Depth Estimation from Stereo

Jianping Fan
Dept of Computer Science
UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Review: Perspective Projection

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z}
\end{aligned}
$$

Human visual pathway

Human eye

Rough analogy with human visual system:

Pupil//ris - control amount of light passing through lens
Retina - contains sensor cells, where image is formed

Fovea - highest concentration of cones

Human stereopsis: disparity

FIGURE 7.1

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology
Human eyes fixate on point in space - rotate so that corresponding images form in centers of fovea.

Human stereopsis: disparity

Disparity occurs when eyes fixate on one object; others appear at different visual angles

From Bruce and Green, Visual Perception,
Physiology, Psychology and Ecology

Depth from Convergence

Human performance: up to 6-8 feet

Depth from binocular disparity

P: converging point

C: object nearer projects to the outside of the P, disparity $=+$

F: object farther projects to the inside of the P, disparity = -

Sign and magnitude of disparity

Stereo

Stereo Constraints

A Simple Stereo System

LEFT CAMERA
RIGHT CAMERA

Left image: reference
baseline

Right image: target

Parallel Cameras

$$
\begin{aligned}
& \frac{T+x_{r}-x_{i}}{Z-f}=\frac{T}{Z} \\
& \Rightarrow Z=f \frac{T}{x_{i}-x_{r}}
\end{aligned}
$$

$$
\text { Disparity: } d=x_{r}-x_{r}
$$

T is the stereo baseline

$$
Z=f \frac{T}{d}
$$

Geometry for a simple stereo system

- Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for \mathbf{Z} ?

Similar triangles (p_{l}, P, p_{r}) and $\left(\mathrm{O}_{\mathrm{I}}, \mathrm{P}, \mathrm{O}_{\mathrm{r}}\right)$:

$$
\frac{T-x_{l}+x_{r}}{Z-f}=\frac{T}{Z}
$$

$$
Z=f \frac{T}{x_{l}-x_{r}}
$$

Perspective projection

Perspective projection

Perspective projection

Standard stereo geometry

$$
d=x_{L}-x_{R}=f \frac{X_{L}}{Z}-f \frac{X_{R}}{Z}=f \frac{X_{L}-X_{R}}{Z}=f \frac{B}{Z}
$$

- disparity is inversely proportional to depth
- stereo vision is less useful for distant objects

Rectified geometry

Rectified geometry

two cameras

overlapped (for display)

Matching space

Matching space

Depth from disparity

input image (1 of 2)

depth map

3D rendering
[Szeliski \& Kang '95]

$$
\text { disparity }=x-x^{\prime}=\frac{\text { baseline } * f}{z}
$$

Depth from disparity

image $I(x, y)$
Disparity map $D(x, y)$

$$
\left(x^{\prime}, y^{\prime}\right)=(x+D(x, y), y)
$$

So if we could find the corresponding points in two images, we could estimate relative depth...

Choosing the stereo baseline

- What's the optimal baseline?
- Too small: large depth error
- Too large: difficult search problem

Slides by Kristen Grauman

Stereo

Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
- calibration
- point correspondence

Stereo correspondence

- Determine Pixel Correspondence
- Pairs of points that correspond to same scene point

Epipolar Constraint

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Stereo image rectification

Stereo image rectification

- Image Reprojection
- reproject image planes onto common plane parallel to line between optical centers
- a homography (3×3 transform) applied to both input images
- pixel motion is horizontal after this transformation
- C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Stereo matching algorithms

- Match Pixels in Conjugate Epipolar Lines
- Assume brightness constancy
- This is a tough problem
- Numerous approaches
- A good survey and evaluation:
http://www.middlebury.edu/stereo/

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

- This should look familar...
- Can use Lukas-Kanade or discrete search (latter more common)

Window size

$W=3$

$W=20$

Effect of window size

- Smaller window
$+$
-
- Larger window
$+$

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene

Ground truth

Results with window search

Window-based matching
Ground truth (best window size)

Better methods exist...

