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Fully convolutional network (FCN) has been 

successfully applied in semantic segmentation of 

scenes represented with RGB images. Images 

augmented with depth channel provide more 

understanding of the geometric information of the 

scene in the image. The question is how to best exploit 

this additional information to improve the segmentation 

performance.

There are three key approaches for RGB-D image 

segmentation: 

(a)Traditional Approaches 

(b)Encoder-decoder Approaches 

(c)Multi-scale Networks





Learning Rich Features from RGB-D Images for Object Detection and 

Segmentation, ECCV 2014

Overview: from an RGB and depth image pair, our system 

detects contours, generates 2.5D region proposals, classifies 

them into object categories, and then infers segmentation 

masks for instances of “thing”-like objects, as well as labels for 

pixels belonging to “stuff”-like categories.



Learning Rich Features from RGB-D Images for Object Detection and 

Segmentation, ECCV 2014

We propose to encode the depth image with three channels at 

each pixel: horizontal disparity, height above ground, and the 

angle the pixel’s local surface normal makes with the inferred 

gravity direction. We refer to this encoding as HHA. All three 

channels are linearly scaled to map observed values across the 

training dataset to the 0 to 255 range. 

The HHA representation encodes properties of geocentric pose 

that emphasize complementary discontinuities in the image 

(depth, surface normal and height). Furthermore, it is unlikely 

that a CNN would automatically learn to compute these 

properties directly from a depth image, especially when very 

limited training data is available. 

Our hypothesis is that a network designed for RGB images can 

also learn a suitable representation for HHA images.



FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based 

CNN Architecture

With the availability of RGB-D cameras, it is expected that additional depth 

measurement will improve the accuracy. Here we investigate a solution how to 

incorporate complementary depth information into a semantic segmentation 

framework by making use of convolutional neural networks (CNNs). Recently 

encoder-decoder type fully convolutional CNN architectures have achieved a great 

success in the field of semantic segmentation. Motivated by this observation we 

propose an encoder-decoder type network, where the encoder part is composed of 

two branches of networks that simultaneously extract features from RGB and depth 

images and fuse depth features into the RGB feature maps as the network goes 

deeper.

An exemplar output of FuseNet. From left to right: input RGB and depth images, the 

predicted semantic labeling and the probability of the corresponding labels, where 

white and blue denote high and low probability, respectively



FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based 

CNN Architecture

The architecture of the proposed FuseNet. Colors indicate the layer type. The network 

contains two branches to extract features from RGB and depth images, and the 

feature maps from depth is constantly fused into the RGB branch, denoted with the 

red arrows. In our architecture, the fusion layer is implemented as an element-wise 

summation, demonstrated in the dashed box.



FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based 

CNN Architecture

FuseNet consists of an encoder-decoder type network 

architecture. Such network has two major parts: 

(1) the encoder part extracts features; 

(2) the decoder part up-samples the feature maps back to the 

original input resolution. 

This encoder-decoder style has been already introduced in 

several previous works such as DeconvNet and SegNet and 

has achieved good segmentation performance. In addition, two 

branches extract features from RGB and depth images. We 

note that the depth image is normalized to have the same value 

range as color images, i.e. into the interval of [0,255]. In order 

to combine information from both input modules, we fuse the 

feature maps from the depth branch into the feature maps of 

the RGB branch. 



FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based 

CNN Architecture

The encoder part of FuseNet resembles the 16-layer VGG net, except of 

the fully connected layers fc6, fc7 and fc8, since the fully connected layers 

reduce the resolution with a factor of 49, which increases the difficulty of the 

up-sampling part. In our network, we always use batch normalization (BN) 

after convolution (Conv) and before rectified linear unit1 (ReLU) to reduce 

the internal covariate shift. We refer to the combination of convolution, 

batch normalization and ReLU as CBR block, respectively. The BN layer 

first normalizes the feature maps to have zero-mean and unit-variance, and 

then scales and shifts them afterwards. In particular, the scale and shift 

parameters are learned during training. As a result, color features are not 

overwritten by depth features, but the network learns how to combine them 

in an optimal way. 

