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Stereo image rectification



Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

 C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example



The correspondence problem

• Epipolar geometry constrains our search, but 
we still have a difficult correspondence 
problem.



Fundamental Matrix + Sparse correspondence



Fundamental Matrix + Dense correspondence



SIFT + Fundamental Matrix + RANSAC

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski

Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Sparse to Dense Correspondence

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski

Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Structure from motion (or SLAM)

• Given a set of corresponding points in two or more 
images, compute the camera parameters and the 3D 
point coordinates

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

? ? ? Slide credit: 

Noah Snavely

?



Structure from motion ambiguity

• If we scale the entire scene by some factor k 
and, at the same time, scale the camera 
matrices by the factor of 1/k, the projections 
of the scene points in the image remain 
exactly the same:

It is impossible to recover the absolute scale of the scene!
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How do we know the scale of image content?







Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error
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Correspondence problem

Multiple match 

hypotheses 

satisfy epipolar 

constraint, but 

which is correct? 

Figure from Gee & Cipolla 1999
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Correspondence problem

• Beyond the hard constraint of epipolar geometry, there 

are “soft” constraints to help identify corresponding points

• Similarity

• Uniqueness

• Ordering

• Disparity gradient

• To find matches in the image pair, we will assume

• Most scene points visible from both views

• Image regions for the matches are similar in appearance
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Dense correspondence search

For each epipolar line

For each pixel / window in the left image

• compare with every pixel / window on same epipolar line 

in right image
• pick position with minimum match cost (e.g., SSD, 

normalized correlation)

Adapted from Li Zhang
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Matching cost

disparity

Left Right

scanline

Correspondence search with similarity constraint

• Slide a window along the right scanline and compare 

contents of that window with the reference window in 

the left image

• Matching cost: SSD or normalized correlation
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Left Right

scanline

Correspondence search with similarity constraint

SSD
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Left Right

scanline

Correspondence search with similarity constraint

Norm. corr
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Correspondence problem

Source: Andrew Zisserman

Intensity 

profiles
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Correspondence problem

Neighborhoods of corresponding points are  

similar in intensity patterns.

Source: Andrew Zisserman



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching

???

Textureless regions are 
non-distinct; high 
ambiguity for matches.
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Effect of window size

Source: Andrew Zisserman
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W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 

variation, yet small enough to contain only pixels with 

about the same disparity.

Effect of window size
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Left image Right image
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Results with window search

Window-based matching

(best window size)

Ground truth
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Better solutions

• Beyond individual correspondences to estimate 

disparities:

• Optimize correspondence assignments jointly

• Scanline at a time (DP)

• Full 2D grid (graph cuts)
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Stereo as energy minimization

• What defines a good stereo correspondence?

1. Match quality

• Want each pixel to find a good match in the other image

2. Smoothness

• If two pixels are adjacent, they should (usually) move about 

the same amount 
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Stereo matching as energy minimization

I1
I2 D

• Energy functions of this form can be minimized using 

graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate 
Energy Minimization via Graph Cuts,  PAMI 2001
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Source: Steve Seitz

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
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Better results… 

Graph cut method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/
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Challenges

• Low-contrast ; textureless image regions

• Occlusions

• Violations of brightness constancy (e.g., specular 

reflections)

• Really large baselines (foreshortening and appearance 

change)

• Camera calibration errors



Active stereo with structured light

• Project “structured” light patterns onto the object

• Simplifies the correspondence problem

• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 

Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/


Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


iPhone X


