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Pipeline for Traditional Image Classification System
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Machine Learning for Image Classification

• Apply a prediction function (classifier) to a feature 

representation of the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. LazebnikFeature Extraction for Image Representation

Classifier

Prediction from Classifier

according to Image Representation



Various Types of Some Classifiers

• K-nearest neighbor

• SVM

• Decision Trees

• Neural networks

• GMM & Naïve Bayes

• Boosting

• Logistic regression

• Randomized Forests

• RBMs

• Etc.



Learning a classifier

Given some set of features with corresponding 
labels, learn a function to predict the labels 
from the features

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1



Classification

• Assign input vector to one of two or more 

classes

• Any decision rule divides input space into 

decision regions separated by decision 

boundaries

Slide credit: L. Lazebnik



Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data 

point 

Voronoi partitioning of feature space 
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe



K-nearest neighbor
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1-nearest neighbor
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3-nearest neighbor
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5-nearest neighbor
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Ways of rescaling for KNN

Normalized L1 distance:

Scale by IG:

Modified value distance 

metric:
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Ways of rescaling for KNN

Dot product:

Cosine distance:

TFIDF weights for text: for doc j, feature i: xi=tfi,j * idfi :

#occur. of 

term i in 

doc j

#docs in 

corpus

#docs in corpus 

that contain 

term i
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Combining distances to neighbors

Standard KNN:

Distance-weighted KNN:
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Definition of Class Centroid

 Where Dc is the set of all data points that 
belong to class c and v(d) is the vector space 
representation of one specific data point d.

 Note that centroid will in general not be a unit 
vector even when the inputs are unit vectors.
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k Nearest Neighbor Classification

 kNN = k Nearest Neighbor

 To classify a document d:

 Define k-neighborhood as the k nearest 
neighbors of d

 Pick the majority class label in the k-
neighborhood

 For larger k can roughly estimate P(c|d) as 
#(c)/k

Sec.14.3



Using K-NN



Using K-NN
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Nearest-Neighbor Learning

 Learning: just store the labeled training examples D

 Testing instance x (under 1NN):
 Compute similarity between x and all examples in D.

 Assign x the category of the most similar example in D.

 Does not compute anything beyond storing the 
examples

 Also called:
 Case-based learning

 Memory-based learning

 Lazy learning

 Rationale of kNN: contiguity hypothesis

Sec.14.3
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k Nearest Neighbor

 Using only the closest example (1NN) 
subject to errors due to:
 A single atypical example. 

 Noise (i.e., an error) in the category label of 
a single training example.

 More robust: find the k examples and 
return the majority category of these k

 k is typically odd to avoid ties; 3 and 5 
are most common

Sec.14.3
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Nearest Neighbor with Inverted Index

• Naively finding nearest neighbors requires a 
linear search through |D| documents in 
collection

• But determining k nearest neighbors is the same 
as determining the k best retrievals using the test 
document as a query to a database of training 
documents.

• Use standard vector space inverted index 
methods to find the k nearest neighbors.

• Testing Time: O(B|Vt|)         where B is the average 
number of training documents in which a test-document word 
appears.

– Typically B << |D|

Sec.14.3
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kNN: Discussion

• No feature selection necessary

• No training necessary

• Scales well with large number of classes

– Don’t need to train n classifiers for n classes

• Classes can influence each other

– Small changes to one class can have ripple effect

• Done naively, very expensive at test time

• In most cases it’s more accurate than NB or 
Rocchio

Sec.14.3



Using K-NN



Using K-NN



Basic Classification 

!!!!$$$!!!!

Spam 
filtering

Input Output 

BinarySpam vs. Not-Spam
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Basic Classification 

Character
recognition

Input Output 

C
Multi-Class

C vs. other 25 characters
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Structured Classification

Handwriting
recognition

Input Output 

3D object
recognition

building
tree

brace

Structured output
Graph Model



Overview of Bayesian Decision
Test patient

(a) Group assignment for test patient; 

(b) Prior knowledge about the assigned group 

(c) Properties of the assigned group (sick or healthy)
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Overview of Bayesian Decision
Test patient

Observations: Bayesian decision process is a data modeling 

process, e.g., estimate the data distribution

K-means clustering: any relationship & difference?



Bayes’ Rule: 
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Bayes’ Rule: 
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P(d|h): data distribution 

of group h 

P(h): importance 
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Bayes’ Rule: 
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• Estimating the data distribution for whole data set 

• Estimating the data distribution for each specific 
group 

• Prior knowledge about each specific group

Works to support Bayesian decision:



Gaussian Mixture Model (GMM)

How to estimate the distribution for a given dataset?



Gaussian Mixture Model (GMM)



Gaussian Mixture Model (GMM)

What does GMM mean? 

100 = 5*10 + 2*20 + 2*5 

100 = 100*1 

100 = 10*10 

……………….