State of the art method
Ground truth Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

Binocular stereo matching

Binocular rectified stereo

left

disparity map

depth discontinuities
S. Birchfield, Clemson Univ., ECE 847, http://www.ces.clemson.edu/~stb/ece847

Disparity function

left

right
smaller slope = smaller disparity = farther from camera

higher slope = larger disparity = closer to camera

Occlusions

Matching a pixel

- Pixel's value is not unique
- Only 256 values but $\sim 100,000$ pixels!
- Also, noise affects value
- Solution: use more than one pixel
- Assume neighbors have similar disparity
- Correlation window around pixel

- Can use any similarity measure

Block matching

- compute best disparity for each pixel
- store result in disparity map
disparity map

Block matching (cont.)

left

right
value for this disparity
Note: Window only moves left. Why?

Block matching

$$
d_{L}(x, y)=\arg \min _{0 \leq d \leq d_{\max }} \operatorname{dissim}\left(I_{L}(x, y), I_{R}(x-d, y)\right)
$$


```
Function disparity_map = BlockMatch1(img_left, img_right; min_disp, max_disp)
    for \(\mathrm{y}=0\) to height-1
        for \(\mathrm{x}=0\) to width-1
        ghat = infinity
        for \(d=\) min_disp to max_disp
            \(\mathrm{g}=0\)
            for \(\mathrm{j}=-\mathrm{w}\) to w
                for \(i=-w\) to \(w\)
                    \(g=g+\operatorname{dissimilarity(img\_ left(x+i,y+j),~img\_ right(x+i-d,y+j))~}\)
            if \(\mathrm{g}<\) ghat,
                    ghat \(=\mathrm{g}\)
            dhat \(=\mathrm{d}\)
        disparity_map(x, y) = dhat
```


5 nested for loops!!!!!

Block matching

$$
d_{L}(x, y)=\arg \min _{0 \leq d \leq d_{\max }} \operatorname{dissim}\left(I_{L}(x, y), I_{R}(x-d, y)\right)
$$

disparity


```
BLOCKMATCH1 \(\left(I_{L}, I_{R}, d_{\text {min }}, d_{\text {max }}\right)\)
    for \((x, y) \in I_{L}\) do
\(2 \quad \hat{g} \leftarrow \infty\)
\(3 \quad\) for \(d \leftarrow d_{\text {min }}\) to \(d_{\text {max }}\) do
        \(g \leftarrow 0\)
        for \((\tilde{x}, \tilde{y}) \in \mathcal{W}\) do
            \(g \leftarrow g+\operatorname{dissim}\left(I_{L}(x+\tilde{x}, y+\tilde{y}), I_{R}(x+\tilde{x}-d, y+\tilde{y})\right.\)
            if \(g<\hat{g}\) then
            \(\hat{g} \leftarrow g\)
            \(\hat{d} \leftarrow d\)
        \(d_{L}(x, y) \leftarrow \hat{d}\)
    return \(d_{L}\)
```


5 nested for loops!!!!!

Eliminating redundant computations

for same disparity, overlapping windows recompute the same dissimilarities for many pixels

[^0]
Block matching: another view

- Alternatively,
- precompute
$\Delta(x, y, d)=\operatorname{dissim}\left(I_{L}(x, y), I_{R}(x-d, y)\right)$ for all x, y, d
- then for each (x, y) select the best d

More efficient block matching

```
Function dbar = ComputeDbar(img_left, img_right; min_disp, max_disp)
```

 for d=min_disp:max_disp,
 // compare pixels
 for \(y=0\) :height-1,
 for \(\mathrm{x}=0\) :width-1,
 dbar (x, y, d) = dissimilarity(img_left(x, y), img_right(x-d, y)
 // convolve with 2D box filter to sum over window
 \(\left.\begin{array}{l}\operatorname{tmp}=\text { convolve dbar }\left(:,:, \text { d) with 1D kernel }\left[1 . . .1^{\prime}\right]\right. \\ \operatorname{dbar}(:,:, d)=\text { convolve tmp with 1D kernel }[1 . . .1]^{\wedge} \mathrm{T}\end{array}\right\}\) separable
 Function disparity_map = BlockMatch2(img_left, img_right; min_disp, max_disp)
dbar = ComputeDbar (img_left, img_right; min_disp, max_disp)
for $\mathrm{y}=0$: height-1,
for $\mathrm{x}=0$: width-1,
disparity_map $(x, y)=\arg \min$ of $\operatorname{dbar}(x, y,:)$

