
Object Shape Estimation through Touch-based
Continuum Manipulation

Huitan Mao and Jing Xiao

Abstract Object shape information is crucial for many robotic tasks. In this pa-
per, we present an approach of estimating the shapes of unknown objects through
touch-based continuum manipulation. Comparing to existing work for shape esti-
mation that uses a conventional robot end-effector to make contact with the object,
our approach offers the following advantages: 1) collecting contact points more effi-
ciently through whole-arm wraps using a continuum manipulator; 2) explicitly tak-
ing advantage of the continuum robot proprioception to estimate the object shape
both more efficiently and more accurately. Our experiments on objects with various
shapes demonstrate the effectiveness of the approach.

1 Introduction

Information of object shape is crucial for many robotic tasks. A grasp can be planned
to fetch an object with a known shape. When planning a path, collision can be
checked against an object using its shape and configuration. Information of object
shape also facilitates object detection, recognition, and pose estimation. Usually,
the shape of an object is either provided as a priori knowledge or acquired by object
model building through sensing, especially vision and tactile sensing.

Vision sensing has been widely used for object model building. An object ap-
pearance model can be built by either moving an RGB-D camera around the target
object [1] or moving the object with a turntable [2,3]. Through robotic manipulation
to change the bottom surface of a table-top object, an automatic approach interleav-
ing perception and manipulation [4] is able to build the entire surface model of the
object. However, vision sensing can be ineffective for transparent objects or in en-
vironments with poor illumination and specularity conditions.
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Tactile sensing is useful for exploring object shapes and building object models
when vision is ineffective. By equiping a robotic end-effector with tactile sensors,
the surface of an object can be explored with guarded moves [5] and compliant
motion [6, 7]. Object recognition [8] and grasping of unknown objects [9] can also
be achieved. In [10], recognition of curved surfaces through touch is achieved by
matching contact points to principal-curvature-based local geometry features. Sim-
ilar features are also shown to be useful in reconstructing the local surface patch by
fitting a high-order polynomial [11].

In order to guide touch-based exploration, i.e., to decide where to touch next
to collect contact points, there are several methods. One method uses a dynamic
potential field [12], where a uniformly attractive potential field is updated as more
contacts are made and generates repulsive forces to push the touch-enabled hand
to visit unexplored areas. Gaussian Process (GP) [13] is used to drive active ex-
ploration into uncertain areas. In [14], discrete touch probings of the end-effector
are progressively generated to reduce the uncertainty of the interest area using GP
regression. In [15], it is shown that GP classification can also effectively bias the
exploration towards the boundaries of the objects, which are more informative of
the object shape. Extended from GP, a probabilistic model of uncertainty based on
Gaussian Process Implicit Surfaces (GPIS) [16] is used to guide the active explo-
ration and modeling of an object [5,17] or serve as a framework of data fusion from
sensors with different modalities [18].

However, using only the robot end-effector to touch a target object usually only
makes a couple contact points per probing, and thus it is a slow process to collect
sufficient contact points to capture the global shape of the object by changing the
end-effector pose after each probe. The process also does not explicitly utilize the
adjacency information of nearby contact points.

Unlike conventional robotic manipulators, continuum robots [19–24] are suit-
able for whole-arm manipulation to wrap around an object and for maneuvering in
cluttered space. Autonomous motion planning algorithms are introduced for gen-
erating whole-arm wrapping configurations [25], force-closure wraps [26, 27], and
manipulator motion constrained by the target object surface [28], for a known ob-
ject. More recent work addressed object wrapping [29] and object modeling using
RGBD sensing [30] by a continuum manipulator in an unknown environment.

In this paper, we address the problem of estimating the shape of an unknown ob-
ject through obtaining object shape information from touch-based continuum ma-
nipulation, which has not been studied before. By wrapping around an object (see
Fig. 1 for an example), a continuum manipulator makes many more contacts with
an object than a conventional robot end-effector. Moreover, the manipulator shape
itself in a wrapping configuration is also indicative of the object shape. Our ap-
proach, called progressive object shape estimation through continuum manipulation
(POSE-CoM), extends the GPIS method by explicitly incorporating the continuum
robot arm shape in addition to the contact points made between the robot and the
object in each wrap to estimate the overall object shape. The approach is shown
to be both more efficient and more accurate over existing methods for touch-based
object shape estimation.
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Fig. 1 A continuum manipulator wraps around a box.

The rest of the paper is organized as follows. Section 2 presents the manipulator
model considered in this paper. Section 3 presents the proposed approach. Section
4 reports experimental results on objects with various shapes to demonstrate the
advantages of this approach. Section 5 concludes the paper.