GMM may prefer larger K with ``smaller” Gaussians



Gaussian Mixture Model (GMM)



Gaussian Mixture Model (GMM)

Real Data Distribution 

Any complex function (distribution) can be approximated by 

using a limited number of other functions (distributions) 

such as Gaussian functions. 



Gaussian Mixture Model (GMM)

Real Data Distribution 

Approximated Gaussian functions



Gaussian Function 
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When one Gaussian Function is used to 

approximate data distribution

a likelihood function (often simply 

the likelihood) is a function of 

the parameters of a statistical model

Given a dataset, how to use likelihood 

function to determine Gaussian parameters?

https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Statistical_model


Matching between Gaussian Function 
and Samples
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Maximum Likelihood
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Log-Likelihood Function
/ 2 2

1
2 2

( )1
exp

2 2

n n
i

i

x







  
   

   


2( , | )  xL

2( , | ) xl 2log ( , | )  xL
2

1
2 2

( )1
log

2 2 2

n
i

i

xn

 






 

22

2 2 2
1

2

1

1
log log

2 2
2

22

n n

i i

i i

n n n
x x 

 

 

 

    

Maximize
this instead

By setting

2( , | ) 0








xl 2

2
( , | ) 0


 





xland



Max. the Log-Likelihood Function
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Max. the Log-Likelihood Function
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When multiple Gaussian Functions are used 

to approximate data distribution

a likelihood function (often simply 

the likelihood) is a function of 

the parameters of a statistical model

Given a dataset, how to use likelihood 

function to determine parameters for multiple 

Gaussian functions?

https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Statistical_model


Gaussian Mixture Model (GMM)

Parameters to be estimated:

Training Set:

We assume K is available (or pre-defined)! Algorithms 

may always prefer larger K!



Gaussian Mixture Models

• Rather than identifying clusters by “nearest” 
centroids

• Fit a Set of k Gaussians to the data 
• Maximum Likelihood over a mixture model



GMM example



Mixture Models

• Formally a Mixture Model is the weighted sum 
of a number of pdfs where the weights are 
determined by a distribution,  



Gaussian Mixture Models

• GMM: the weighted sum of a number of 
Gaussians where the weights are determined 
by a distribution,  



Maximum Likelihood over a GMM

• As usual: Identify a likelihood function

• Log-likelihood 



Maximum Likelihood of a GMM

• Optimization of means.

k=1, …..K



Maximum Likelihood of a GMM

• Optimization of covariance

k=1, …..K



Maximum Likelihood of a GMM

• Optimization of mixing term



EM for GMMs

• Initialize the parameters

– Evaluate the log likelihood

• Expectation-step: Evaluate the 
responsibilities

• Maximization-step: Re-estimate Parameters

– Evaluate the log likelihood

– Check for convergence



EM for GMMs

• E-step: Evaluate the Responsibilities 



EM for GMMs
• M-Step: Re-estimate Parameters



EM for GMMs

• Evaluate the log likelihood

and check for convergence of either the parameters or the 

log likelihood. If the convergence criterion is not satisfied, 

return to E-Step.



Linear SVM

Binary case



Linear SVM



Linear SVM



Linear SVM



Linear SVM



Linear SVM: Find Closest Points in Convex Hulls

c

d



Plane Bisect Closest Points 

d

c

wT x + b =0

wT x + b =1

wT x + b =-1



• Binary classification can be viewed as the task of 
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

Linear Discriminant Function



• How would you classify these 
points using a linear 
discriminant function in order 
to minimize the error rate?

Linear Discriminant Function
denotes +1

denotes -1

x1

x2

 Infinite number of answers!



• How would you classify these 
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discriminant function in order 
to minimize the error rate?
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• How would you classify these 
points using a linear 
discriminant function in order 
to minimize the error rate?

Linear Discriminant Function
denotes +1

denotes -1

x1

x2

 Infinite number of answers!



x1

x2
• How would you classify these 

points using a linear 
discriminant function in order 
to minimize the error rate?

Linear Discriminant Function
denotes +1

denotes -1

 Infinite number of answers!

 Which one is the best?



Large Margin Linear Classifier 

“safe zone”
• The linear discriminant 

function (classifier) with the 
maximum margin is the best

 Margin is defined as the 

width that the boundary 

could be increased by before 

hitting a data point

 Why it is the best?

