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Abstract. In this paper, we introduce a method to build 3D object
models from RGB-D images automatically by interleaving model build-
ing with robotic manipulation. Using a fixed RGB-D camera and start-
ing from the first view of the object, our approach gradually builds and
extends a partial model (based on what has been visible) into a complete
object model. In the process, the partial model is also used to guide a
robot manipulator to change the pose of the object to make more surfaces
visible for continued model building. The alternation of perception-based
model building and pose changing continues until a complete object
model is built with all object surfaces covered. The method is imple-
mented, and experimental results show the effectiveness and robustness
of this approach.
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1 Introduction

Many robotic manipulation tasks require the knowledge of 3D object models
of the target objects. How to build a 3D object model based on geometric and
visual appearance of an object is thus an important problem. 3D object modeling
has been studied for a long time with many methods introduced by researchers.
Existing literature can be classified in two categories: passive approaches [1,2],
where cameras and viewpoints are fixed, and active approaches, where cameras
are moved by either people [3,4] or robots [5]. Robot-guided object modeling is
also referred to as a view planning problem [6], which is focused on finding a
set of views to enable reliable and accurate object reconstruction. Model-based
algorithms aim to find certain optimal set of views [7,8], while non-model based
algorithms obtain more object information and reduce uncertainty view by view
[9–13]. However, with the target object static, some part of the object cannot
be viewed and modeled, such as the bottom surface of the object on a table.
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Some recent work also involves changing object poses through robotic manip-
ulation for object modeling [14–16]. However, with the end-effector holding the
object, it always occludes the object, especially if it is of similar size to the
object. How to separate the end-effector from the object in images is an issue.
Moreover, if some parts of the object are always occluded in all feasible grasps,
a complete object model cannot be achieved. Also, assuming the object is held
by the manipulator before model building implies human intervention.

In general, object model-building in exiting work often requires manual oper-
ations or interventions in order to build a complete model that covers all sur-
faces of an object. Automatic 3D model building for objects of arbitrary shapes
remains a challenging problem not yet solved.

2 Overview of Our Approach

In this paper, we address automatic building of a complete 3D model of a rigid
object by covering all its surfaces. Our approach is characterized by progressive
and interleaving RGB-D perception and manipulation to gradually build the
entire object model. In our modeling environment, an RGB-D camera is placed
in a fixed position with a fixed direction to view the target object, which is
placed on a table.

Fig. 1. Overview of automatic object modeling: (a) high-level flowchart; (b) illustration
of object rotation on table (top view)
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Figure 1(a) provides a high-level flowchart of our approach. In the inner loop,
the manipulator rotates the target object on table (in one direction) step by step
through pushing until about 360◦ to cover side surfaces of the object. After each
push step, an image is taken and used to build the object partial model. After
the object is rotated 360◦, all aspects/views [17] of the side surfaces of the object
are captured, as shown in Fig. 1(b). In the outer loop, the manipulator changes
the support surface of the object, i.e., rotate the object to expose its previous
bottom surface, which can be achieved by a greater push or by picking up the
object, rotating it in the air, and placing it down (on a different surface), in order
to cover unseen surfaces. In the following, the related algorithms are introduced
in detail.

3 Image Registration in Perception

Image registration serves two main purposes in our object modeling process: one
is to merge the currently sensed object point cloud (through the RGB-D camera)
into the gradually built point cloud of the (partial) object model; the other is to
obtain the accurate pose (i.e., position and orientation) of the target object in
the scene to enable object manipulation.

Image registration is conducted in the following three ways in our approach.

Pairwise Registration of Neighboring Object Point Clouds: We use the
ICP algorithm [18] to register neighbouring object point clouds obtained from
RGB-D images taken at two adjacent steps from the same 360◦ rotation loop. If
sufficient ASIFT [19] keypoints can be matched between the two RGB-D images
first, compute a transformation matrix [20] based on their 3D coordinates as the
initial estimate; otherwise, use an identity matrix as the initial estimate. With an
initial transformation estimate from the keypoints matching, the ICP algorithm
converges much faster and also achieves registration results in better quality. To
make the registration more robust, we also consider additional factors, such as
the color similarity and the point-to-plane distance, in evaluating the quality of
matched point pairs in the ICP algorithm.