> Key idea: Summation over window is convolution with box filter, which is separable (only 3 nested for loops!!!)
> Running sum improves efficiency even more

More efficient block matching

```
BLockMATCh2 \(\left(I_{L}, I_{R}, d_{\text {min }}, d_{\text {max }}\right)\)
\(1 \Delta \leftarrow\) ComputeSummedDissimilarities \(\left(I_{L}, I_{R}, d_{\text {min }}, d_{\text {max }}\right)\)
2 for \((x, y) \in I_{L}\) do
    \(d_{L}(x, y) \leftarrow \arg \min _{d} \Delta(x, y, d)\)
4 return \(d_{L}\)
ComputeSummedDissimilarities \(\left(I_{L}, I_{R}, d_{\text {min }}, d_{\text {max }}\right)\)
1 for \(d \leftarrow d_{\text {min }}\) to \(d_{\text {max }}\) do
2 for \((x, y) \in I_{L}\) do
\(3 \quad \Delta(x, y, d) \leftarrow \operatorname{dissim}\left(I_{L}(x, y), I_{R}(x-d, y)\right)\)
\(4 \quad \Delta(:,:, d) \leftarrow \operatorname{Convolve}\left(\Delta(:,:, d), \mathbf{1}_{w \times w}\right)\)
5 return \(\Delta\)

Key idea: Summation over window is convolution with box filter, which is separable (only 3 nested for loops!!!)
Running sum improves efficiency even more

\section*{Comparing image regions}

Compare intensities pixel-by-pixel


\section*{Dissimilarity measures}

Sum of Square Differences
\[
S S D=\iint_{W}\left[I^{\prime}(x, y)-I(x, y)\right]^{2} d x d y
\]

Note: SAD is fast approximation (replace square with absolute value)

\section*{Comparing image regions}

Compare intensities pixel-by-pixel


\section*{Dissimilarity measures}

If energy does not change much, then minimizing SSD equals maximizing cross-correlation

\section*{Comparing image regions}

Compare intensities pixel-by-pixel


\section*{Similarity measures}

Zero-mean Normalized Cross Correlation
\[
\begin{aligned}
N C C= & \frac{N\left(I^{\prime}, I\right)}{\sqrt{N\left(I^{\prime}, I^{\prime}\right) N(I, I)}} \\
& \quad N(A, B)=\iint_{W}(A(x, y)-\bar{A})(B(x, y)-\bar{B}) d x d y
\end{aligned}
\]

\section*{Dissimilarity measures}

Most common:
\[
\begin{aligned}
D\left(\mathbf{x}_{L}, \mathbf{x}_{R}\right) & =\left[I_{L}\left(x_{L}, y_{L}\right)-I_{R}\left(x_{R}, y_{R}\right)\right]^{2} \quad \text { SSD } \\
D\left(\mathbf{x}_{L}, \mathbf{x}_{R}\right) & =\left|I_{L}\left(x_{L}, y_{L}\right)-I_{R}\left(x_{R}, y_{R}\right)\right| \quad \text { SAD } \\
D\left(\mathbf{x}_{L}, \mathbf{x}_{R}\right) & =-I_{L}\left(x_{L}, y_{L}\right) I_{R}\left(x_{R}, y_{R}\right) \quad \text { cross correlation }
\end{aligned}
\]

Connection between SSD and cross correlation:
\[
\begin{aligned}
D\left(\mathbf{x}_{L}, \mathbf{x}_{R}\right) & =\left[I_{L}\left(x_{L}, y_{L}\right)-I_{R}\left(x_{R}, y_{R}\right)\right]^{2} \\
& =\left[I_{L}\left(x_{L}, y_{L}\right)\right]^{2}+\left[I_{R}\left(x_{R}, y_{R}\right)\right]^{2}-2 I_{L}\left(x_{L}, y_{L}\right) I_{R}\left(x_{R}, y_{R}\right) \\
& \propto-I_{L}\left(x_{L}, y_{L}\right) I_{R}\left(x_{R}, y_{R}\right)
\end{aligned}
\]

Also normalized correlation, rank, census, sampling-insensitive ...

\section*{Comparing image regions}

\section*{Compare intensities pixel-by-pixel}


\section*{Similarity measures}

Census
\[
C_{I}(i, j)=(I(x+i, y+j)>I(x, y))
\]
\begin{tabular}{|l|l|l|}
\hline 125 & 126 & 125 \\
\hline 127 & 128 & 130 \\
\hline 129 & 132 & 135 \\
\hline
\end{tabular}\(\rightarrow\)\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular} \(\rightarrow\) [00001111]
only compare bit signature
using XOR, SAD, or Hamming distance (all equivalent)
(Real-time chip from TZYX based on Census)

\section*{Sampling-Insensitive Pixel Dissimilarity}


Our dissimilarity measure: \(d\left(x_{L}, x_{R}\right)=\min \left\{\bar{d}\left(x_{L}, x_{R}\right), \bar{d}\left(x_{R}, x_{L}\right)\right\}\)
[Birchfield \& Tomasi 1998]

\section*{Dissimilarity Measure Theorems}

Given: An interval A such that
\[
\begin{aligned}
& {\left[x_{L}-1 / 2, x_{L}+1 / 2\right] \subseteq A, \text { and }} \\
& {\left[x_{R}-1 / 2, x_{R}+1 / 2\right] \subseteq A}
\end{aligned}
\]

Theorem 1:
\[
\begin{gathered}
\text { If }\left|X_{L}-x_{R}\right| \leq 1 / 2, \text { then } d\left(x_{L}, x_{R}\right)=0 \\
\text { (when } A \text { is convex or concave) }
\end{gathered}
\]

Theorem 2:
\[
\begin{gathered}
\left|X_{L}-X_{R}\right| \leq 1 / 2 \text { iff } d\left(x_{L}, x_{R}\right)=0 \\
\text { (when } A \text { is linear) }
\end{gathered}
\]

\section*{Aggregation window sizes}

Small windows
- disparities similar
- more ambiguities
- accurate when correct

Large windows
- larger disp. variation
- more discriminant
- often more robust
- use shiftable windows to deal with discontinuities

(Illustration from Pascal Fua)

\section*{Occlusions}


If pixel matches do not agree in both directions, then unreliable

\section*{Left-right consistency check}

- Search left-to-right, then right-to-left
- Retain disparity only if they agree

\section*{Do minima coincide?}

Conceptually,
```

