Hierarchical Image Classification over Visual Tree

Jianping Fan Dept of Computer Science UNC-Charlotte, NC 28223 www.cs.uncc.edu/~jfan

Inter-Object Visual Correlations rather than independency

1. Problems to be addressed

- Large-Scale Visual Recognition: Challenges
- We need to learn large amounts of classifiers for large-scale visual recognition!
- Some object classes and image concepts are visually-related and hard to be discriminated!
- Some object classes and image concepts may have huge inner-concept visual diversity!

1. Problems to be addressed

- Large-Scale Visual Recognition: Challenges
 - Huge inner-concept visual diversity
 ---simple models may not work, but using complex models may overlap with others!
 - Huge inter-concept visual similarity
 - ---training complexity will increase for distinguishing visually-related concepts!
 - Huge computational cost

---thousands of inter-related classifiers should be trained jointly!

1. Problems to be addressed

Large-Scale Visual Recognition

- How to leverage social images for classifier training?
- How to leverage inter-class correlations for dictionary learning & classifier training?
- How to deal with inter-level error propagation?

Visual Feature Extraction

Synonymous Concepts: Visual Similarity

(a) Auto

(b) Automobile

(c) Car

Synonymous Concepts: Visual Similarity

Ambiguous Concept: Visual Diversity

(a) Bank Office

(b) River Bank

(c) Cloud Bank

Ambiguous Concept: Visual Diversity

Decision function:

$$f(x) = R^2 - \sum_{i,j}^N \alpha_i \alpha_j \kappa(x_i, x_j) + 2 \sum_j^N \alpha_j \kappa(x_j, x) - \kappa(x, x)$$

Junk Image Filtering

Junk Image Filtering

Most text terms are weakly related or even irrelevant to web images in the same webpage

Text-Image Alignment for Web Image Indexing

Image & Phrase List

WWW2010, PR2014

Informative Image Extraction

Webpage Segmentation Surrounding Text Extraction

Classic Airplanes

by the Editors of Publications International, Ltd.

and see how much classic airplanes have progressed over the last 100 years.

Each and every one of these

Visual-based algorithm

precise but expensive

[Cai et al. MSR-TR'03]

- DOM (Document Object Model) based method
 - computationally efficien

Webpage Segmentation

Surrounding Text Extraction

- Visual-based algorithm
 - precise but expensive
 - [Cai et al. MSR-TR'03]

- DOM (Document Object Model) based method
 - computationally efficient

Text-Image Alignment for Web Image Indexing

Cluster No.: 3598, 10 duplicates

Phrase list 1: sterilization equipment, water, sterilizer, china mainland
Phrase list 2: autoclave, sterilizer, water, china mainland, manufacturer
Phrase list 3: retort, heating, sterilizer, water, china mainland, manufacturer
Phrase list 4: sterilizer, water, china mainland, manufacturer
Phrase list 5: sterilization equipment, water, sterilizer, china mainland, manufacturer

Aggregation: sterilizer, sterilization equipment, water, retort, manufacturer,

Cluster No.: 6244, 13 duplicates

Phrase list 1: cimarron, roper, saddle, roper saddle, horse, ... Phrase list 2: cimarron, roper, saddle, roper saddle,... Phrase list 3: saddle, roper, roper saddle, horse, sale Phrase list 4: roper saddle, saddle, cimarron, horse

Aggregation: saddle, roper, roper saddle, cimarron,

Cluster No.: 16263, 33 duplicates

Phrase list 1: face, area, drive stick, rule safety Phrase list 2: face, grip, play tennis, tennis racket Phrase list 3: face, , tennis racket, maintenance Phrase list 4: face, shaver, tennis preparation tip,.