 Robust to outliners and thus 

strong generalization ability 

Margin

x1

x2

denotes +1

denotes -1



Large Margin Linear Classifier 

• Given a set of data points:

 With a scale transformation 

on both w and b, the above 

is equivalent to 
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Large Margin Linear Classifier 

• We know that

 The margin width is:

x1

x2

denotes +1

denotes -1
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What we know:

• w . x+ + b = +1 

• w . x- + b = -1 

• w . (x+-x-) = 2 

X-

x+
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M=Margin Width



Large Margin Linear Classifier 

• Formulation: 

x1

x2

denotes +1

denotes -1

Margin
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Large Margin Linear Classifier 

• Formulation: 

x1

x2

denotes +1

denotes -1
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Large Margin Linear Classifier 

• Formulation: 

x1

x2

denotes +1

denotes -1

Margin
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Solving the Optimization Problem 
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Solving the Optimization Problem 
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Solving the Optimization Problem 
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Solving the Optimization Problem 

 The solution has the form: 

 ( ) 1 0T

i i iy b   w x

 From KKT condition, we know: 
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Solving the Optimization Problem 

SV

( ) T T

i i

i

g b b


   x w x x x

 The linear discriminant function is: 

 Notice it relies on a dot product between the test point x

and the support vectors xi

 Also keep in mind that solving the optimization problem 

involved computing the dot products xi
Txj between all pairs 

of training points



Non-ideal Situations 

 Data partitioning has mistakes

x1

x2

denotes +1

denotes -1

1
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Large Margin Linear Classifier 

• What if data is not linear 
separable? (noisy data, 
outliers, etc.)

 Slack variables ξi can be 

added to allow mis-

classification of difficult 

or noisy data points

x1

x2

denotes +1

denotes -1

1
2



Introducing slack variables

• Slack variables are constrained to be non-negative. 
When they are greater than zero they allow us to cheat 
by putting the plane closer to the datapoint than the 
margin. So we need to minimize the amount of 
cheating. This means we have to pick a value for lamba 
(this sounds familiar!)

possibleassmallasand

callforwith

casesnegativeforb

casespositiveforb
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A picture of the best plane with a slack variable



Large Margin Linear Classifier 

 Formulation:

( ) 1T

i i iy b   w x

2

1

1
minimize  

2

n

i

i

C 


 w

such that

0i 

 Parameter C can be viewed as a way to control over-fitting.



Non-linear SVMs
 Datasets that are linearly separable with noise work out 

great:

0 x

0 x

x2

0 x

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional space:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Nonlinear Classification

Linear Separable 



Non-linear SVMs:  Feature Space

 General idea:  the original input space can be mapped 

to some higher-dimensional feature space where the 

training set is separable:

Φ:  x→ φ(x)

Why high-dimensional space can have better separation?



Transforming the Data

• Computation in the feature space can be 
costly because it is high dimensional
– The feature space is typically infinite-dimensional!

• The kernel trick comes to rescue

f(  )

f(  )

f(  )
f(  )f(  )

f(  )

f(  )
f(  )

f(.)
f(  )

f(  )

f(  )

f(  )
f(  )

f(  )

f(  )

f(  )
f(  )

f(  )

Feature spaceInput space



Nonlinear SVMs: The Kernel Trick

 With this mapping, our discriminant function is now:

SV

( ) ( ) ( ) ( )T T

i i

i

g b bf  f f


   x w x x x

 No need to know this mapping explicitly, because we only use 

the dot product of feature vectors in both the training and test.

 A kernel function is defined as a function that corresponds to 

a dot product of two feature vectors in some expanded feature 

space:

( , ) ( ) ( )T

i j i jK f fx x x x



Nonlinear SVMs: The Kernel Trick

2-dimensional vectors x=[x1   x2];  

let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj) = φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]

 An example:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Nonlinear SVMs: The Kernel Trick

 Linear kernel:

2

2
( , ) exp( )

2

i j

i jK



 

x x
x x

( , ) T

i j i jK x x x x

( , ) (1 )T p

i j i jK  x x x x

0 1( , ) tanh( )T

i j i jK   x x x x

 Examples of commonly-used kernel functions:

 Polynomial kernel:

 Gaussian (Radial-Basis Function (RBF) ) kernel:

 Sigmoid:

 In general, functions that satisfy Mercer’s condition can be 

kernel functions.



Nonlinear SVM: Optimization

 Formulation: (Lagrangian Dual Problem)

1 1 1

1
maximize  ( , )

2

n n n

i i j i j i j

i i j

y y K 
  

  x x

such that
0 i C 

1

0
n

i i

i

y




 The solution of the discriminant function is

SV

( ) ( , )i i

i

g K b


 x x x

 The optimization technique is the same.



Support Vector Machine: Algorithm

• 1. Choose a kernel function

• 2. Choose a value for C

• 3. Solve the quadratic programming problem 
(many software packages available)

• 4. Construct the discriminant function from the 
support vectors 



Some Issues

• Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity 
measures

• Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications 
- In the absence of reliable criteria, applications rely on the use of a 

validation set or cross-validation to set such parameters. 

