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FlowNet 1.0 & FlowNet 2.0

Convolutional neural networks (CNNs) have made great
contributions to various computer vision tasks. Recently,
CNNs have been successfully used in estimating optical flow.
Compared with traditional methods, these methods achieved
a large improvement in quality.

Both FlowNetl.0 and FlowNet2.0 are end-to-end architectures.
FlowNet2.0 1s stacked by FlowNetCorr and FlowNetS, and has
much better results than both of FlowNetCorr and FlowNetS.
FlowNetS simply stacks two sequentially adjacent images as input,
while in FlowNetCorr, two 1images are convoluted separately, and
are combined by a correlation layer. In a spatial pyramid network,
the authors trained one deep network for each level independently
to compute the flow update. Both the SPyNet and FlowNet2.0
estimate large motions in a coarse-to-fine manner. FlowNet2.0 has
the best performance among these architectures, and SPyNet has the
least model parameters.



FlowNet 1.0 & FlowNet 2.0
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Image Warping

- Image filtering: change range of image

" g(x) = h(f(X))
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- Image warping: change domain of image

- 9(x) = 1(h(x))
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Image Warping

- Image filtering: change range of image

- 9(x) = h(i(x))
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- 9(x) = 1(h(x))




Parametric (global) warping

- Examples of parametric warps:
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Image Warping

- Given a coordinate transform x”’= h(x) and a source
Image f(x), how do we compute a transformed image

g(x) =1(h(x))?




Forward Warping

- Send each pixel f(x) to its corresponding location x” = h(x)
In g(x”)

« What if pixel lands “between” two pixels?
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Forward Warping

- Send each pixel f(x) to its corresponding location x” = h(x)
In g(x”)

« What if pixel lands “between” two pixels?

* Answer: add “contribution” to several pixels,
normalize later (splatting)
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Inverse Warping

- Get each pixel g(x”) from its corresponding location x = h-

1(x’) in f(x)

« What if pixel comes from “between” two pixels?
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Inverse Warping

- Get each pixel g(x”) from its corresponding location x = h-
L(x”) in f(x)

« What if pixel comes from “between” two pixels?

* Answer: resample color value from
Interpolated (prefiltered) source image
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Interpolation

- Possible interpolation filters:
- nearest neighbor
- bilinear
- bicubic (interpolating)
- sinc/ FIR
- Needed to prevent “jaggies”
and “texture crawl” (see demo)




FlowNet 1.0 & FlowNet 2.0

convolutional
network




FlowNet 1.0 & FlowNet 2.0

While optical flow estimation needs precise per-pixel localization, it
also requires finding correspondences between two input images.
This involves not only learning image feature representations, but
also learning to match them at different locations in the two images.
In this respect, optical flow estimation fundamentally differs from
previous applications of CNNss.
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Siamese Network in FlowNet 1.0 & FlowNet 2.0
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FlowNet 1.0 & FlowNet 2.0

FlowNetSimple

FlowNetCorr




FlowNet 1.0 & FlowNet 2.0

In FlowNet1.0, two architectures are proposed:
(a) FlowNetSimple;
(b) FlowNetCorr.

Both of the two architectures are end-to-end learning
approaches. In FlowNetSimple, two sequentially adjacent input
Images are simply stacked together and they feeded through
the network.

Compared with FlowNetSimple, FlowNetCorr first produce
representations of the two images separately, and then
combines them together in the ‘correlation layer’, and learn the
higher representation together. Both of the two architectures
have refinements which are used for upsampling resolution.



FlowNet 1.0 & FlowNet 2.0

Correlation layer is used to perform multiplicative patch
comparisons between two feature maps. More specifically,
given two multi-channel feature maps f1, f2, with w, h, and c
being their width, height and number of channels. The
‘correlation’ of two patches centered at x1 in the first map and
X2 in the second map is then defined as:

c(X1,X2) = Z (f1(x1 + 0), f2(x2 + 0))
oc|[—k,k] x[—k,k]|

where x1 and x2 are the center of the first map and the second
map respectively, and the square space patch of size K = 2k+1.
For computation reasons, the maximum displacement is limited.
To be specific, for each location x1, the range of x2 by
computing correlations in a neighborhood of size D = 2d+1, and
d is a given maximum displacement. The size of an output is
(w*h*D?). Afterwards, the feature map is concatenated, which is
extracted from f1 using convolution layer, with the output.



FlowNet 1.0 & FlowNet 2.0

After a series of convolution layers and pooling layers,
resolution has been reduced. Thus, the coarse pooled
representation is refined by ‘upconvolution’ layers, consisting
of unpooling and upconvolution. After upconvolutioning the
feature maps, the corresponding feature maps are
concatenated and an upsampled coarse flow prediction.




FlowNet 1.0 & FlowNet 2.0

To compute large displacement of optical flow, FlowNetS and

FlowNetCorr are stacked.
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FlowNet 1.0 & FlowNet 2.0
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Ground truth
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SPyNet

SPyNet combines a classic spatial-pyramid formulation with
deep learning. Thus SPyNet is a coarse-to-fine approach.

At each level of the spatial pyramid, the authors train a deep
neural network to estimate a flow instead of solely training one
deep network. This method is beneficial to arbitrarily large
motions, because each network has less work to do and the
motion at each network become smaller.

Compared to FlowNet, SPyNet is much simpler and 96%
smaller in terms of model parameters. Also, for some standard
benchmarks, SPyNet is more accurate than FlowNet1.0.



Architecture of SPyNet
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A 3-level pyramid network is shown:

d() is the downsampling function that decrease an m*n image |

to m/2*n/2

u() is the resampling function that resample optical flow field

w(l,V) is used for warpping image |, according to optical flow field

V

{G_0,...,G_K} is a set of trained convolutional neural network

v_k is residual flow computed by convnet Gk at the k-th pyramid
level




SPyNet
v = Gr(It, w(I, u(Vi—1)), u(Vi—1))

At the k-th pyramid level, residual flow v_k is computed by G _k
using |_k1, the upsampled flow from the previous pyramid, and

| k2 which is warpped by upsample flow. Then, the flow V_k
can be represented by

Vie = u(Vie—1) + vr.

Convents {G_0,...G_k} are trained independently to compute the
residual flow v_Kk. Also, the ground truth residual flows v* Kk is
obtained by subtracting downsampled ground truth flow V* k and
u(V_k-1). Authors train the networks by minimizing the average
End Point Error(EPE) loss on the residual flow v_k

O = Vi — u(Vi—1).



SPyNet