Aggregation: face, shaver, gillete,

Cluster No.: 29906, 8 duplicates

Phrase list 1: pisa feb, pisa, leaning tower, location, photo Phrase list 2: pisa, leaning tower, location, photo Phrase list 3: pisa, location, leaning tower, photo Phrase list 4: pisa, leaning tower, photo.... Aggregation: pisa, learning tower, pisa feb, location,

Cluster No.: 35950, 27 duplicates

Phrase list 1: venture snowmobile, indonesia Phrase list 2: venture snowmobile, arctic, snowmobile, ... Phrase list 3: venture snowmobile, snowmobile Phrase list 4: venture snowmobile, snowmobile manufacture Aggregation: venture snowmobile, snowmobile,

Near-duplicates share similar semantics!

WWW2010, PR2014

Text-Image Alignment for Web Image Indexing

(b) Pre@20, top 20 images are evaluated.

(c) Pre@30, top 30 images are evaluated.

WWW2010, PR2014

Duplicate Detection

Duplicates may mislead classifier training tools!

CVPR2012

Duplicate Detection

Automatic Tag-Instance Alignment

ACM MM 2010

Image Tags: Bush Tree Grass Horse

CVPR 2012

(b) Multiple Image Instances

Missing Tag Prediction

Image Segmentation & Instance-Tag Alignment

Object Co-Occurrence Contexts for Missing Object Tag Prediction

3. Visual Concept Network ACM MM2009 Why we need visual concept network? ---concept ontology, object co-occurrence network, **Common space:** classifier training & concept detection ---visual feature space rather than label space or concept space We need to characterize inter-concept visual correlations rather than others!

Inter-related learning task determination

concept pair	γ	concept pair	γ	concept pair	γ	concept pair	γ
urbanroad-streetview	0.99	cat-dog	0.81	kerb-saucer	0.28	tweezer-corn	0.19
frisbee-pizza	0.80	dolphin-cruiser	0.73	fridge-vest	0.29	journal-grape	0.19
moped-bus	0.75	habor-outview	0.71	stick-cupboard	0.29	sheep-greatwall	0.26
monkey-humanface	0.71	guitar-violin	0.71	mushroom-moon	0.32	whistle-watermelon	0.28
lightbulb-firework	0.69	mango-broccoli	0.69	cannon-ruler	0.41	snake-ipod	0.31
porcupine-lion	0.68	bridge-warship	0.68	tombstone-crab	0.42	helicopter-city	0.63
doorway-street	0.65	statue-building	0.68	pylon-highway	0.61	LCD-container	0.65
windmill-bigben	0.63	cat-lion	0.66	beermug-bar	0.62	sailboat-cruiser	0.66

		-	3.6	7		R	R					Titles		6
sky			0.62	0.60	0.44	0.38	0.44	0.32	0.44	0.38	0.46	0.46	0.43	0.51
cloud	36	0.62		0.62	0.45	0.38	0.45	0.33	0.46	0.39	0.47	0.46	0.44	0.52
wave	57	0.60	0.62		0.44	0.36	0.44	0.30	0.44	0.36	0.47	0.46	0.44	0.53
maillot		0.44	0.45	0.44		0.59	0.62	0.57	0.61	0.56	0.58	0.60	0.55	0.60
pajama	*	0.38	0.38	0.36	0.59		0.62	0.59	0.61	0.57	0.58	0.60	0.54	0.58
short pants	R	0.44	0.45	0.44	0.62	0.62		0.61	0.65	0.60	0.61	0.63	0.57	0.62
oilskin		0.32	0.33	0.30	0.57	0.59	0.61		0.58	0.56	0.54	0.58	0.51	0.53
pullover		0.44	0.46	0.44	0.61	0.61	0.65	0.58		0.62	0.59	0.62	0.55	0.63
stole		0.38	0.39	0.36	0.56	0.57	0.60	0.56	0.62		0.52	0.55	0.48	0.56
bookcase		0.46	0.47	0.47	0.58	0.58	0.61	0.54	0.59	0.52		0.78	0.69	0.70
china cabinet		0.46	0.46	0.46	0.60	0.60	0.63	0.58	0.62	0.55	0.78		0.70	0.71
medicine chest		0.43	0.44	0.44	0.55	0.54	0.57	0.51	0.55	0.48	0.69	0.70		0.64
mailbox		0.51	0.52	0.53	0.60	0.58	0.62	0.53	0.63	0.56	0.70	0.71	0.64	

Label Tree for Efficient Classification

Number of dot products needed in the label tree: 1 + 1 = 2

Number of dot product needed in a flat approach: 1 + 1 + 1 + 1 = 4

It is a fire truck!