Global Optimization of Pairwise Registration Results: In order to reduce
the accumulated registration error from pairwise registration, our approach fur-
ther registers all object point clouds obtained in all steps of the rotation from
the same 360◦ rotation loop using a global optimization algorithm, developed
based on the virtual mate approach [21].

Registration of Partial Object Models from Different Rotation
Loops: Once an optimized partial object model is obtained from each 360◦

object rotation loop, the next task is to register such partial models from differ-
ent rotation loops. We still apply the ICP algorithm. The transformation matrix
for changing the object pose from the robotic manipulation is used as the initial
estimate of the transformation for the ICP algorithm.
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4 Manipulation for Perception

In the following sections, we describe the details of the algorithms used for the
two kinds of manipulation outlined in Fig. 1(a).

4.1 Pushing

Given that the target object sits stably on a table (or some other support struc-
ture), after the first RGB-D image of the object is taken, our strategy is to detect
the leftmost edge from the object point cloud C1 and the corresponding leftmost
surface segment and choose a point with position u1 on the surface segment that
is close to the middle of the leftmost edge as the point on the object for pushing.
The direction for pushing v1 is oppose to the normal of the surface segment.
Both u1 and v1 are with respect to the frame O1.

In general, given a point cloud Ci+1, i=1, ...,m, the pushing position and
direction ui+1 and vi+1 with respect to frame Oi+1 can be computed by applying
the transformation Oi+1TOi

to ui and vi respectively.

4.2 Change of Object Support Surfaces

After each 360◦ rotation loop, our approach simultaneously determines:

1. if new object surfaces can be observed by changing the support surface of the
object, and how to change the support surface;

2. if no new object surface can be found so that the model building process can
be terminated.

The basic idea of our approach is to form a finite set of candidate tasks for
changing object support surfaces based on considering all possible sides of the
oriented bounding box (OBB) [22] of the object and evaluate each candidate
task based on a set of constraints/criteria to either (1) find the best task to
execute or (2) to discover that the termination condition for model building is
satisfied.

Candidate Tasks for Changing Object Support Surface. There are five
available OBB sides above the table that can be considered for the selection of
a new support surface. Without losing generality, as shown in Fig. 2, we denote
all OBB sides based on their positions in the OBB frame as the +X, −X, +Y ,
−Y , +Z, and −Z OBB sides.

A robotic task to change the current object support surface to a new sup-
port surface can be described at a high level in terms of two available sides of
the object OBB involved: one side S1 defines the approach vector of the robot
hand/gripper by its normal pointing into the object, and the other side S2 is the
side for the new support surface. Thus, we denote a high-level candidate task
simply as S1S2, and there are a total of 17 high-level candidate tasks: +X −X,
+X + Z, −X + X, −X + Z, +Y − Y , +Y + Z, −Y + Y , −Y + Z, +Z + X,
+Z −X, +Z + Y , +Z − Y , +X +X, −X −X, +Y + Y , −Y − Y , and +Z +Z.
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Fig. 2. Oriented bounding box based the partial model of the object milk box blue

Evaluation of Candidate Tasks. In order to choose the best candidate task
for execution, our approach evaluates the result of each candidate task through
simulation: for the simulated object on the new support OBB side (specified by
the candidate task), our algorithm virtually moves the camera around the object
(instead of rotating the object) to capture the simulated view of the object after
each rotation step via the ray tracing algorithm [23].

We further use a voxel map [13,23,24], to organize the existing observed
information of the object within its current OBB and to facilitate evaluation of
the simulated observation of the object for each candidate task. The voxel map
discretizes the OBB into a grid of voxels, where each voxel can be in one of five
states depending on whether and how it is observed: unlabeled, empty, occupied,
occluded and occplane [13].

