
Monocular Depth Estimation

Jianping Fan 

Department of Computer Science 

UNC-Charlotte

Course Website: 
http://webpages.uncc.edu/jfan/itcs5152.html



3-D Depth Reconstruction from a Single Still Image, IJCV 

A single still image and its corresponding (ground-truth) 

depth map. Colors in the depth map indicate estimated 

distances from the camera.



3-D Depth Reconstruction from a Single Still Image, IJCV 

By considering stereo or geometric (triangulation) differences 

between two images or even multiple images (multiple views), 

there are several approaches that can be used for depth 

estimation: 

(a) binocular vision (stereopsis) by using two stereo images; 

(b) structure from motion ; 

(c) depth from defocus. 

(d) beyond stereo/triangulation cues, there are also numerous 

monocular cues—such as texture variations and gradients, 

defocus, color/haze, etc.—that contain useful and important 

depth information.

Humans use numerous visual cues to perceive depth. Such cues are typically 

grouped into four distinct categories: monocular, stereo, motion parallax, and focus 

cues



3-D Depth Reconstruction from a Single Still Image, IJCV 

Monocular Cues

Humans use monocular cues such as texture variations, texture gradients, 

interposition, occlusion, known object sizes, light and shading, haze, 

defocus, etc. 

(a) many objects’ texture will look different at different distances from the 

viewer; 

(b) texture gradients, which capture the distribution of the direction of 

edges, also help to indicate depth. For example, a tiled floor with parallel 

lines will appear to have tilted lines in an image. The distant patches will 

have larger variations in the line orientations, and nearby patches with 

almost parallel lines will have smaller variations in line orientations. 

Similarly, a grass field when viewed at different distances will have different 

texture gradient distributions. 

© Haze is another depth cue, and is caused by atmospheric light scattering. 

(d) overall organization of the image can also be used to determine depths



3-D Depth Reconstruction from a Single Still Image, IJCV 

Stereo Cues

Each eye receives a slightly different view of the world and 

stereo vision combines the two views to perceive 3-d depth. 

An object is projected onto different locations on the two 

retinae (cameras in the case of a stereo system), depending 

on the distance of the object. 

The retinal (stereo) disparity varies with object distance, and is 

inversely proportional to the distance of the object. Disparity is 

typically not an effective cue for estimating small depth 

variations of objects that are far away.



3-D Depth Reconstruction from a Single Still Image, IJCV 

Motion Parallax

As an observer moves, closer objects appear to move more 

than further objects. By observing this phenomenon, called 

motion parallax, one can estimate the relative distances in a 

scene. 

Focus Cues

Humans have the ability to change the focal lengths of the eye 

lenses by controlling the curvature of lens, thus helping them to 

focus on objects at different distances. The focus, or 

accomodation, cue refers to the ability to estimate the distance 

of an object from known eye lens configuration and the 

sharpness of the image of the object. 



3-D Depth Reconstruction from a Single Still Image, IJCV 

Depth estimation from a single still image is a difficult task, 

since depth typically remains ambiguous given only local image 

features. Thus the global structure of the image as well as use 

prior knowledge about the scene must be taken into account. 

Modeling depths and relationships between depths at multiple 

spatial scales by using a hierarchical, multiscale Markov 

Random Field (MRF)

Modeling the conditional distribution of the depths given the 

monocular image features. Though learning in our MRF model 

is approximate, MAP inference is tractable via linear 

programming.



3-D Depth Reconstruction from a Single Still Image, IJCV 

The image is first partitioned into small rectangular patches to 

estimate a single depth value for each patch. 

Two types of features are used: (a) absolute depth features—

used to estimate the absolute depth at a particular patch; (b) 

relative features, which we use to estimate relative depths 

(magnitude of the difference in depth between two patches). 

These features try to capture two processes in the human visual 

system: (a) local feature processing (absolute features), such 

as that the sky is far away; and (b) continuity features (relative 

features), a process by which humans understand whether two 

adjacent patches are physically connected in 3-d and thus have 

similar depths.



3-D Depth Reconstruction from a Single Still Image, IJCV 

Both absolute and relative features are selected to capture 

three types of local cues: 

(a) texture variations; 

(b) texture gradients; 

(c) color. 

(1)Texture information is mostly contained within the image 

intensity channel, Laws’ masks are applied to this channel 

to compute the texture. 

(2)Haze is reflected in the low frequency information in the 

color channels, and we capture this by applying a local 

averaging filter (the first Laws’ mask) to the color channels. 

(3)Lastly, to compute an estimate of texture gradient that is 

robust to noise, we convolve the intensity channel with six 

oriented edge filters.