Label 1: cat Label 3: dog

Label 2: mini van Label 4: fire truck

[Bengio et al. NIPS'2010]

Construction of Label Tree

Visual Similarity Matrix

Result is based on ImageNet data set of 1000 categories

4. Visual Tree Construction: Hierarchical Clustering

4. Visual Tree Construction: Hierarchical Clustering

The leaf nodes are not shown.

4. Visual Tree Construction: Hierarchical Clustering blue false... Callto ... tree lupine Texas blue. alvi-alv cream-of-

Bag-of-Words (BoW)

5. Joint Dictionary Learning for Discriminative Image Representation

 To distinguish visually-similar categories, dictionaries with strong discrimination is critical

Joint dictionary learning

IEEE Trans. IP 2011, IEEE Trans. PAMI 2014, PR 2013

Inference Model Selection for Classifier Training

$$f_{C_j}(x) = W_j^{tr} \Phi_j(x) + \sum_{C_t \in \Theta_j} \gamma_t \cdot V_t^{tr} \Phi_t(x), \qquad \sum_{C_t \in \Theta_j} \gamma_t = 1$$

If the given image concept C_j is visually-related with the image concept C_t (i.e., C_j is linked with C_t on the visual concept network), $V_t \neq 0$. If the given image concept C_j is visually-irrelevant with the image concept C_t (i.e., C_j is not linked with C_t on the visual concept network), $V_t = 0$.

$$J = \frac{1}{2} (\|W_j\|^2 + \sum_{t=1}^{|\Theta_j|} \lambda_t \|V_t\|^2) + \rho_0 \sum_{t=1}^{|\Theta_j|} \sum_{i=1}^{n_j} \xi_{ti} + \sum_{t=1}^{|\Theta_j|} \rho_t \sum_{i=1}^{n_t} \eta_{ti}$$

Inference Model Selection for Classifier Training

Hierarchical Organization

Hierarchical Organization

Hierarchical Classification Scheme

8. Interactive Classifier Assessment

8. Interactive Classifier Assessment

8. Interactive Classifier Assessment

(b)

water (b)

road

(c)

Hierarchical Deep Multi-Task Learning (HD-MTL) over Visual Tree HD-MTL

2. Multi-Level Deep Feature Extraction GoogleNet

2. Multi-Level Deep Feature Extraction

Deep CNNs for Feature Extraction

Feature Subset Selection

$$F_{best}^c = max \left\{ \Phi_t^c = \frac{1}{\sum_{i=1}^M \sum_{j=1}^M \kappa^t(i,j)}, \quad F_t \in \mathbb{F} \right\}$$

Node Partitioning

$$\min\left\{\psi(c,B) = \sum_{l=1}^{B} \frac{\sum_{i \in G_l} \sum_{j \in G_l} \kappa_t(i,j)}{\sum_{i \in G_l} \sum_{j \in G_l} \kappa_t(i,j)}\right\}$$

Result is based on ImageNet data set of 1000 categories

4. Visual Tree Construction: Large-Scale Object Classes

4. Visual Tree Construction: Large-Scale Object Classes

The leaf nodes are not shown.