The decoder part is a counterpart of the encoder part, where memorized 

un-pooling is applied to up-sample the feature maps. In the decoder part, 

we again use the CBR blocks. We also did experiments with deconvolution 

instead of convolution, and observed very similar performance. 



FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based 

CNN Architecture

Illustration of different fusion strategies at the second (CBR2) 

and third (CBR3) convolution blocks of VGG 16-layer net. (a) 

The fusion layer is only inserted before each pooling layer. (b) 

The fusion layer is inserted after each CBR block. 



3DCNN based system presented by Huang et al. for semantic 

labeling of point clouds. Clouds undergo a dense voxelization

process and the CNN produces pervoxel labels that are then 

mapped back to the point cloud.



Deep Projective 3D Semantic Segmentation, 2017

Semantic segmentation of 3D point clouds is a challenging problem with 

numerous real-world applications. While deep learning has revolutionized 

the field of image semantic segmentation, its impact on point cloud data 

has been limited so far. Recent attempts, based on 3D deep learning 

approaches (3DCNNs), have achieved below-expected results. Such 

methods require voxelizations of the underlying point cloud data, leading to 

decreased spatial resolution and increased memory consumption. 

Additionally, 3D-CNNs greatly suffer from the limited availability of 

annotated datasets. 

In this paper, we propose an alternative framework that avoids the 

limitations of 3D-CNNs. Instead of directly solving the problem in 3D, we 

first project the point cloud onto a set of synthetic 2D-images. These 

images are then used as input to a 2D-CNN, designed for semantic 

segmentation. Finally, the obtained prediction scores are re-projected to the 

point cloud to obtain the segmentation results. We further investigate the 

impact of multiple modalities, such as color, depth and surface normals, in 

a multi-stream network architecture.



Deep Projective 3D Semantic Segmentation, 2017

An overview of the proposed 

method. The input point cloud is 

projected into multiple virtual 

camera views, generating 2D 

color, depth and surface normal 

images. The images for each 

view are processed by a multi-

stream CNN for semantic 

segmentation. The output 

prediction scores from all views 

are fused into a single prediction 

for each point, resulting in a 3D 

semantic segmentation of the 

point cloud.



Deep Projective 3D Semantic Segmentation, 2017

Illustration of the proposed multi-stream architecture for 2D semantic segmentation. 

Each input stream is processed by a Fully Convolutional Network. The prediction 

scores from each stream are summed to get the final prediction.



Depth-aware CNN for RGB-D Segmentation, 2018

Convolutional neural networks (CNN) are limited by the lack of 

capability to handle geometric information due to the fixed grid 

kernel structure. The availability of depth data enables progress 

in RGB-D semantic segmentation with CNNs. State-of-the-art 

methods either use depth as additional images or process 

spatial information in 3D volumes or point clouds. These 

methods suffer from high computation and memory cost. 

To address these issues, we present Depth-aware CNN by 

introducing two intuitive, flexible and effective operations: 

depth-aware convolution and depth-aware average pooling. 

By leveraging depth similarity between pixels in the process of 

information propagation, geometry is seamlessly incorporated 

into CNN. Without introducing any additional parameters, both 

operators can be easily integrated into existing CNNs.



Depth-aware CNN for RGB-D Segmentation, 2018

Illustration of Depth-aware CNN. A and C are labeled as table and B is labeled as 

chair. They all have similar visual features in the RGB image, while they are separable 

in depth. Depth-aware CNN incorporate the geometric relations of pixels in both 

convolution and pooling. When A is the center of the receptive field, C then has more 

contribution to the output unit than B. Figures in the rightmost column shows the RGB-

D semantic segmentation result of Depth-aware CNN.



Depth-aware CNN for RGB-D Segmentation, 2018

Two new operators are introduced: (a) depth-aware convolution and (b) 

depth-aware average pooling. 