2 Manipulator Model

We briefly review the manipulator kinematic model used in this work. A continuum
manipulator is considered as a concatenation of n circular sections when each sec-
tion is not in contact or under external loading [21]. Each section seci, i = 1, . . . ,n, is
described by three controllable variables: length si, curvature κi, and orientation φi,
and bounded by its base point pi−1 and end point pi. A local coordinate system is
attached to the base point of seci with the z axis tangential to seci as shown in Fig. 2.
The arm configuration C of an n-section continuum manipulator can be represented
as C = {(s1,κ1,φ1), ....,(sn,κn,φn)}.

Fig. 2 Illustration of the frame of seci, circular arc center ci and the control variables si, κi and
φi [29].

In this work, we assume the continuum manipulator is covered with tactile sen-
sors, which are able to detect, localize and estimate the normal and tangential direc-
tion of the contact points when the robot is in touch with the object. In simulation,
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contacts between a continuum robot and an object can be efficiently detected using
the collision checking algorithm in [27].

3 Progressive Object Shape Estimation through Continuum
Manipulation (POSE-CoM)

An overview of our approach is presented in Fig. 3. First, touch-based continuum
wrapping progressively moves the continuum robot to a wrapping configuration
based on contact points made between the robot and the object. Next, object shape
data collection gathers contact points and the shape information from the contin-
uum wrap. Shape estimation uses the data collected so far in a probabilistic frame-
work based on Gaussian Process Implicit Surfaces(GPIS) to estimate the overall
shape of the object. Active guidance uses the result of estimation to decide the next
continuum wrap to cover the most uncertain region of the object and collect more
data for estimation. The process repeats until either the estimated object shape has
low uncertainty or the robot has exhausted the possible wraps.

Initialization

Touch-based con-
tinuum wrapping

Object shape data collection

Shape estimation based
on the accumulated data

End

Active guidance

Low uncertainty or No more wraps

Fig. 3 Overview of the POSE-CoM approach.
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3.1 Touch-based Continuum Wrapping

A continuum wrap of an object here is defined as a planar whole-arm grasp by the
continuum manipulator around a cross section of the object, which further defines a
wrapping plane.

Given a continuum manipulator with a fixed base, its workspace can be decom-
posed into discrete wrapping planes, as shown in Fig. 4. We denote the set of wrap-
ping planes as WP= {wp1, . . . ,wpc}. On each wrapping plane, the continuum robot
can generate a wrap of an object around the cross section on the plane. See Fig. 5
for some example wraps on different wrapping planes of an object.

Fig. 4 The wrapping planes are systematically enumerated between the table plane (grey back-
ground) and the black planes orthogonal to the table plane. Left: each red plane is used to generate
a clockwise continuum wrap. Right: each green plane is used to generate a counter-clockwise con-
tinuum wrap. Note that the initial configurations of the robot in Left and Right are different. The
frame at the robot base is the global coordinate system.

Fig. 5 A few examples of the wrapping planes (grey) and their corresponding continuum wraps.
These planes also uniquely cut through the object (a bottle) and pass through the fixed robot base.
The frame at the robot base is the global coordinate system.

For initialization, an initial set of wrapping planes WP0 ⊂WP are randomly se-
lected, and the continuum robot generates wraps on those wrapping planes one by
one, while accumulating shape data of the object from each wrap. The data are then
used to conduct shape estimation. The result is further used to guide the selection of
the next wrapping plane by Active guidance (see Section 3.4), and so on.

Now, given a wrapping plane and an initial arm configuration, we use a motion
planning strategy to generate a continuum wrap of an object progressively as guided
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by the contact points made along the way [31]. The continuum manipulator alter-
nates between the enclosing motion step and the advancing motion step on the
wrapping plane until a wrap is achieved.

Enclosing motion step brings the robot into contact with the object as much as
possible to create contact points. This is achieved by having the robot curve its
sections one by one to make contact with the object until no further contact points
can be made. Fig. 6 shows an example of such an enclosing motion.

Fig. 6 Illustration of an enclosing motion. Left: Robot at the initial configuration. Middle: The
robot makes first contact by curving section 1 (black). Right: The robot makes the second contact
by curving section 3 (green) without penetrating into the object.

Advancing motion step takes advantage of the contacts made in the enclosing mo-
tion step to move the robot forward to a new arm configuration towards wrapping
around the object. The new arm configuration is achieved by (1) moving the end-
point of each robot section a small distance from its current position along the di-
rection n+ t of the closest contact point, where n and t denote the normal and the
tangential unit vectors of the contact point respectively1; (2) solving the resulting
arm configuration by the constrained inverse kinematics [28] corresponding to the
new endpoint positions from (1).