3-D Depth Reconstruction from a Single Still Image, IJCV 

The absolute depth feature vector for a patch, which includes features from 

its immediate neighbors and its more distant neighbors (at larger scales). The 

relative depth features for each patch use histograms of the filter outputs. 



3-D Depth Reconstruction from a Single Still Image, IJCV 

The multiscale MRF model for modeling relation between 

features and depths, relation between depths at same scale, 

and relation between depths at different scales. (Only 2 out of 

3 scales, and a subset of the edges, are shown.)



3-D Depth Reconstruction from a Single Still Image, IJCV 



Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

Finding depth relations from a single image is less 

straightforward, requiring integration of both global and local 

information from various cues. Moreover, the task is inherently 

ambiguous, with a large source of uncertainty coming from the 

overall scale. 

Finding depth relations from a single image by employing two 

deep network stacks: 

(a) one that makes a coarse global prediction based on the 

entire image

(b) another that refines this prediction locally.



Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

A coarse-scale network first predicts the depth of the scene at a global level. This 

is then refined within local regions by a fine-scale network. Both stacks are applied 

to the original input, but in addition, the coarse network’s output is passed to the fine 

network as additional first-layer image features. In this way, the local network can 

edit the global prediction to incorporate finer-scale details.



Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

The task of the coarse-scale network is to predict the overall depth map 

structure using a global view of the scene. The upper layers of this network 

are fully connected, and thus contain the entire image in their field of view. 

Similarly, the lower and middle layers are designed to combine information 

from different parts of the image through max-pooling operations to a small 

spatial dimension. In so doing, the network is able to integrate a global 

understanding of the full scene to predict the depth. Such an understanding 

is needed in the single-image case to make effective use of cues such as 

vanishing points, object locations, and room alignment. A local view (as is 

commonly used for stereo matching) is insufficient to notice important 

features such as these. 

The global, coarse-scale network contains five feature extraction layers 

of convolution and max-pooling, followed by two fully connected layers. The 

final output is at 1/4-resolution compared to the input (which is itself down-

sampled from the original dataset by a factor of 2), and corresponds to a 

center crop containing most of the input. 



Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

The task of Local Fine-Scale Network is to edit the coarse 

prediction it receives to align with local details such as object 

and wall edges. The fine-scale network stack consists of 

convolutional layers only, along with one pooling stage for the 

first layer edge features. 

While the coarse network sees the entire scene, the field of view 

of an output unit in the fine network is 45x45 pixels of input. The 

convolutional layers are applied across feature maps at the 

target output size, allowing a relatively high-resolution output at 

1/4 the input scale. 

More concretely, the coarse output is fed in as an additional low-

level feature map. By design, the coarse prediction is the same 

spatial size as the output of the first fine-scale layer (after 

pooling). Subsequent layers maintain this size using zero-

padded convolutions. 



Depth Map Prediction from a Single Image using a Multi-Scale Deep Network



Monocular Depth Estimation Using Relative Depth Maps, CVPR 2019

An overview of the proposed algorithm. First, one ordinary depth map and four 

relative depth maps are obtained from an image. Then, they are decomposed into 

depth components, which are, in turn, combined to reconstruct an optimal depth 

map.

A convolutional neural network is first used to estimate relative depths between pairs 

of regions, as well as ordinary depths, at various scales. The relative depth maps are 

then restored from selectively estimated data based on the rank-1 property of 

pairwise comparison matrices. The ordinary and relative depth maps are 

decomposed into components and they are recombined optimally to reconstruct a 

final depth map.



Monocular Depth Estimation Using Relative Depth Maps, CVPR 2019

First, a CNN in the encoder-decoder architecture is developed, 

which includes multiple decoder blocks for estimating relative 

depths, as well as ordinary depths, at various scales. 

Second, a pairwise comparison matrix is formed, which is 

sparsely populated by the estimated relative depths. By 

exploiting the rank-1 property of the matrix, the entire matrix is 

restored by using the alternating least squares (ALS) algorithm, 

from which a relative depth map is obtained. 

Third, each depth map is decomposed into components, which 

are re-combined to reconstruct a final depth map through a 

constrained optimization scheme.



Monocular Depth Estimation Using Relative Depth Maps, CVPR 2019

The structure of the proposed depth estimation network. As 

shown above, up to ten decoders can be used. In the default 

setting, the five decoders for (D3, R3, R4, R5, R6) are 

employed. WSM represents a whole strip masking block, OR an 

ordinal regression layer, and ALS an alternating least squares 

layer.