Depth-aware convolution augments the standard convolution with a depth 

similarity term. We force pixels with similar depths with the center of the 

kernel to have more contribution to the output than others. This simple depth 

similarity term efficiently incorporates geometry in a convolution kernel and 

helps build a depth-aware receptive field, where convolution is not 

constrained to the fixed grid geometric structure. 

The second introduced operator is depth-ware average pooling. Similarly, 

when a filter is applied on a local region of the feature map, the pairwise 

relations in depth between neighboring pixels are considered in computing 

mean of the local region. Visual features are able to propagate along with the 

geometric structure given in depth images. Such geometry-aware operation 

enables the localization of object boundaries with depth images.



Depth-aware CNN for RGB-D Segmentation, 2018

Illustration of information propagation in Depth-aware CNN. Without loss of 

generality, we only show one filter window with kernel size 3 × 3. In depth 

similarity shown in figure, darker color indicates higher similarity while 

lighter color represents that two pixels are less similar in depth. In (a), the 

output activation of depth-aware convolution is the multiplication of depth 

similarity window and the convolved window on input feature map. Similarly 

in (b), the output of depth-aware average pooling is the average value of the 

input window weighted by the depth similarity.



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017

There is correlation between depth and scene-resolution: the 

near field (highlighted in blue rectangle) consists of high scene-

resolution, while the far field (highlighted in red rectangle) has 

low scene resolution.



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017

The key idea of this work is to use the depth to split the image 

into layers representing similar visual characteristic, or the 

“scene-resolution”, e.g., the resolution of the objects and 

scenes in generals. 

There is correlation between depth and scene-resolution: lower 

scene-resolution appears in regions that have higher depth, and 

higher scene-resolution appears in the near field. In lower 

scene-resolution regions, objects and scenes densely co-exist, 

forming more complex correlation between objects/scenes 

relative to higher scene-resolution regions. 

To better represent and learn the variant object/scene 

relationships, appropriate features should be constructed for 

different scene-resolutions.



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017

First, to make the feature more focused on the common visual 

characteristic of the observed scene, a context-aware receptive 

field (CaRF) is introduced. The CaRF provides a better control 

on the relevant contextual information of the learned features. 

The CaRFs are computed based on super-pixels, which are 

defined by the underlying scene structures. Thus, the contextual 

information provided by CaRF can alleviate negative effect of 

mixing the features of overly small or large regions. 

Second, a cascaded feature network (CFN) with parallel 

branches is developed, each of which focuses on semantic 

segmentation of regions of certain scene-resolution. Each 

branch is equipped with a CaRF. The combination of CaRF and 

cascaded network, enables regions in different scene-

resolutions to communicate each other so as to wisely update 

shared convolutional features.



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017

The overview of our cascaded feature network (CFN). Given the color 

image, we use CNN to compute the convolutional feature map. The discrete 

depth image is layered, where each layer represents a scene-resolution and 

is used to match the image regions to corresponding network branches that 

share the same convolutional feature map. Each branch has context-aware 

receptive field (CaRF), which produces contextual representation to 

combine with the feature from adjacent branch. The predictions of all 

branches are combined to achieve the eventual segmentation result.



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017

The two-level Context-aware Receptive Field (CaRF): (a) the 

image partitioned into super-pixels with different sizes; (b) at 

each node of the coarse grid we aggregate the features that 

reside in the same super-pixel; (c) the content of adjacent 

super-pixels is aggregated; (d) the aggregated content in a 

feature map represents a CaRF. The two-level CaRF is 

repeatedly applied to the images partitioned by super-pixels 

with diverse sizes. Note that the feature map has smaller 

resolution than the image due to down-sampling of network. 



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017

The network can have separate branches (a), combined 

branches (b) or cascaded branches (c). For clarity, we illustrate 

it with two branches only. Each network can be extended to 

have more branches.