Fig. 7 shows an example of advancing motion. The robot backbone(dashed line)
is colored using black, red and green for sections 1, 2 and 3 respectively. As the
result of the previous enclosing motion step, the robot is in contact with the object
at the red points on sections 2 and 3. Now, for the end point of each section in
contact, its new position (green) is determined by a translation of a small distance
from its current position (yellow) along n+ t of the closest contact point. For section
1 that is not in contact, its new endpoint position is obtained by a small translation
from the current endpoint position along the z axis of its local frame.

1 The direction of t is flipped if the dot product between t and the z-axis of the local frame on the
section endpoint closest to the contact point is negative, to ensure that the robot moves towards a
wrapping configuration.
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Fig. 7 Illustration of an advancing motion. Left: the robot section end points are indicated in
yellow, the contact points are in red, and the new endpoint positions are indicated in green. Right:
the new arm configuration solved using constrained inverse kinematics based on the new endpoint
positions (green).

3.2 Object Shape Data Collection and Generation

Two types of shape data are collected in our approach (see Fig. 8(a)):

(i) contact points made between the robot and the object during wraps, and
(ii) arm points sampled along the backbone of the robot when the robot is in the

configuration of a complete wrap, i.e., points indicative of the robot shape.

(a) (b)

Fig. 8 Left: the dashed line is the backbone of the continuum robot. The blue dots are the arm
points systematically sampled on the arm backbone. The red dots are the contact points between
the robot and the object. Right: the interpolated above-surface and below-surface points from the
contact point along the contact normal.

We denote the collected points from all wraps made (both the contact points and
the arm points) as Xcol = {xi}, where xi ∈R3, i = 1,2, . . . A potential function value
yi ∈ Y ⊂ R associated with xi is defined as follows, based on GPIS [16].
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yi =


1 if xi is above the surface
0 if xi is on the surface
−1 if xi is below the surface

(1)

The contact points that happen on the object surfaces have y = 0, while the arm
points sampled on the backbone of the continuum robot have y = 1 (since the arm
does not penetrate into the object).

We further generate the above-surface and below-surface points for each contact
point along the contact normal (see Fig. 8(b) for an illustration) and denote the set of
such generated points Xgen ⊂R3. Now let T be the set of all points that are collected
and generated so far: T = {xi,yi} ,xi ∈ Xcol ∪Xgen,yi ∈ Y, i = 1,2, . . .

Note that initially T only contains points collected and generated from the few
initial wraps. As each new wrap is conducted (based on active guidance – see Sec-
tion 3.4), more points are added to T to facilitate more accurate shape estimation.

3.3 GPIS-based Shape Estimation

Estimation of an object’s shape is done by finding the points with zero y value (i.e.,
the isosurface) in a 3D region of interest. GPIS is used to learn such a mapping
f (x): x ∈ R3 to y ∈ R based on the data in T . It is fully defined by a Gaussian
Process (GP) [13] with a mean function µ(x) and a covariance function k(xi,x j),
where j = 1,2, ... The prior µ(x) is zero. k(xi,xj) is chosen to be the commonly
used squared exponential kernel, and a noise ε ∼ N(0,σ2

n ) is also included:

k(xi,x j) = σ
2
f exp(−

(xi−x j)
2

2l2 )+σ
2
n δi j (2)

where δi j is the Kronecker delta, which is 1 iff i = j and 0 otherwise.
The hyper parameters

{
σ f , l,σn

}
are then optimized by maximizing the log-

marginal likelihood [13] using the data in T , i.e., the training data.
Next, the zero-mean isosurface is extracted as the current estimation of the object

shape by querying the GPIS model with τ testing points from a 3D region, which is
known to contain the object or is within the reachable region of the robot.

For a testing point x?, the predicted distribution is a Gaussian with the mean
µ(x?) in Eq. (3) and the variance σ2(x?) in Eq. (4)

µ(x?) = kT
? K−1y (3)

σ
2(x?) = k??−kT

? K−1k? (4)

where k? is a covariance matrix between m training points and τ testing points
[k?]i=1...m, j=1...τ = k(xi,x? j), K is a covariance matrix between training points
[K]i, j=1...m = k(xi,x j) and k?? is a covariance matrix between testing points
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[k??]i, j=1...τ = k(x?i,x? j). Note that the number of training points m increases after
new wraps are conducted.