dm_L = BlockMatch(img_left, img_right; 0, max_disp)
dm_R = BlockMatch(img_right, img_left; -max_disp, 0)
for y=0:height-1,
for x=0:width-1,
if dm_L(x, y) != - dm_R(x - dm_L(x, y), y)
dm_L(x, y) = NOT_MATCHED

```

\section*{Left-right consistency check}

for pixel ( \(\mathrm{x}, \mathrm{y}\) ) in left image, choices are
\(\Delta(\mathbf{x}, \mathbf{y}, \mathbf{0})\),
\(\Delta(\mathbf{x}, \mathbf{y}, \mathbf{1})\),
\(\Delta(\mathbf{x}, \mathbf{y}, \mathbf{2})\),
,
\(\Delta\left(x, y, m a x \_d i s p\right)\)
for pixel ( \(\mathrm{x}, \mathrm{y}\) ) in right image, choices are
\[
\begin{aligned}
& \Delta(\mathbf{x}, \mathrm{y}, \mathbf{0}) \\
& \Delta(\mathrm{x}+1, \mathrm{y}, 1), \\
& \Delta(\mathrm{x}+2, \mathrm{y}, 2), \\
& \ldots, \\
& \Delta(\mathrm{x}+\text { max_disp,y,max_disp) }
\end{aligned}
\]
because \(\mathrm{x}_{\mathrm{L}}=\mathrm{X}_{\mathrm{R}}\) + disparity

\section*{Left-right consistency check}


Function disparity_map = BlockMatchWithRightLeftCheck(img_left, img_right; max_disp)
\(\Delta=\) ComputeDbar (img_left, img_right; 0, max_disp)
for \(y=0\) :height -1 ,
for \(\mathrm{x}=0\) :width-1,
// find left answer
\(d_{\text {_left }}=\arg \min (\Delta(x, y, 0), \Delta(x, y, 1), \ldots, \Delta(x, y, \max\) disp \())\)
d_right \(=\arg \min \left(\Delta\left(x-d_{-} l e f t, y, 0\right), \Delta\left(x-d_{-} l e f t+1, y, 1\right), \ldots, \Delta\left(x-d_{-} l e f t+m a x \_d i s p, y, m a x \_d i s p\right)\right.\)
disp_map \((x, y)=\left(d \_l e f t ~==~ d \_r i g h t\right) ~ ? ~ d \_l e f t ~: ~ N O T \_M A T C H E D ~\)

\section*{With left-right check}

\section*{inefficient:}
\[
\begin{aligned}
& \text { BLOCKMATCHWITHLEFTRIGHTCHECK1 }\left(I_{L}, I_{R}, d_{\max }\right) \\
& 1 \\
& d_{L} \leftarrow \text { BLOCKMATCH2 }\left(I_{L}, I_{R}, 0, d_{\max }\right) \\
& 2
\end{aligned} d_{R} \leftarrow \text { BLOCKMATCH2 }\left(I_{R}, I_{L},-d_{\max }, 0\right)
\]

\section*{more efficient:}

BlockMatchWithLeftRightCheck2 \(\left(I_{L}, I_{R}, d_{\text {max }}\right)\)
```