Our approach then evaluates each candidate task based on the usefulness of
the observed information after the change of the object support surface through
checking if there is enough overlap between new and existing object point clouds
and also if there are new surfaces in the new object point cloud [13]: the occupied
voxels observed in simulated camera views (from the candidate task) indicate
overlap surfaces, while the occplane voxels observed indicate new surfaces. If
no occplane voxels exist or can be further observed any more, our algorithm
terminates the model building process. We also consider the model quality in
the evaluation [25].

Our approach also evaluates the following factors to assess how feasible a
candidate task can be executed:

– if the target object can be grasped from the given approached OBB side;
– if an approximately flat surface s exists for the given OBB side for support,

and if the target object can stand stably on the surface s;
– if the target object can be pushed effectively with the new support surface;
– if the manipulation utility is sufficient.

If all the above conditions can be satisfied, the candidate task is considered
executable.

Theoretically, to make an object stable, two conditions must be satisfied: the
support surface should define a surface region that has a sufficiently large area,
and the projection of the center of gravity of the object on the surface of the
support region falls inside the support region. In our approach, we use the center
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of the OBB as the estimated gravity center and look for a nearly flat surface
based on the support surface side of the OBB, in which the projection of the
center of the OBB falls.

We also introduce a threshold as the minimum object width, beyond which
the object can be rotated by pushing effectively.

To evaluate if the target object can be successfully grasped from the consid-
ered approach vector, we use a simple gripper model with two fingers, and check
if two approximately parallel surfaces (based on their surface normals) on the
two contacted OBB sides can be found for grip; we also check if the approached
OBB side is too wide to fit into the gripper.

The manipulation utility is used to evaluate the path cost of the robotic
motion for changing the object support surface, given a candidate task. We use
a mathematical function [13] that is monotonically decreasing with respect to
the path cost for the evaluation. The greater the path cost, the smaller the
numerical value of the manipulation utility.

To evaluate all the candidate tasks for the change of the current object sup-
port surface, we compute a single value Θ that combines all the factors described
above with a combination strategy similar to [13,24]. If Θ of a candidate task
equals zero, then it is an invalid task. Based on all the valid candidate tasks, we
choose the one with the greatest Θ for execution.

Note that when Θ becomes zero for all candidate tasks, our modeling proce-
dure is terminated.

5 Experiments and Analyses

Figure 3 shows the experimental set up for testing our approach for automated
3D object modeling. The target object is positioned on a table in the center
of view of the Microsoft Kinect camera. Some colorful pages on the table are
used as landmarks for the calibration between the robot and camera coordinate
systems. A Barrett WAM of 7 degrees of freedom (DOFs) with a hand of 4 DOFs
are used for object manipulation.

5.1 Experiments

The two important procedures in our automatic model-building process, the
360◦ rotation loop by pushing and the change of object support surfaces, are
illustrated as follows, using the object milk box blue as an example.

Figures 3 and 4 show snapshots of the procedures for pushing and support
surface change of the object milk box blue respectively during model building.
Note that the chosen task in this example used the top side of the object milk box
blue in Fig. 4(a) as both the approached side for grasping and the new support
surface side, and thus, it was completed in two consecutive steps.
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Fig. 3. Snapshots of the pushing procedure of the object milk box blue, step by step in
the 360◦ rotation loop

Fig. 4. Snapshots of the procedure of changing the support surface of the object milk
box blue

5.2 Comparing Registration Results Before and After Optimization

Figure 5 compares the registration results before and after global optimization,
using all the point clouds of the object milk box blue, captured from a 360◦

rotation loop. It shows that all the distorted parts of the object surfaces in red
circles are corrected after global optimization.