Each testing point corresponding to a zero mean of Eq. (3) is a point on the
estimated object shape, and the associated posterior variance of Eq. (4) defines the
uncertainty of the point due to few data points nearby or large shape change.

3.4 Active Object Exploration

Our approach actively determines the next wrapping plane to conduct another touch-
based continuum wrap based on a measure of uncertainty. Denote the set of the
available wrapping planes WPa as WPa =WP\WP0.

For each available plane wpi ∈WPa, let Pi be the set of points on wpi that are also
on the zero-mean isosurface, then the uncertainty measure ui of wpi is computed as
the average standard deviation σ(q),∀q ∈ Pi.

Let wp j be the wrapping plane with u j =maxi(ui), then wp j is chosen as the next
wrapping plane to conduct a continuum wrap, and a new iteration in the POSE-CoM
process (Fig. 3) starts. The newly collected and generated data from the new wrap
are added to the training set T , and the GPIS model is in turn updated. WPa is also
updated by removing wp j (after it has been used).

The POSE-CoM process (Fig. 3) is repeated until the maximum uncertainty u j is
below a predefined threshold or WPa = /0.

4 Experiments

We implemented our approach in C++ and Python under ROS and tested it on a
3.4GHz CPU with 16GB RAM. Objects of various shapes are used (Fig. 9).

Fig. 9 Object mesh models: (left to right) bottle, apple, sphere, bunny, pentagon, vase.

To initialize the POSE-CoM process, we randomly select 4 wrapping planes in
the robot workspace for the continuum robot to generate touch-based wraps and
collect data. Next, a GPIS model is trained and queried in the region of [(0.0−
1.0), (0.0−1.0), (0.0−0.8)](dm). The simulated continuum robot has the following
parameters: the width of each section is 0.5 (cm), the length of each section can vary
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from 2 to 15 (cm), the curvature of each section can vary from 0 to 0.1 (cm−1), and
the orientation of each section can vary from−π to π . It typically takes 3 to 15 mins
to train a GPIS model. The next wrapping plane is selected according to the active
strategy in Section 3.4, then touch-based continuum wrapping is conducted, and
the POSE-CoM process repeats. The process is terminated when 1) the maximum
uncertainty measure u j is below a predefined threshold 0.15, or 2) all the wrapping
planes in the robot workspace have been used at least once to generate continuum
wraps. Fig. 10 shows the snapshots of robot motion for example continuum wraps.
The accompanying video shows the animated motion of the example continuum
wraps.

(a) bottle (b) bunny

(c) apple (d) vase

Fig. 10 Snapshots of the motion of example continuum wraps. Each subfigure is a wrap from the
initial configuration (left) to the wrapping configuration (right).

4.1 Shape Estimation Results

For objects with simple shape geometry, such as the bottle (Fig. 11) and the sphere
(Fig. 12), with just a few wraps, the estimated shape is already similar to the actual
shape. In Fig. 11, the object shape uncertainty keeps decreasing (i.e., the blue parts
in Fig. 11 keep increasing) as more wraps are conducted until all available wraps are
exhausted. The maximum uncertainty measure u j starts being 0.38 and reaches 0.32
at the end. Note that the part near the origin (where the robot arm base is) is more
uncertain (colored mostly red), which is due to that the robot cannot reach this area
as it is too close to the robot base. In Fig. 12, note how the fifth wrap (counted from
left) in Fig. 12(d) helps reduce the uncertain (red) area in Fig. 12(a). The POSE-
CoM process is terminated after 7 wraps as u j reaches 0.14 (below threshold 0.15).

For objects with more complex shapes, such as the apple (Fig. 13), bunny (Fig.
14), pentagon (Fig. 15), and hollow vase (Fig. 18), more varied wraps are needed to
better capture certain details for more accurate shape estimation results. For exam-



Object Shape Estimation through Touch-based Continuum Manipulation 11

(a) 4 wraps (b) 8 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Fig. 11 Shape estimation results for the bottle, colored by uncertainty.

(a) 4 wraps (b) 5 wraps (c) 7 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Fig. 12 Shape estimation results for the sphere, colored by uncertainty.

ple, wraps are needed around the stalk of the apple, the ears of the bunny, and the
entrance of the hollow vase, to better capture those details. However, the GPIS mod-
eling tends to blur the connection between a detail and the main shape because the
prediction assumes smooth connection. Thus, the estimation results of a complex
shape tend to resemble certain bounding envelopes of the actual shape.

Table 1 shows that a total of 500 to 900 points are used to estimate the shape of
an object2. It would be very time-consuming if those points were collected by a con-
ventional manipulator making point contacts with the object [5,8,14,15]. However,

2 Recall that one above-surface point and one below-surface point are generated for each contact
point along the contact normal.
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(a) 4 wraps (b) 8 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Fig. 13 Shape estimation results for the apple, colored by uncertainty.