The idea of Context-aware Receptive Field (CaRF) is to 

aggregate convolutional features of local context into richer 

features that learn better the relevant content, where the 

receptive field is spatially-variant and defined its extent 

according the local context. 



Cascaded Feature Network for Semantic Segmentation of RGB-D Images, ICCV 

2017



Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D 

Cameras, 2017

A novel deep learning approach is developed for semantic 

segmentation of RGB-D images with multi-view context, where  

RGB and depth fusion are seamlessly fused via multi-scale 

deep supervision and multi-view consistency constraints. 

A shared principle is using the SLAM trajectory estimate to warp 

network outputs of multiple frames into the reference view with 

ground-truth annotation. By this, the network can learn features 

that are invariant under view-point change. 



Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D 

Cameras, 2017

The key innovation is to 

enforce consistency by 

warping CNN feature 

maps from multiple 

views into a common 

reference view using 

the SLAM trajectory 

and to supervise 

training at multiple 

scales. Our approach 

improves performance 

for single-view 

segmentation and is 

specifically beneficial 

for multi-view fused 

segmentation.



Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D 

Cameras, 2017

The CNN encoder-decoder architecture used in our approach. Input to the network 

are RGB-D sequences with corresponding poses from SLAM trajectory. The encoder 

contains two branches to learn features from RGB-D data as inspired by FuseNet. 

The obtained low-resolution high-dimension feature maps are successively refined 

through deconvolutions in the decoder. We warp feature maps into a common 

reference view and enforce multi-view consistency with various constraints. The 

network is trained in a deeply-supervised manner where loss is computed at all scales 

of the decoder



RGB-D Object Detection and Semantic Segmentation for Autonomous 

Manipulation in Clutter, 2017



RGB-D Object Detection and Semantic Segmentation for Autonomous 

Manipulation in Clutter, 2017

Detection pipeline with CNN features from RGB and 

downsampled HHA-encoded depth. C denotes the number of 

CNN feature maps after the last convolutional layer (512 for 

VGG-16). The internal proposal generator produces B 

proposals (1000). 



RGB-D Object Detection and Semantic Segmentation for Autonomous 

Manipulation in Clutter, 2017

Detection pipeline with concatenated CNN features from RGB 

and HHA-encoded depth. C denotes the number of CNN 

feature maps after the last convolutional layer (512 for VGG-

16). The internal proposal generator produces B proposals 

(1000). For the Cross Modal Distillation approach, CNN ψ is 

trained to imitate the pretrained CNN φ.



RGB-D Object Detection and Semantic Segmentation for Autonomous 

Manipulation in Clutter, 2017



RGB-D Face Recognition via Deep Complementary and Common Feature 

Learning, 2018

RGB-D face recognition (FR) consists of two typical senarios: (1) multi-modality 

matching, e.g., RGB-D probe vs. RGB-D gallery, where both the enrolled gallery and 

the probe images are captured using RGBD sensors, and (2) cross-modality matching, 

e.g., RGB probe vs. RGB-D gallery, where the gallery images remain RGB-D, but the 

probe images are captured by RGB sensors. The proposed approach addresses the 

two problems by learning complementary and common features.



RGB-D Face Recognition via Deep Complementary and Common Feature 

Learning, 2018

Overview of the proposed complementary feature learning 

approach from RGB and depth modalities, which handles multi-

modality FR scenario such as RGB-D probe vs. RGB-D gallery.



RGB-D Face Recognition via Deep Complementary and Common Feature 

Learning, 2018

The network architecture of our complementary feature learning.



RGB-D Face Recognition via Deep Complementary and Common Feature 

Learning, 2018

The details of the loss4 unit introduced to enforce complementary feature 

learning. The plus symbol denotes the element-wise average.



RGB-D Face Recognition via Deep Complementary and Common Feature 

Learning, 2018

Overview of the proposed common feature learning approach between 

RGB and depth modalities, which handles cross-modality FR scenario 

such as RGB probe vs. depth gallery.