• Optimization criterion – Hard margin v.s. Soft margin

- a lengthy series of experiments in which various parameters are tested 



Strengths and Weaknesses of SVM

• Strengths
– Training is relatively easy 

• No local optimal, unlike in neural networks

– It scales relatively well to high dimensional data
– Tradeoff between classifier complexity and error can 

be controlled explicitly
– Non-traditional data like strings and trees can be 

used as input to SVM, instead of feature vectors
– By performing logistic regression (Sigmoid) on the 

SVM output of a set of data can map SVM output to 
probabilities.

• Weaknesses
– Need to choose a “good” kernel function.



Summary: Support Vector Machine

• 1. Large Margin Classifier 

– Better generalization ability & less over-
fitting

• 2. The Kernel Trick

– Map data points to higher dimensional space 
in order to make them linearly separable.

– Since only dot product is used, we do not 
need to represent the mapping explicitly.



What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-

class SVM formulation

• In practice, we have to obtain a multi-class 

SVM by combining multiple two-class SVMs 

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to 

the test example

Slide credit: L. Lazebnik



Three Approaches to K-Class SVM



Three Approaches to K-Class SVM

 K one-versus-residue (OVR) binary SVM 

 Advantages 

 Disadvantages  



Three Approaches to K-Class SVM

 Advantages 

 Disadvantages  



Three Approaches to K-Class SVM

 One K-Class SVM 



K-class SVM

1

2 3



Multi-class SVM

Intuitive formulation: without 

regularization / for the separable case

Primal problem: QP

Solved in the dual formulation,  also Quadratic Program

Main advantage: Sparsity (but not systematic) 

• Speed with SMO (heuristic use of sparsity)

• Sparse solutions

Drawbacks:

• Need to recalculate or store xi
Txj

• Outputs not probabilities



Real world classification problems

Object 

recognition

100

Automated protein 

classification

50

300-600 

Digit recognition

10

Phoneme recognition

[Waibel, Hanzawa, Hinton,Shikano, Lang 1989]
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• The number of classes is sometimes big

• The multi-class algorithm can be heavy



Combining binary classifiers

One-vs-all For each class build a classifier for that class vs the rest

• Often very imbalanced classifiers (use asymmetric regularization)

All-vs-all For each class build a classifier for that class vs the rest

• A priori a large number of classifiers          to build  but…

• The pairwise classification are way much faster

• The classifications are balanced (easier to find the best regularization)

… so that in many cases it is clearly faster than one-vs-all



Confusion Matrix

• Visualize which classes are more 

difficult to learn

• Can also be used to compare two 

different classifiers

• Cluster classes and go hierachical 
[Godbole, ‘02]

[Godbole, ‘02]

A
ct

u
a

l 
cl

a
ss

es

Predicted classes

Classification of 

20 news groups

BLAST classification of 

proteins in 850 superfamilies



Calibration

How to measure the confidence in a class prediction?

Crucial for: 

1. Comparison between different classifiers

2. Ranking the prediction for ROC/Precision-Recall curve

3. In several application domains having a measure of 

confidence for each individual answer is very important 

(e.g. tumor detection)

Some methods have an implicit notion of confidence e.g. for 

SVM the distance to the class boundary relative to the size of the 

margin other like logistic regression have an explicit one.



Combining OVA calibrated classifiers

Class 1 Class 2 Class 3 Class 4
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Renormalize



Exponential form

Once the graph is 

defined the model 

can be written in 

exponential form

feature vector

parameter vector

Comparing two 

labellings with the 

likelihood ratio



Discriminative Algorithms



Example: multiclass setting

Predict:

Update:

Feature encoding:

Predict:

Update:



Three Approaches to K-Class SVM



General SVM 

Objective function = error function + regularization term



Training 
Samples

Learning 
Algorithms

Classifier
y = f(x)

Test Samples x Classifier
y = f(x)

Predictions y

offline

online

SVM & GMM (Bayes Rule)

cannot handle this case!

Day Outlook Temperature Humidity Wind Play
Tennis

Day1 Sunny Hot High Weak No

Day2 Sunny Hot High Strong No

Day3 Overcast Hot High Weak Yes

Day4 Rain Mild High Weak Yes

Day5 Rain Cool Normal Weak Yes

Day6 Rain Cool Normal Strong No

Day7 Overcast Cool Normal Strong Yes

Day8 Sunny Mild High Weak No

Day9 Sunny Cool Normal Weak Yes

Day10 Rain Mild Normal Weak Yes

Day11 Sunny Mild Normal Strong Yes

Day12 Overcast Mild High Strong Yes

Day13 Overcast Hot Normal Weak Yes

Day14 Rain Mild High Strong No



Wish List:

Even these features or attributes x are 

not comparable directly, the decisions y 

they make could be comparable! 

For different decisions y, we can use 

different features or attributes x! 

Classifier Training with Feature Selection!



Our Expectations
Outlook

Humidity WindyP

sunny
overcast

rainy

PN

high normal

PN

yes no

How to make this happen?

