesn'tinvolve Maximum Likelihood estimation.
* Robust to Overfitting since Generator never sees the training data.
* Empirically, GANs are good at capturing the modes of the distribution.



Problems with GANs

* Probability Distribution is Implicit
* Not straightforward to compute P(X).
* Thus Vanilla GANs are only good for Sampling/Generation.

* Training is Hard
* Non-Convergence
* Mode-Collapse



Training Problems

* Non-Convergence
* Mode-Collapse



* Deep Learning models (in general) involve a single player
* The playertries to maximizeits reward (minimizeits loss).
* Use SGD (with Backpropagation) to find the optimal parameters.
* SGD hasconvergence guarantees (under certain conditions).
* Problem: With non-convexity, we might converge to local optima.

mGin L(G)

* GANs instead involve two (or more) players
* Discriminatoristrying to maximizeits reward.
* Generatoris trying to minimize Discriminator’s reward.

minmaxV (D, G)
G D

* SGD was not designed to find the Nash equilibrium of a game.
* Problem: We might not converge to the Nash equilibrium at all.



Non-Convergence
min max V(x,y)
X oy

Let V(x,y) =xy

e State1: [x>0 y>0 V>0 Increasey | Decrease X
e State 2: |x<0 y>0 V<0 Decreasey | Decrease x
 State 3: [x<0 y<0 V>0 Decreasey | Increase x
e State4 : |x>0 y<0 V<0 Increasey Increase x
e State 5: x>0 y>0 V>0 == State 1 Increasey Decrease x




Non-Convergence

min max xy
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Mode-Collapse

* Generator fails to output diverse samples
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Some real examples




Salimans, Tim, et al. "Improved techniques for training gans." NIPS2016.

Some Solutions

* Mini-Batch GANs
e Supervision with labels

* Some recent attempts :-

 Unrolled GANs
e \WW-GANSs




How to reward sample diversity?

* At Mode Collapse,
* Generator produces good samples, but a very few of them.
* Thus, Discriminator can’t tag them as fake.

* To address this problem,
* Let the Discriminator know about this edge-case.

* More formally,
 Let the Discriminator look at the entire batch instead of single examples
* If there is lack of diversity, it will mark the examples as fake

* Thus,
* Generator will be forced to produce diverse samples.



Mini-Batch GANs

 Extract features that capture diversity in the mini-batch
* Fore.g. L2 norm of the difference between all pairs from the batch

* Feed those features to the discriminator along with the image

* Feature values will differ b/w diverse and non-diverse batches
* Thus, Discriminator will rely on those features for classification

* Thisin turn,
* Will force the Generator to match those feature values with the real data
* Will generate diverse batches



Supervision with Labels

* Label information of the real data might help

Real |

D < ﬁ D Human
Fake

* Empirically generates much better samples



Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial
network." arXiv preprint arXiv:1609.03126 (2016)

Alternate view of GANSs
mgin mgixV(D, G)
V(D,G) = Eyopeyllog D)) + E, g [log(1 — D(G(2)))]

D* = argmax V(D,G) | | G = argmGin V(D,G)

* In this formulation, Discriminator’s strategy was D(x) — 1, D(G(Z)) -0

 Alternatively, we can flip the binary classification labels i.e. Fake = 1, Real =0

V(D,G) = Ex—p|log(1 — D(x))| + Ez-qez[log(D(G(2)))]

* In this new formulation, Discriminator’s strategy willbe D(x) —» 0, D(G(z)) - 1



Alternate view of GANs (Contd.)
* If all we want to encodeis D(x) — 0, D(G(z)) -1

D* = argmaxp Exp(x) [log(l — D(x))] + E;—q2) [103(5 (G(Z)))]

We canuse this | D™ = argminp Eypx) lOg(D (x)) + Ez-q(2) llog (1 - D(G(Z)))]

* Now, we can replace cross-entropy with any loss function (Hinge Loss)

D* = argminp IEx~p(x)D(x) + IEz~q(z) max (O,m — D(G(Z)))

* And thus, instead of outputting probabilities, Discriminator just has to output:-
* High values forfake samples
* Low valuesforreal samples



Energy-Based GANSs

* Modified game plans
* Generator will try to generate samples with

low values D(x) = ||Dec(Enc(x)) — x||mse
* Discriminator will try to assign high scores to
fake values
* Use AutoEncoderinside the Discriminator (3. __, ]
)
. g8
* Use Mean-Squared Reconstructionerroras D(x) O

(X )|—>
» High Reconstruction Error for Fake samples A i
* Low Reconstruction Error for Real samples



Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, |., & Abbeel, P. InfoGAN:
Interpretable Representation Learning by Information Maximization Generative Adversarial
Nets, NIPS (2016).

InfoGAN

* We want to maximize the mutual information / rea
between cand x = G(z, ¢)

* Incorporate in the value function of the minimax
game.
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minmaxV;(D,G) = V(D,G) |- A1(c;G(z,0))
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Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, |., & Abbeel, P. InfoGAN:
Interpretable Representation Learning by Information Maximization Generative Adversarial
Nets, NIPS (2016).