4. Visual Tree Construction: Large-Scale Object Classes

4. Visual Tree for CalTech101

4. Visual Tree for ImageNet 10K

4. Visual Tree Construction

4. Visual Tree Construction

4. Visual Tree Construction

Deep Multi-Task Learning

Deep Multi-Task Learning

$$\min\left\{C\sum_{l=1}^{R}\sum_{j=1}^{B}\xi_{j}^{l}+\delta_{1}Tr\left(WW^{T}\right)+\frac{\delta_{2}}{2}Tr\left(WLW^{T}\right)\right\}$$

subject to:

$$\forall_{l=1}^{R} \forall_{j=1}^{B} : y_{j}^{l} (W_{j}^{T} \cdot x_{j}^{l} + b) \ge 1 - \xi_{j}^{l}, \ \xi_{j}^{l} \ge 0$$

Deep Multi-Task Learning

$$\min\left\{\sum_{j=1}^{B}\sum_{l=1}^{R}\beta_{l}^{j}-\frac{1}{2\delta_{1}}\beta^{T}Y\Re\left(\Re+\frac{\delta_{2}}{\delta_{1}}\Re\left(L\bigotimes I\right)\Re\right)^{-1}\Re Y\beta\right\}$$

subject to:

$$\forall_{l=1}^R \forall_{j=1}^B: \quad \sum_{l=1}^R \beta_l^j \cdot y_l^j = 0, \quad 0 \leq \beta_l^j \leq 1$$

5. Hierarchical Deep Multi-Task Learning Deep Multi-Task Learning $\alpha^* = \frac{1}{2\delta_1} \left(\Re + \frac{\delta_2}{\delta_1} \left(\Re \left(L \bigotimes I \right) \Re \right)^{-1} \Re Y \beta^* \right)$

Multi-Task Classifiers at Sibling Leaf Nodes

$$\forall_{j=1}^{B}: f_{c_{j}}^{1}(x) \mid_{F_{c_{j}}^{1}} = \sum_{l=1}^{R} \alpha_{j}^{l*} \kappa(x_{j}^{l}, x) + b_{j}^{*}, \ c_{j} \in c_{h}$$

Hierarchical Deep Multi-Task Learning

Hierarchical Deep Multi-Task Learning

$$\min\left\{C\sum_{m=1}^{R}\sum_{h=1}^{B}\xi_{j}^{m}+\gamma_{1}Tr\left(WW^{T}\right)+\frac{\gamma_{2}}{2}Tr\left(WLW^{T}\right)\right\}$$

subject to:

$$\forall_{m=1}^{R} \forall_{h=1}^{B} : y_{h}^{m} (W_{h}^{T} \cdot x_{h}^{m} + b) \ge 1 - \xi_{h}^{m}, \ \xi_{h}^{m} \ge 0, \ c_{h} \in c_{k}$$

$$\begin{aligned} \forall_{h=1}^{B} : & f_{c_{h}}^{l+1}(x) \mid_{F_{c_{h}}^{l+1}} - f_{c_{j}}^{l}(x) \mid_{F_{c_{j}}^{l}} \ge 0 \\ \forall_{h=1}^{B} : & f_{c_{h}}^{l+1}(x) \mid_{F_{c_{h}}^{l+1}} = \sum_{j=1}^{B} \eta_{j} f_{c_{j}}^{l}(x) \mid_{F_{c_{j}}^{l}} \end{aligned}$$

Hierarchical Deep Multi-Task Learning

Back Propagation

- Errors from High-Level Node
 - Node classifier for itself
 - Node Classifiers for lower-level nodes which treat it as their ancestors
 - Weights of deep networks
 - Errors from Leaf Node
 - Node classifier for itself
 - Weights of deep networks

Impacts of Feature Subset Selection

Impacts of Feature Subset Selection

Impacts of Soft Prediction

Impacts of Deep Multi-Task Learning

Impacts of Deep Multi-Task Learning

Impacts of Visual Tree

Impacts of Visual Tree

Impacts of Visual Tree

Prediction Confidence Enhancement

Impacts of Deep Multi-Task Learning

Impacts of Deep Multi-Task Learning

Semantic Interpretation