Compare it with our wish list



Our Expectations
Outlook

Humidity WindyP

sunny
overcast

rainy

PN

high normal

PN

yes no

 Different nodes can select and use one single feature 

or attribute x 

 Use various paths to combine multiple features or 

attributes x 

How to select feature for each node? When we stop such path?



Decision Tree

• What is a Decision Tree

• Sample Decision Trees

• How to Construct a Decision Tree

• Problems with Decision Trees

• Summary



 Decision tree is a classifier in the form of a tree 

structure

– Decision node: specifies a test on a single 

attribute or feature x

– Leaf node: indicates the value of the target 

attribute (label) y

– Arc/edge: split of one attribute (could be 

multiple partitions y or binary ones y)

– Path: a disjunction of test to make the final 

decision (all attributes x could be used)

 Decision trees classify instances or examples by 

starting at the root of the tree and moving through 

it until a leaf node.

Definition



Why decision tree?

• Decision trees are powerful and 
popular tools for classification and 
prediction.

• Decision trees represent rules, which 
can be understood by humans and 
used in knowledge system such as 
database.  

Compare these with our wish list



key requirements

• Attribute-value description: object or case 
must be expressible in terms of a fixed 
collection of properties or attributes x (e.g., 
hot, mild, cold). 

• Predefined classes (target  values y): the 
target function has discrete output values y 
(binary or multiclass)

• Sufficient data: enough training cases should 
be provided to learn the model. 



An Example Data Set and Decision Tree

yes

no

yes no

sunny rainy

no
med

yes

small big

big

outlook

company

sailboat

# Class
Outlook Company Sailboat Sail?

1 sunny big small yes

2 sunny med small yes

3 sunny med big yes

4 sunny no small yes

5 sunny big big yes

6 rainy no small no

7 rainy med small yes

8 rainy big big yes

9 rainy no big no

10 rainy med big no

Attribute



Classification

yes

no

yes no

sunny rainy

no
med

yes

small big

big

outlook

company

sailboat

# Class

Outlook Company Sailboat Sail?

1 sunny no big ?

2 rainy big small ?

Attribute
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DECISION TREE
• An internal node is a test on an attribute.

• A branch represents an outcome of the test, e.g., 
Color=red.

• A leaf node represents a class label or class label 
distribution.

• At each node, one attribute is chosen to split training 
examples into distinct classes as much as possible

• A new case is classified by following a matching path 
to a leaf node. 

Each node uses one single feature to train one classifier!



Training 
Samples

Learning 
Algorithms

Classifier
y = f(x)

Test Samples x Classifier
y = f(x)

Predictions y

offline

online

SVM, GMM (Bayes Rule) & Decision Tree

One more weapon at hand now!
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Decision Tree Construction

• Top-Down Decision Tree Construction

• Choosing the Splitting Attribute: Feature Selection

• Information Gain and Gain Ratio: Classifier 
Training



1
3
9

Decision Tree Construction

• Selecting the best-matching feature or 
attribute x for each node 

---what kind of criteria can be used?

• Training the node classifier y = f(x) under the 
selected feature x

---what kind of classifiers can be used?



Prostate cancer recurrence

Secondary Gleason Grade

No YesPSA Level Stage

Primary Gleason Grade

No Yes

No No Yes

1,2 3 4 5

14.9 14.9 T1c,T2a,

T2b,T2c

T1ab,T3

2,3 4



Another Example

# Class

Outlook Temperature Humidity Windy Play

1 sunny hot high no N

2 sunny hot high yes N

3 overcast hot high no P

4 rainy moderate high no P

5 rainy cold normal no P

6 rainy cold normal yes N

7 overcast cold normal yes P

8 sunny moderate high no N

9 sunny cold normal no P

10 rainy moderate normal no P

11 sunny moderate normal yes P

12 overcast moderate high yes P

13 overcast hot normal no P

14 rainy moderate high yes N

Attribute



Simple Tree

Outlook

Humidity WindyP

sunny
overcast

rainy

PN

high normal

PN

yes no

Decision Tree can select different attributes for different decisions!



Complicated Tree

Temperature

Outlook Windy

cold moderate

hot

P

sunny rainy

N

yes no

P

overcast

Outlook

sunny rainy

P

overcast

Windy

PN

yes no

Windy

NP

yes no

Humidity

P

high normal

Windy

PN

yes no

Humidity

P

high normal

Outlook

N

sunny rainy

P

overcast

null

Given a data set, we could 

have multiple solutions!



Attribute Selection Criteria

• Main principle
– Select attribute which partitions the learning set into 

subsets as “pure” as possible

• Various measures of purity
– Information-theoretic
– Gini index
– X2

– ReliefF
– ...