 \(\Delta \leftarrow \operatorname{ComputeSummedDissimilarities}\left(I_{L}, I_{R}, 0, d_{\text {max }}\right)\)
 for \((x, y) \in I_{L}\) do
 \(\delta_{L} \leftarrow \arg \min \left\{\Delta(x, y, 0), \Delta(x, y, 1), \ldots, \Delta\left(x, y, d_{\max }\right)\right\}\)
 \(\delta_{R} \leftarrow \arg \min \left\{\Delta\left(x-\delta_{L}, y, 0\right), \Delta\left(x-\delta_{L}+1, y, 1\right), \ldots, \Delta\left(x-\delta_{L}+d_{\max }, y, d_{\max }\right)\right\}\)
 if \(\delta_{L}==\delta_{R}\) then
 \(d_{L}(x, y) \leftarrow \delta_{L}\)
 else
 \(d_{L}(x, y) \leftarrow\) NOT-MATCHED
 return \(d_{L}\)
    ```

\section*{Results: correlation}

left

disparity map

with left-right consistency check
S. Birchfield, Clemson Univ., ECE 847, http://www.ces.clemson.edu/~stb/ece847

\section*{Constraints}
- Epipolar - match must lie on epipolar line
- Piecewise constancy - neighboring pixels should usually have same disparity
- Piecewise continuity - neighboring pixels should usually have similar disparity
- Disparity - impose allowable range of disparities (Panum's fusional area)
- Disparity gradient - restricts slope of disparity
- Figural continuity - disparity of edges across scanlines
- Uniqueness - each pixel has no more than one match (violated by windows and mirrors)
- Ordering - disparity function is monotonic (precludes thin poles)

\section*{Stereo constraints}


When are these violated?

\section*{Forbidden zone}

(Related to ordering constraint)

\section*{Violation of ordering constraint}


\section*{Disparity gradient \\ \[
x_{C}=\frac{1}{2}\left(x_{L}+x_{R}\right) \longleftarrow \text { Cyclopean coordinate }
\]}
\(\boldsymbol{x}_{\boldsymbol{I}}\) in \(\boldsymbol{I}_{\boldsymbol{L}}\) matches \(\boldsymbol{x}_{\boldsymbol{1}}\) in \(\boldsymbol{I}_{\boldsymbol{R}}: \quad d_{1}=x_{1}-x_{1}^{\prime}\)
\(\boldsymbol{x}_{2}\) in \(\boldsymbol{I}_{\boldsymbol{L}}\) matches \(\boldsymbol{x}_{2}^{\prime}\) in \(\boldsymbol{I}_{\boldsymbol{R}}: \quad d_{2}=x_{2}-x_{2}^{\prime}\)
\(\begin{aligned} & \text { disparity } \\ & \text { gradient: }\end{aligned}\left|\frac{\partial d}{\partial x_{c}}\right|=\frac{d_{2}-d_{1}}{\frac{1}{2}\left(x_{2}+x_{2}^{\prime}\right)-\frac{1}{2}\left(x_{1}+x_{1}^{\prime}\right)}=\frac{2\left(d_{2}-d_{1}\right)}{x_{2}+x_{2}^{\prime}-x_{1}-x_{1}^{\prime}}\)


