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FlowNet 1.0 & FlowNet 2.0

Convolutional neural networks (CNNs) have made great 

contributions to various computer vision tasks. Recently, 

CNNs have been successfully used in estimating optical flow. 

Compared with traditional methods, these methods achieved 

a large improvement in quality.

Both FlowNet1.0 and FlowNet2.0 are end-to-end architectures. 

FlowNet2.0 is stacked by FlowNetCorr and FlowNetS, and has 

much better results than both of FlowNetCorr and FlowNetS. 

FlowNetS simply stacks two sequentially adjacent images as input, 

while in FlowNetCorr, two images are convoluted separately, and 

are combined by a correlation layer. In a spatial pyramid network, 

the authors trained one deep network for each level independently 

to compute the flow update. Both the SPyNet and FlowNet2.0 

estimate large motions in a coarse-to-fine manner. FlowNet2.0 has 

the best performance among these architectures, and SPyNet has the 

least model parameters.
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FlowNet 1.0 & FlowNet 2.0
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Image Warping

• image filtering: change range of image

• g(x) = h(f(x))

• image warping: change domain of image

• g(x) = f(h(x))
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Image Warping

• image filtering: change range of image

• g(x) = h(f(x))

• image warping: change domain of image

• g(x) = f(h(x))
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Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical
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Image Warping

• Given a coordinate transform x’ = h(x) and a source 

image f(x), how do we compute a transformed image 

g(x’) = f(h(x))?

f(x) g(x’)
x x’

h(x)
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Forward Warping

• Send each pixel f(x) to its corresponding location x’ = h(x) 

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?
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Forward Warping

• Send each pixel f(x) to its corresponding location x’ = h(x) 

in g(x’)

f(x) g(x’)
x x’

h(x)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels, 

normalize later (splatting)
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Inverse Warping

• Get each pixel g(x’) from its corresponding location x = h-

1(x’) in f(x)

f(x) g(x’)
x x’

h-1(x’)

• What if pixel comes from “between” two pixels?
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Inverse Warping

• Get each pixel g(x’) from its corresponding location x = h-

1(x’) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: resample color value from 

interpolated (prefiltered) source image

f(x) g(x’)
x x’
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Interpolation

• Possible interpolation filters:

• nearest neighbor

• bilinear

• bicubic (interpolating)

• sinc / FIR

• Needed to prevent “jaggies”

and “texture crawl” (see demo)
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FlowNet 1.0 & FlowNet 2.0
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FlowNet 1.0 & FlowNet 2.0

While optical flow estimation needs precise per-pixel localization, it 

also requires finding correspondences between two input images. 

This involves not only learning image feature representations, but 

also learning to match them at different locations in the two images. 

In this respect, optical flow estimation fundamentally differs from 

previous applications of CNNs. 



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Siamese Network in FlowNet 1.0 & FlowNet 2.0
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FlowNet 1.0 & FlowNet 2.0
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FlowNet 1.0 & FlowNet 2.0

In FlowNet1.0, two architectures are proposed: 

(a) FlowNetSimple; 

(b) FlowNetCorr. 

Both of the two architectures are end-to-end learning 

approaches. In FlowNetSimple, two sequentially adjacent input 

images are simply stacked together and they feeded through 

the network. 

Compared with FlowNetSimple, FlowNetCorr first produce 

representations of the two images separately, and then 

combines them together in the ‘correlation layer’, and learn the 

higher representation together. Both of the two architectures 

have refinements which are used for upsampling resolution.
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FlowNet 1.0 & FlowNet 2.0

Correlation layer is used to perform multiplicative patch 

comparisons between two feature maps. More specifically, 

given two multi-channel feature maps f1, f2, with w, h, and c 

being their width, height and number of channels. The 

‘correlation’ of two patches centered at x1 in the first map and 

x2 in the second map is then defined as:

where x1 and x2 are the center of the first map and the second 

map respectively, and the square space patch of size K = 2k+1. 

For computation reasons, the maximum displacement is limited. 

To be specific, for each location x1, the range of x2 by 

computing correlations in a neighborhood of size D = 2d+1, and 

d is a given maximum displacement. The size of an output is 

(w*h*D²). Afterwards, the feature map is concatenated, which is 

extracted from f1 using convolution layer, with the output.
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FlowNet 1.0 & FlowNet 2.0

After a series of convolution layers and pooling layers, 

resolution has been reduced. Thus, the coarse pooled 

representation is refined by ‘upconvolution’ layers, consisting 

of unpooling and upconvolution. After upconvolutioning the 

feature maps, the corresponding feature maps are 

concatenated and an upsampled coarse flow prediction.
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FlowNet 1.0 & FlowNet 2.0

To compute large displacement of optical flow, FlowNetS and 

FlowNetCorr are stacked.
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FlowNet 1.0 & FlowNet 2.0
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SPyNet

SPyNet combines a classic spatial-pyramid formulation with 

deep learning. Thus SPyNet is a coarse-to-fine approach. 

At each level of the spatial pyramid, the authors train a deep 

neural network to estimate a flow instead of solely training one 

deep network. This method is beneficial to arbitrarily large 

motions, because each network has less work to do and the 

motion at each network become smaller. 

Compared to FlowNet, SPyNet is much simpler and 96% 

smaller in terms of model parameters. Also, for some standard 

benchmarks, SPyNet is more accurate than FlowNet1.0.
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Architecture of SPyNet

A 3-level pyramid network is shown:

d(）is the downsampling function that decrease an m*n image I 

to m/2*n/2

u() is the resampling function that resample optical flow field

w(I,V) is used for warpping image I, according to optical flow field 

V

{G_0,…,G_K} is a set of trained convolutional neural network

v_k is residual flow computed by convnet Gk at the k-th pyramid 

level
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SPyNet

At the k-th pyramid level, residual flow v_k is computed by G_k

using I_k1, the upsampled flow from the previous pyramid, and 

I_k2 which is warpped by upsample flow. Then, the flow V_k

can be represented by

Convents {G_0,…G_k} are trained independently to compute the 

residual flow v_k. Also, the ground truth residual flows v^_k is 

obtained by subtracting downsampled ground truth flow V^_k and 

u(V_k-1). Authors train the networks by minimizing the average 

End Point Error(EPE) loss on the residual flow v_k
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SPyNet