• Various improvements
– probability estimates
– normalization
– binarization, subsetting



Information-Theoretic Approach

• To classify an object, a certain information is 
needed

– I, information

• After we have learned the value of attribute A, we 
only need some remaining amount of information 
to classify the object

– Ires, residual information

• Gain

– Gain(A) = I – Ires(A)

• The most ‘informative’ attribute is the one that 
minimizes Ires, i.e., maximizes Gain



Entropy

• The average amount of information I
needed to classify an object is given by 
the entropy measure

• For a two-class problem:

entropy

p(c1)



Residual Information

• After applying attribute A, S is partitioned 
into subsets according to values v of A

• Ires is equal to weighted sum of the 
amounts of information for the subsets



Triangles and Squares

# Shape

Color Outline Dot

1 green dashed no triange

2 green dashed yes triange

3 yellow dashed no square

4 red dashed no square

5 red solid no square

6 red solid yes triange

7 green solid no square

8 green dashed no triange

9 yellow solid yes square

10 red solid no square

11 green solid yes square

12 yellow dashed yes square

13 yellow solid no square

14 red dashed yes triange

Attribute



Triangles and Squares

.

.

.
.

.

.

# Shape

Color Outline Dot

1 green dashed no triange

2 green dashed yes triange

3 yellow dashed no square

4 red dashed no square

5 red solid no square

6 red solid yes triange

7 green solid no square

8 green dashed no triange

9 yellow solid yes square

10 red solid no square

11 green solid yes square

12 yellow dashed yes square

13 yellow solid no square

14 red dashed yes triange

Attribute

Data Set:

A set of classified objects



Entropy

• 5 triangles

• 9 squares

• class probabilities

• entropy

.

.

.
.

.
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reduction
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data set
partitioning
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Color?

red

yellow

green
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Information Gain of The Attribute

• Attributes
– Gain(Color) = 0.246

– Gain(Outline) = 0.151

– Gain(Dot) = 0.048

• Heuristics: attribute with the highest gain is 
chosen

• This heuristics is local (local minimization of 
impurity)
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Color?

red

yellow

green

Gain(Outline) = 0.971 – 0 = 0.971 bits

Gain(Dot) = 0.971 – 0.951 = 0.020 bits
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Color?

red

yellow

green

.

.

Outline?

dashed

solid

Gain(Outline) = 0.971 – 0.951 = 0.020 bits

Gain(Dot) = 0.971 – 0 = 0.971 bits

Conditional decision

Initial decision
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Decision Tree

Color

Dot Outlinesquare

red
yellow

green

squaretriangle

yes no

squaretriangle

dashed solid

.

.

.
.

.

.



A Defect of Ires

• Ires favors attributes with many values

• Such attribute splits S to many subsets, and if 
these are small, they will tend to be pure anyway

• One way to rectify this is through a corrected 
measure of information gain ratio.



Information Gain Ratio

• I(A) is amount of information needed to 
determine the value of an attribute A

• Information gain ratio
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Information Gain and Information Gain Ratio

A |v(A)| Gain(A) GainRatio(A)

Color 3 0.247 0.156

Outline 2 0.152 0.152

Dot 2 0.048 0.049



Gini Index

• Another sensible measure of impurity
(i and j are classes)

• After applying attribute A, the resulting Gini 
index is

• Gini can be interpreted as expected error 
rate



Gini Index
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Gain of Gini Index
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Shall I play tennis today?



170



171



172



173

How do we choose the best attribute?

What should that attribute do for us?
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Which attribute to select?

witten&eibe
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Criterion for attribute selection

• Which is the best attribute?

– The one which will result in the smallest tree

– Heuristic: choose the attribute that produces 
the “purest” nodes

• Need a good measure of purity!

– Maximal when?

– Minimal when?
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Information Gain

Which test is more informative?
Split over whether 

Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether 
applicant is employed
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Information Gain

Impurity/Entropy (informal)
– Measures the level of impurity in a group of 

examples
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Impurity

Very impure group Less impure Minimum 

impurity
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Entropy: a common way to measure impurity

• Entropy = 

pi is the probability of class i

Compute it as the proportion of class i in the set.

• Entropy comes from information theory.  The 

higher the entropy the more the information 

content.


i

ii pp 2log

What does that mean for learning from examples?
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2-Class Cases:

• What is the entropy of a group in which 
all examples belong to the same 
class?
– entropy = - 1 log21 = 0

• What is the entropy of a group with 
50% in either class?
– entropy = -0.5  log20.5 – 0.5  log20.5 =1

Minimum 

impurity

Maximum

impurity

not a good training set for learning

good training set for learning
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Information Gain

• We want to determine which attribute in a 
given set of training feature vectors is most 
useful for discriminating between the classes to 
be learned.

• Information gain tells us how important a given 
attribute of the feature vectors is.