\section*{Disparity gradient constraint}


\(\left|\frac{\partial d}{\partial x_{c}}\right| \leq 1\)
(human visual system imposes this)

\(\left|\frac{\partial d}{\partial x_{c}}\right| \leq 2\)
(same as ordering constraint)

\section*{Figural continuity constraint}

right

left

\section*{Epipolar Geometry}

\section*{Camera parameters}


Extrinsic parameters:
Camera frame \(1 \longleftrightarrow \rightarrow\) Camera frame 2

Intrinsic parameters:
Image coordinates relative to camera \(\leftarrow \rightarrow\) Pixel coordinates
- Extrinsic params: rotation matrix and translation vector
- Intrinsic params: focal length, pixel sizes (mm), image center point, radial distortion parameters

We'll assume for now that these parameters are given and fixed.

\section*{Camera calibration}
- From world coordinate to image coordinate

\section*{General case, with calibrated cameras}
- The two cameras need not have parallel optical axes.


Vs.

\section*{Stereo correspondence constraints}

- Given \(p\) in left image, where can corresponding point p' be?

\section*{Stereo correspondence constraints}


\section*{Epipolar constraint}


Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view.
- It must be on the line carved out by a plane connecting the world point and optical centers.

\section*{Epipolar Geometry}

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

\section*{Epipolar Geometry: terms}
- Baseline: line joining the camera centers
- Epipole: point of intersection of baseline with image plane
- Epipolar plane: plane containing baseline and world point
- Epipolar line: intersection of epipolar plane with the image plane
- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines

Why is the epipolar constraint useful?

\section*{Epipolar Constraint}


This is useful because it reduces the correspondence problem to a 1D search along an epipolar line.

\section*{Example}


\section*{What do the epipolar lines look like?}

2.


\section*{Example: converging cameras}


Figure from Hartley \& Zisserman

\section*{Example: parallel cameras}


Where are the epipoles?


Figure from Hartley \& Zisserman

\section*{Stereo geometry, with calibrated cameras}


Main idea

\section*{Stereo geometry, with calibrated cameras}


If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to
get to camera reference frame 2.
Rotation: \(3 \times 3\) matrix \(\mathbf{R}\); translation: 3 vector \(\mathbf{T}\).

\section*{Stereo geometry, with calibrated cameras}


If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to
get to camera reference frame 2. \(\quad \mathbf{X}_{c}^{\prime}=\mathbf{R} \mathbf{X}_{c}+\mathbf{T}\)

\section*{An aside: cross product}
\[
\begin{array}{ll}
\vec{a} \times \vec{b}=\vec{c} & \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{array}
\]

Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.

So here, \(c\) is perpendicular to both \(a\) and \(b\), which means the dot product \(=0\).

\section*{From geometry to algebra}


Normal to the plane
\[
=\mathbf{T} \times \mathbf{R} \mathbf{X}
\]

\section*{Another aside: Matrix form of cross product}
\[
\vec{a} \times \vec{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\vec{c} \quad \begin{aligned}
& \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
\]

Can be expressed as a matrix multiplication.
\[
\left[a_{x}\right]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \quad \vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
\]

\section*{From geometry to algebra}

\[
=\mathbf{T} \times \mathbf{R X}
\]

\section*{Essential matrix}
\[
\begin{aligned}
& \mathbf{X}^{\prime} \cdot(\mathbf{T} \times \mathbf{R X})=0 \\
& \mathbf{X}^{\prime} \cdot\left(\left[\mathrm{T}_{x}\right] \mathbf{R X}\right)=0 \\
& \text { Let } \mathbf{E}= {\left[\mathrm{T}_{x}\right] \mathbf{R} } \\
& \mathbf{X}^{\prime T} \mathbf{E X}=0
\end{aligned}
\]

\(\mathbf{E}\) is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in other image is constrained to lie on line defined by above.
Note: these points are in camera coordinate systems.