InfoGAN

Mutual Information’s Variational Lower bound

I(c G(z, c)) H(c) — H(c|G(z,c))

= Ex~6(z0 |Ec’'~ pcix)[log P(c’ |x)] + H(c)

= Ex~6zo |Pre(PllQ) + Eo o pcpx) [108Q(C'|JC)]] + H(c)
= Ex~Gzoe) | Ec'~ p(c|x)[lﬂgQ(C’|x)]_ + H(c)

28
T [=

[ Xyeal tdata}) [ Xfake J

)i

= IEC~P(C), x~ G(z,c) [log Q(C|X)] + H(C)

[C {IatentJJ [Z {noise}}




Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014).

Conditional GANs

MNIST digits generated conditioned on their class label.
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Figure 2 in the original paper.



Conditional GANs

 Simple modification to the original GAN
framework that conditions the model on
additional information for better multi-modal
learning.

* Lends to many practical applications of GANs
when we have explicit supervision available.

1]
!

[.Xmag {dataU E Xfake J
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Conditional GAN
(Mirza & Osindero, 2014)



Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional
adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).

Image-to-Image Translation

Labels to Street Scene Labels to Facade BW to Color

output
__ Edges to Photo

output — input output input output
Figure 1 in the original paper.



Image-to-Image Translation

e Architecture: DCGAN-based
architecture

* Training is conditioned on the images
from the source domain.

« Conditional GANs provide an effective
way to handle many complex domains
without worrying about designing
structured loss functions explicitly.

Positive examples Megative examples

Real or fake pair? Real or fake pair?

=1

"B

f .

G tries to synthesize fake
images that fool D

D tries to identify the fakes

Figure 2 in the original paper.



Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. “Generative adversarial text

to image synthesis”. ICML (2016).

Text-to-Image Synthesis

Motivation

Given a text description, generate
images closely associated.

Uses a conditional GAN with the
generator and discriminator being
condition on “dense” text
embedding.

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

Sip &
; . ' -
the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

Figure 1 in the original paper.



Text-to-Image Synthesis

This flower has small, round violet N This flower has small, round violet
petals with a dark purple center X = petals with a dark purple center

L — L e—

~ S e > Tt . M BT . . | BT D :i\-‘.'”t
ZNN(O_I)H;; | ,‘%r ~ :: LR ( (1))
= R T )
e e | N

Discriminator Network

Figure 2 in the original paper.

Generator Network

Positive Example: Negative Examples:
Real Image, Right Text Real Image, Wrong Text
Fake Image, Right Text



Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional
Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.

Face Aging with Conditional GANs

* Differentiating Feature: Uses an Identity Preservation Optimization usingan
auxiliary network to get a better approximation of the latent code (z*) for an
inputimage.

* Latent code is then conditioned on a discrete (one-hot) embedding of age

Catego res. Latent Vector Approximation Face Aging

uput lace x . \\ ( \

m apze ¥
.
Id.enm}*
Encoder . Resulfing face X;qrger
Opumlzatmn i of age “60+”
Inihal reconstruction | Optunized reconstruction
' R\ Generator [
\ e
<’

T of age ¥y

.

Xp of age ¥

Figure 1 in the original paper.



Liu, Ming-Yu, and Oncel Tuzel. “Coupled generative adversarial networks”. NIPS (2016).

Coupled GANs

e Architecture

Generators Discriminators
GAN, f1(91@)
9.(2) | :
zZ —— weightésharing
GAN, :

Figure 1 of the original paper.

Weight-sharing constraints the network to learn a joint distribution without corresponding supervision.



\ =\ ,
Coupled GANs SRS i
&
* Some examples of -
generating facial
images across | Facial
different feature Expression
domains.

* Corresponding images
in a column are
generate from the
same latent code z

~ Sunglasses

CR YL

Figure 4 in the original paper.



Denton, E.L., Chintala, S. and Fergus, R., 2015. “Deep Generative Image Models using a
Laplacian Pyramid of Adversarial Networks”. NIPS (2015)

Laplacian Pyramid of Adversarial Networks

’ .. — T A / 7,
B e
, 1
i

Figure 1 in the original paper. (Edited for simplicity)
* Basedon the Laplacian Pyramid representation ofimages. (1983)
» Generate high resolution (dimension)images by using a hierarchical system of GANs
* Iterativelyincreaseimage resolution and quality.




Laplacian Pyramid of Adversarial Networks

A
[
2y

Figure 1 in the original paper.

Image Generation using a LAPGAN

« Generator G5 generatesthe baseimage I5 from random noise input z5.

* Generators(G,, G4, G) iteratively generate the difference image (ﬁ) conditioned on previous
smallimage ([).

* Thisdifference image is added to an up-scaled version of previous smallerimage.



Laplacian Pyramid of Adversarial Networks

Real/

Generated?

Real/Generated?

Figure 2 in the original paper.

Real/Generated?

Training Procedure:
Models at each level are trained independently to learn the required representation.