Monocular Depth Estimation Using Relative Depth Maps, CVPR 2019

To estimate relative depths, each depth in Dn, depicted by a 

dot, is compared with the depths of the 3×3 nearest pixels in 

Dn−1, which are depicted by purple squares. For the 

illustration, Dn is overlaid with Dn−1. 



Monocular Depth Estimation Using Relative Depth Maps, CVPR 2019

A sparse comparison matrix  is restored to a dense matrix  

by the ALS algorithm. Then,  is reshaped and 

normalized to a relative depth map R4.



Monocular Depth Estimation Using Relative Depth Maps, CVPR 2019



Fast Robust Monocular Depth Estimation for Obstacle Detection with Fully 

Convolutional Networks, ICRA 2018

We propose a fully convolutional network fed with both images 

and optical flows to obtain fast and robust depth estimation, 

with a robotic applications-oriented design.



Fast Robust Monocular Depth Estimation for Obstacle Detection with Fully 

Convolutional Networks, ICRA 2018

Network architecture. Blue boxes: Encoder feature maps. 

Green boxes: Decoder feature maps. Convolutional filters are 

reported in red, deconvolutional filters in yellow.



Fast Robust Monocular Depth Estimation for Obstacle Detection with Fully 

Convolutional Networks, ICRA 2018

In order to choose appropriate network input, two possible 

strategies are compared: 

(a) feeding the network with a single image, currently captured 

by the camera; 

(b) concatenate current image with optical flow information 

between current frame and the previous one. 

Optical flow has been used previously as raw feature for 

obstacle detectors. It is known how relative motion information 

between each pixel in two consecutive frames contains some 

implicit information about object dimensions and locations in 

3D space. As previous works stated, optical flow alone is not 

sufficient to obtain a complete and long-range depth estimation. 



Unsupervised Learning of Monocular Depth Estimation and Visual Odometry

with Deep Feature Reconstruction, CVPR 2018

The use of stereo sequences is explored for learning depth 

and visual odometry. The use of stereo sequences enables the 

use of both spatial (between left-right pairs) and temporal 

(forward backward) photometric warp error, and constrains the 

scene depth and camera motion to be in a common, real-world 

scale. In addition, a standard photometric warp loss 

isimproved by considering a warp of deep features. 

(i) jointly training for single view depth and visual odometry

improves depth prediction because of the additional 

constraint imposed on depths and achieves competitive 

results for visual odometry; 

(ii) deep feature-based warping loss improves upon simple 

photometric warp loss for both single view depth estimation 

and visual odometry.



Unsupervised Learning of Monocular Depth Estimation and Visual Odometry

with Deep Feature Reconstruction, CVPR 2018

The known camera motion between stereo cameras 

constrains the Depth CNN and Odometry CNN to predict depth 

and relative camera pose with actual scale. 



Unsupervised Learning of Monocular Depth Estimation and Visual Odometry

with Deep Feature Reconstruction, CVPR 2018



Learning monocular depth estimation infusing traditional stereo knowledge, 

ICCV 2019 

Illustration of our monoResMatch architecture. Given one input 

image, the multi-scale feature extractor (in red) generates high-

level representations in the first stage. The initial disparity 

estimator (in blue) yields multi-scale disparity maps aligned with 

the left and right frames of a stereo pair. The disparity 

refinement module (in orange) is in charge of refining the initial 

left disparity relying on features computed in the first stage, 

disparities generated in the second stage



Learning monocular depth estimation infusing traditional stereo knowledge, 

ICCV 2019 

First, a multi-scale feature extractor takes as input a single raw 

image and computes deep learnable representations at different 

scales from quarter resolution to full-resolution in order to 

toughen the network to ambiguities in photometric appearance. 

Second, deep high-dimensional features at input image 

resolution are processed to estimate, through an hourglass 

structure with skip-connections, multi-scale inverse depth (i.e., 

disparity) maps aligned with the input and a virtual right view 

learned during training. By doing so, our network learns to 

emulate a binocular setup, thus allowing further processing in 

the stereo domain. 

Third, a disparity refinement stage estimates residual 

corrections to the initial disparity. In particular, we use deep 

features from the first stage and back-warped features of the 

virtual right image to construct a cost volume that stores the 

stereo matching costs using a correlation layer. 



Learning monocular depth estimation infusing traditional stereo knowledge, 

ICCV 2019 

Examples of proxy labels computed by SGM. Given the 

source image (a), the network exploits the SGM 

supervision filtered with left-right consistency check (b) 

in order to train monoResMatch to estimate the final 

disparity map (c). No post-processing is performed on 

(c) in this example.