Fig. 5. The registration results before and after global optimization of the object milk
box blue from a 360◦ rotation loop

Figure 6(a) compares two histograms of the mean K-nearest (K = 100)
neighbor distance of the object point cloud before and after global optimiza-
tion: many points have their mean K-nearest neighbor distances reduced from
the range 1.8mm∼2.4mm to the range 1.4mm∼1.7mm and from the range
3.5mm∼5.4mm to the range 2.5mm∼3.4mm.
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Fig. 6. Comparison of histograms of the partial models of the object milk box blue
before and after global optimization, as shown in Fig. 5: (a) comparison of histograms
of the mean K-nearest neighbor distances (K = 100); (b) comparison of the histograms
of the number of the neighbors within the radius of 3 mm

Figure 6(b) compares two histograms of the number of neighbors within the
radius of 3mm of the object point cloud before and after global optimization:
many points have their numbers of neighbors within the radius of 3mm increased
from the range 5∼25 to the range 30∼60 and from the range 65∼150 to the range
155∼215.

Reduced mean K-nearest neighbor distance and increased number of neigh-
bours in the respective histograms indicate that the points in the object point
cloud are distributed more closely together after global optimization, which
means that the registered point clouds are better aligned after global optimiza-
tion.

5.3 Analyses of Voxel Maps

The complete model of the object milk box blue, as shown in Fig. 7, is built using
two 360◦ rotation loops. All the information of the voxel map after each 360◦

rotation loop is given in Table 1. In our experiments, the voxel size is set as
3mm × 3mm × 3mm.

Fig. 7. The built complete model of milk box blue, visualized from different viewpoints

As we can see from Table 1, after two 360◦ rotation loops, there are only a
few occplane voxels left in the voxel map, and the model of the object milk box
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blue is almost complete. From the 1st loop to the 2nd loop, occplane voxels are
greatly reduced, indicating the great reduction of the unobserved region after the
2nd loop. This is also reflected in the significantly increased number of occupied
voxels. However, the number of increase in occupied voxels is much greater than
the number of reduction in occplane voxels; this is because the occupied voxels
might come from both the previously occluded and occplane voxels. Besides, due
to the limited depth accuracy of the Microsoft Kinect camera and the sensing
noise, after image registration from multiple views, the object surface is usually
thicker than one voxel, meaning that more occupied voxels are generated. The
few remain occplane voxels might be caused by the sensing inaccuracy and noise,
or tiny self-occluded surfaces which cannot be observed by more 360◦ rotation
loops.

Table 1. The voxel map after each 360◦ Rotation Loop for milk box blue

Loop no. Size of OBB (mm3) Size of voxel map #Empty #Occupied #Occluded #Occplane

1 128 × 257 × 119 45 × 88 × 42 72299 21275 70237 2509

2 128 × 261 × 123 45 × 90 × 44 86826 30902 60448 24

Figure 8 shows built models of different daily objects, with their correspond-
ing OBBs. Note that even for objects with irregular shapes, such as the object
spray, there are still smooth surfaces corresponding to some OBB sides that can
be used as support surfaces in our approach.

Fig. 8. Built models of daily objects and their corresponding OBBs

6 Conclusions

We have introduced a method to build 3D object models from RGB-D images
automatically with robotic manipulation. With an automatic push procedure,
our approach does not assume that the robot can achieve a first grasp of the
object somehow [14] without the knowledge of the object model. After observing
many side surfaces of the object through the push loop, the partial object model
built can guide automatic grasping for changing the object support surface. The
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experimental results also show that our approach is robust to motion uncertainty
in pushing. It provides a promising solution for automatic 3D rigid object mod-
eling in situations where a camera cannot be moved and re-positioned freely, for
example, in cluttered environments, and where objects cannot be pre-positioned
on some special hardware (such as a turntable) or pre-grasped.

Our approach of interleaving perception with manipulation provides more
flexibility to enable observing all object surfaces and building a complete object
model. Such strategy works well for many daily objects. However, for objects with
many concavities and extremely complicated self-occlusion, such as a sculpture
with many small details, further integrating the approaches [14–16] can help
complete the coverage for object modeling.
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