• We will use it to decide the ordering of 
attributes in the nodes of a decision tree.
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Calculating Information Gain

996.0
30

16
log

30

16

30

14
log

30

14
22 

















impurity

787.0
17

4
log

17

4

17

13
log

17

13
22 

















impurity

Entire population (30 instances)
17 instances

13 instances

(Weighted) Average Entropy of Children = 615.0391.0
30

13
787.0
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



















Information Gain= 0.996 - 0.615 = 0.38

391.0
13

12
log

13

12

13

1
log

13

1
22 

















impurity

Information Gain =    entropy(parent) – [average entropy(children)]

parent

entropy

child

entropy

child

entropy
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Entropy-Based Automatic Decision Tree 
Construction

Node 1

What feature 

should be used?

What values?

Training Set S

x1=(f11,f12,…f1m)

x2=(f21,f22,    f2m)

.

.

xn=(fn1,f22,    f2m)

Quinlan suggested information gain in his ID3 system

and later the gain ratio, both based on entropy.
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Using Information Gain to Construct a Decision 
Tree

Attribute A

v1 vkv2

Full Training Set S

Set S 

repeat

recursively

till when?

Information gain has the disadvantage that it prefers

attributes with large number of values that split the

data into small, pure subsets. Quinlan’s gain ratio

did some normalization to improve this.

S={sS | value(A)=v1}

Choose the attribute A

with highest information

gain for the full training

set at the root of the tree.Construct child nodes

for each value of A.

Each has an associated

subset of vectors in

which A has a particular

value.
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Information Content

The information content I(C;F) of the class variable C

with possible values {c1, c2, … cm} with respect to

the feature variable F with possible values {f1, f2, … , fd}

is defined by:

• P(C = ci) is the probability of class C having value ci.

• P(F=fj) is the probability of feature F having value fj.

• P(C=ci,F=fj) is the joint probability of class C = ci

and variable F = fj.

These are estimated from frequencies in the training data.
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Simple Example

• Sample Example

X      Y      Z           C

1 1       1           I

1 1       0           I

0        0       1          II

1        0       0          II

How would you distinguish class I from class II?
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Example (cont)

Which attribute is best?  Which is worst? Does it make sense?

X       Y       Z          C

1        1       1           I

1 1       0           I

0        0       1          II

1        0       0          II
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Using Information Content

• Start with the root of the decision tree and the whole

training set.

• Compute I(C,F) for each feature F.

• Choose the feature F with highest information

content for the root node.

• Create branches for each value f of F.

• On each branch, create a new node with reduced

training set and repeat recursively.
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Example: The Simpsons



Person Hair 
Length

Weight Age Class

Homer 0” 250 36 M

Marge 10” 150 34 F

Bart 2” 90 10 M

Lisa 6” 78 8 F

Maggie 4” 20 1 F

Abe 1” 170 70 M

Selma 8” 160 41 F

Otto 10” 180 38 M

Krusty 6” 200 45 M

Comic 8” 290 38 ?



Hair Length <= 5?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)

=  0.9911
























np

n

np

n

np

p

np

p
SEntropy 22 loglog)(

Gain(Hair Length <= 5) = 0.9911 – (4/9 * 0.8113 + 5/9 * 0.9710 ) = 0.0911

)()()( setschildallEsetCurrentEAGain 

Let us try splitting 

on Hair length



Weight <= 160?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)

=  0.9911
























np

n

np

n

np

p

np

p
SEntropy 22 loglog)(

Gain(Weight <= 160) = 0.9911 – (5/9 * 0.7219 + 4/9 * 0 ) = 0.5900

)()()( setschildallEsetCurrentEAGain 

Let us try splitting 

on Weight



age <= 40?
yes no

Entropy(4F,5M) = -(4/9)log2(4/9) - (5/9)log2(5/9)

=  0.9911
























np

n

np

n

np

p

np

p
SEntropy 22 loglog)(

Gain(Age <= 40) = 0.9911 – (6/9 * 1 + 3/9 * 0.9183 ) = 0.0183

)()()( setschildallEsetCurrentEAGain 

Let us try splitting 

on Age



Weight <= 160?
yes no

Hair Length <= 2?
yes no

Of the 3 features we had, Weight

was best. But while people who 

weigh over 160 are perfectly 

classified (as males), the under 160 

people are not perfectly 

classified… So we simply recurse!

This time we find that we 

can split on Hair length, and 

we are done!



Weight <= 160?

yes no

Hair Length <= 2?

yes no

We need don’t need to keep the data 

around, just the test conditions.

Male

Male Female

How would 

these people 

be classified?



It is trivial to convert Decision 

Trees to rules… 
Weight <= 160?

yes no

Hair Length <= 2?

yes no

Male

Male Female

Rules to Classify Males/Females

If Weight greater than 160, classify as Male

Elseif Hair Length less than or equal to 2, classify as Male

Else classify as Female
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Building Decision Tree [Q93]

• Top-down tree construction

– At start, all training examples are at the root.

– Partition the examples recursively by 
choosing one attribute each time.