\section*{Essential matrix example: parallel cameras}

\[
\begin{aligned}
& \mathbf{R}= \\
& \mathbf{T}= \\
& \mathbf{E}=\left[\mathrm{T}_{\mathrm{x}}\right] \mathbf{R}=
\end{aligned}
\]
\[
\mathbf{p}=[x, y, f]
\]
\[
\mathbf{p}^{\prime}=\left[x^{\prime}, y^{\prime}, f\right]
\]

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.
image \(I(x, y)\)

\[
\left(x^{\top}, y^{\prime}\right)=(x+D(x, y), y)
\]

What about when cameras' optical axes are not parallel?

\section*{Stereo image rectification}

In practice, it is convenient if image scanlines (rows) are the epipolar lines.
reproject image planes onto a common plane parallel to the line between optical centers
pixel motion is horizontal after this transformation two homographies ( \(3 \times 3\) transforms), one for each input image reprojection

\section*{Stereo image rectification:}


\section*{Feature-Based Matching}

\section*{Correlation Approach}

- For Each point ( \(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\) ) in the left image, define a window centered at the point

\section*{Correlation Approach}

- ... search its corresponding point within a search region in the right image

\section*{Correlation Approach}

- ... the disparity ( \(\mathrm{dx}, \mathrm{dy}\) ) is the displacement when the correlation is maximum

\section*{Comparing Windows}


Minimize
\[
\sum_{[i, j] \in R}(f(i, j)-g(i, j))^{2}
\]

Sum of Squared Differences

Maximize \(\quad C_{f g}=\sum_{[i, j] \in R} f(i, j) g(i, j) \quad\) Cross correlation

\section*{Feature-based correspondence}
- Features most commonly used:
- Corners
- Similarity measured in terms of:
- surrounding gray values (SSD, Cross-correlation)
- location
- Edges, Lines
- Similarity measured in terms of:
- orientation
- contrast
- coordinates of edge or line's midpoint
- length of line

\section*{Feature-based Approach}

\section*{LEFT IIAGE}


BaEaOrceach feature in the left image...

\section*{Feature-based Approach}

\section*{RIGHT MIAGE}

- Search in the right image... the disparity ( \(\mathrm{dx}, \mathrm{dy}\) ) is Batdqerdisplacement when the similarity measure is maximum

\section*{Correspondence Difficulties}
- Why is the correspondence problem difficult?
- Some points in each image will have no corresponding points in the other image.
(1) the cameras might have different fields of view.
(2) due to occlusion.
- A stereo system must be able to determine the image parts that should not be matched.

\section*{Structure Light}

\section*{Active stereo with structured}


Li Zhang's one-shot stereo

- Project "structured" light patterns onto the object
- simplifies the correspondence problem

\section*{Active stereo with structured light}


\section*{Laser scanning}



Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/
- Optical triangulation
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Portable 3D laser scanner (this one by Minolta)


\section*{Laser scanned models}


The Digital Michelangelo Project, Levoy et al.

\section*{Laser scanned models}


The Digital Michelangelo Project, Levoy et al.

\section*{Volumetric Stereo}


Goal: Determine transparency, radiance of points in \(V\)

\section*{Discrete Formulation: Voxel Coloring}

Discretized
Scene Volume

Input Images
(Calibrated)


Goal: Assign RGBA values to voxels in V photo-consistent with images

\section*{Complexity and Computability}

Discretized
Scene Volume
\(N^{3}\) voxels
C colors


\section*{Stereo vision}


Two cameras, simultaneous views


Single moving camera and static scene```


[^0]:    S. Birchfield, Clemson Univ., ECE 847, http://www.ces.clemson.edu/~stb/ece847