(a) 6 wraps (b) 9 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Fig. 14 Shape estimation results for the bunny, colored by uncertainty.

our approach is very efficient by using continuum wraps automatically generated
from our motion planning algorithm. Table 1 also shows that it is very fast to plan a
touch-based continuum wrap.

Fig. 16 shows the reconstructed mesh models from the shape estimation results
using the Marching Cubes’ algorithm [32]. As explained earlier, those models cap-
ture enveloping contours of the actual shapes because sharp details were blurred by
the GPIS modeling under noisy observations.

If the reconstructed model is identical to the original mesh model of an object,
given the same arm initial configuration, model location, and the wrapping plane,
the final wrapping configuration Cr of the reconstructed model should be the same
as the final wrapping configuration Co of the original mesh model. Therefore, the
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(a) 4 wraps (b) 8 wraps (c) 12 wraps

(d) Left to right: the first conducted wrap to the last conducted wrap.

Fig. 15 Shape estimation results for the pentagon, colored by uncertainty.

Table 1 The total number of contact points and arm points collected on each object, the total
number of wraps, and the average time Twrap per wrap for (motion planning + collision detection).

Object # contact points # arm points # wraps Twrap(ms)
bottle 143 150 12 135
apple 259 172 12 425
sphere 267 113 7 246
bunny 264 172 12 432

pentagon 141 167 12 132
vase 153 160 12 278

(a) bottle (b) apple (c) sphere (d) bunny (e) pentagon (f) vase

Fig. 16 Object mesh models reconstructed from shape estimation results using Marching Cubes’
algorithm [32], colored by elevation.

distance of normalized configurations ‖Cr
′ −Co

′‖, where Cr
′

and Co
′

are obtained
by normalizing the component values in Cr and Co, is indicative of how accurate the
shape estimation is. We use the average distance of multiple wraps as a parameter to
measure the accuracy of shape estimation indirectly, as shown in Table 2. It is clear
that model quality improves as more wraps are used to reconstruct the model. Fig.
17 compares example wraps visually.
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Table 2 Average distances between the wrapping configurations of a reconstructed model and the
original mesh model. # wraps indicates the number of wraps used to reconstruct the model.

Object Intermediate Model 1 Intermediate Model 2 Final Model
# wraps average distance # wraps average distance # wraps average distance

bottle 4 0.31 8 0.27 12 0.27
apple 4 0.44 8 0.36 12 0.28
sphere 4 0.28 5 0.26 7 0.24
bunny 6 0.57 9 0.47 12 0.31

pentagon 4 0.34 8 0.19 12 0.16
vase 6 0.48 9 0.41 12 0.31

Fig. 17 Comparing example wraps on the original mesh model and the reconstructed model. (a)
wrap on the original apple model (b) wrap on a reconstructed apple model (c) wrap on the original
vase model (d) wrap on a reconstructed vase model.

4.2 Significance of the Arm Points

Fig. 19 shows the shape estimation results of the hollow vase using only contact
points. Since the object is hollow, continuum wraps cannot make a large number
of contacts, and thus the shape estimation result is inaccurate. However, the arm
shape at a wrapping configuration itself is indicative of the object shape, and the
arm points can be used to compensate for the lack of sufficient contact points and
determine the object geometry. As shown in Fig. 18, our approach using both arm
points (robot proprioception) and contact points better captured the vase shape and
also captured the hollowness of the vase using as few as 6 wraps. Whereas, without
using the arm points, as shown in Fig. 19, the hollowness of the vase could not be
captured even with 12 wraps.

5 Conclusions

We have presented an approach POSE-CoM of progressive object shape estima-
tion through touch-based continuum manipulation and a GPIS-based probabilistic
model. Unlike shape estimation based on contact points collected through the end-
effector of a conventional, articulated manipulator, shape estimation through con-
tinuum manipulation is both more efficient and effective by deliberate use of the
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(a) 6 wraps (b) 9 wraps (c) 10 wraps (d) 12 wraps

(e) Left to right: the first conducted wrap to the last conducted wrap.

Fig. 18 Shape estimation results of the vase, colored by uncertainty.

(a) 6 wraps (b) 9 wraps (c) 10 wraps (d) 12 wraps

Fig. 19 Shape estimation results of the vase without using arm points, colored by uncertainty.

robot proprioception data in addition to contact information, as demonstrated in the
experiments on objects of various shapes.
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