• Bottom-up tree pruning

– Remove subtrees or branches, in a bottom-
up manner, to improve the estimated 
accuracy on new cases.
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Top-Down Approach

• Top-Down Decision Tree Construction

• Choosing the Splitting Attribute

• Information Gain biased towards 
attributes with a large number of values

• Gain Ratio takes number and size of 
branches into account when choosing an 
attribute
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Choosing the Splitting Attribute 

• At each node, available attributes are 
evaluated on the basis of separating the 
classes of the training examples. A 
Goodness function is used for this 
purpose.

• Typical goodness functions:

– information gain (ID3/C4.5)

– information gain ratio

– gini index

witten&eibe
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A criterion for attribute selection

• Which is the best attribute?

– The one which will result in the smallest tree

– Heuristic: choose the attribute that produces 
the “purest” nodes

• Popular impurity criterion: information gain

– Information gain increases with the average 
purity of the subsets that an attribute produces

• Strategy: choose attribute that results in 
greatest information gain

witten&eibe
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Computing information

• Information is measured in bits

– Given a probability distribution, the info 
required to predict an event is the 
distribution’s entropy

– Entropy gives the information required in 
bits (this can involve fractions of bits!)

• Formula for computing the entropy:
nnn ppppppppp logloglog),,,entropy( 221121  

witten&eibe



Evaluation

• Training accuracy
– How many training instances can be correctly classify based on 

the available data?

– Is high when the tree is deep/large, or when there is less 
confliction in the training instances.

– however, higher training accuracy does not mean good 
generalization

• Testing accuracy
– Given a number of new instances, how many of them can we 

correctly classify?

– Cross validation



Strengths

• can generate understandable rules

• perform classification without much 
computation

• can handle continuous and categorical 
variables

• provide a clear indication of which fields 
are most important for prediction or 
classification 



Weakness

• Not suitable for prediction of continuous 
attribute.

• Perform poorly with many class and small 
data.

• Computationally expensive to train. 
– At each node, each candidate splitting field must be sorted 

before its best split can be found. 

– In some algorithms, combinations of fields are used and a 
search must be made for optimal combining weights. 

– Pruning algorithms can also be expensive since many candidate 
sub-trees must be formed and compared. 

• Do not treat well non-rectangular regions. 



Summary

• Decision trees can be used to help predict the 
future

• The trees are easy to understand

• Decision trees work more efficiently with 
discrete attributes

• The trees may suffer from error propagation



What to remember about classifiers

• No free lunch: machine learning algorithms are tools, 
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers 
than simple features and smart classifiers

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff)

Slide credit: D. Hoiem



Generalization

• How well does a learned model generalize from 
the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



Generalization

• Components of generalization error 
– Bias: how much the average model over all training sets differ from the 

true model?

• Error due to inaccurate assumptions/simplifications made by the 
model. 

– Variance: how much models estimated from different training sets 
differ from each other.

• Underfitting: model is too “simple” to represent all the 
relevant class characteristics
– High bias (few degrees of freedom) and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
– Low bias (many degrees of freedom) and high variance

– Low training error and high test error

Slide credit: L. Lazebnik



Bias-Variance Trade-off

• Models with too few 
parameters are inaccurate 
because of a large bias (not 
enough flexibility).

• Models with too many 
parameters are inaccurate 
because of a large variance 
(too much sensitivity to 
the sample).

Slide credit: D. Hoiem



Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem



Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t 
E

rr
o
r

Slide credit: D. Hoiem



Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

E
rr

o
r

Fixed prediction model

Slide credit: D. Hoiem



Remember…

• No classifier is inherently 
better than any other: you 
need to make assumptions to 
generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to 
perfectly estimate parameters 
from limited data

Slide credit: D. Hoiem



How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem



Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and 
the labels

• Often, makes use of 
conditional independence 
and priors

• Examples
– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to 
future prediction problems

Discriminative Models

• Learn to directly predict the 
labels from the data

• Often, assume a simple 
boundary (e.g., linear)

• Examples
– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a 
label from the data than to 
model the data

Slide credit: D. Hoiem



Other Issues for Image Classification





OBJECTS

ANIMALS INANIMATEPLANTS

MAN-MADENATURAL
VERTEBRATE…..

MAMMALS BIRDS

GROUSEBOARTAPIR CAMERA



Specific recognition tasks

Svetlana Lazebnik



Scene categorization or classification

• outdoor/indoor

• city/forest/factory/etc.

Svetlana Lazebnik



Image annotation / tagging / attributes

• street

• people

• building

• mountain

• tourism

• cloudy

• brick

• …

Svetlana Lazebnik



Object detection

• find pedestrians

Svetlana Lazebnik



Image parsing / semantic segmentation

mountain

building

tree

banner

market

people

street lamp

sky

building

Svetlana Lazebnik



Scene understanding?

Svetlana Lazebnik


