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Abstract— It is important to enable a robot to manipulate
a target object that has no 3-D model information and is
situated in an environment with other unknown objects nearby.
This poses an open problem of how to combine perception
and manipulation to enable the robot to build an appearance-
based model of the target object on the spot to facilitate
further manipulation of the object while avoiding the other
unknown obstacles in the way. In this paper, we introduce an
approach to enable a continuum manipulator, which is apt to
maneuver through a crowded environment, to gradually build
a 3-D surface model of the target object by moving an RGB-
D sensor around the object while also detecting and avoiding
surrounding unknown obstacles.

Our approach interleaves perception and manipulation such
that perception guides the manipulator movement, which in
turn allows more perception of the target object for object
model building and further manipulator motion. Our approach
is characterized by a progressive strategy to register RGB-D
images of the target object to build and extend a partial model
of the object and the corresponding motion planning strategy
for the continuum robot to carry out model building and avoid
obstacles at the same time. To demonstrate the effectiveness of
our approach, experiments on progressive model building of
real objects from real RGB-D images are conducted, where a
simulated continuum robot plans and executes its motion to
carry the RGB-D camera around a target object for taking
those images in an augmented reality setting.

I. INTRODUCTION

Although object models are not needed for people to
perform many manipulation tasks, they are often necessary
for robots to perform manipulation tasks. In order to expand
the application of robotic manipulation, especially in unstruc-
tured and unknown environments, it is important to equip
a robot with the capability of perceiving and building the
object model of a target object on the spot to facilitate further
manipulation of the object. For example, in order to remove
a piece of suspecious foreign object on a cluttered desk, the
robot needs to find ways to grasp it by constructing some
model of the object through perception to facilitate grasping.
In order to construct the object model, the robot also needs to
move a sensor around the object and find suitable locations to
collect sensory data, for instance, visual images of the object,
while avoiding other objects. In such a scenario, perception
and manipulation planning have to facilitate each other.

In related work, researchers have studied view planning
[1], [2] to find the best set of views to capture the surface
appearance of an isolated object, object model building [1],
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[3] of an isolated object, and object manipulation through
perception and learning [4], compliance with soft hands [5]
or through exploiting environment constraints [6] without ex-
plicit model building. Some recent work of object modeling
[7]–[9] uses a robot hand to hold the object for pose change,
but the hand can also occlude the object. However, a common
underlying assumption is that the object is stand alone in
isolation so that there is no need to consider obstacles. UAVs
are also considered to model open and large environments
[10], [11], but they are not suitable to maneuver in a narrow
and cluttered space to model small daily objects. For the
vast literature on motion planning for manipulation, object
model is assumed known and so are obstacle models to some
extent. How to manipulate an unmodeled object in a cluttered
environment with unknown obstacles is an open problem.

Continuum manipulators [12]–[14] can deform continu-
ously and are inherently compliant [15], [16], which are more
suitable to maneuver in a cluttered environment. So far most
existing work on autonomous object manipulation using a
continuum manipulator assumes that the object model and
the environment are known (i.e., with known models) [17]–
[20] or fully visible through some external sensor (such as
an overhead camera) [21], and only recently, manipulating a
known object situated in an unknown, cluttered environment
is addressed [22]. There is no work on handling an object
without a known model in a cluttered space with a continuum
manipulator.

Fig. 1: An OctArm manipulator (courtesy of Ian Walker).

In this paper, we address autonomous and progressive
model building of an object in an unknown, cluttered en-
vironment using a multi-section continuum manipulator (see
Fig. 1 for an example). We consider that an RGB-D camera
is mounted on the tip of the continuum manipulator for
perception. Our approach plans the robot arm motion to
position the camera at suitable spots around the target object
to take images and register those images to build and extend a
3-D model of the object gradually, while avoiding obstacles.
Section II presents an overview of our approach. Section
III describes the strategy of perception-guided planning and



execution of robot arm motion for modeling an object.
Section IV presents our progressive strategy to build partial
object models based on RGB-D sensing. Section V provides
experimental results and analyses. Section VI concludes the
paper.

II. OVERVIEW

A. Environment and Task

The environment considered in this paper is an unknown
cluttered space containing multiple obstacles and a single
target object. The task is to use a continuum manipulator to
approach the target object and build a model for it, while
avoiding obstacles. We further assume the following:
(1) The continuum manipulator has a fixed base.
(2) All the objects in the environment are static.
(3) The target object to be modeled can be wrapped around

by the robot arm either in one direction, clockwise or
counter-clockwise, or both directions to form a closed
loop coverage of the side surface1.

(4) An RGB-D camera is attached to the tip of the robot so
the robot is able to sense the surroundings as it moves,
called a tip camera in this paper.

(5) The robot arm is initially positioned, by human assis-
tance, outside of the unknown task space with its tip
camera facing the target object.

Some typical environments and tasks are shown in Fig. 6.
A general n-section continuum manipulator is used. Each

section seci, i=1, ..., n is characterized by its three control-
lable variables: length si, curvature κi, and orientation φi,
as illustrated in Fig. 2(b). Each seci can be positioned by
specifying its base point pi−1. The tip point pi of seci is
computed using its corresponding base point and control-
lable variables. Adjacent sections are connected tangentially
as shown in Fig. 2(a). The arm configuration of an n-
section continuum manipulator can be formulated as C =
{(s1, κ1, φ1), ...., (sn, κn, φn)} [20], [23]. This kinematic
model is widely used in the literature thanks to its generality
[23]–[26]. Note that the arm can in fact have infinite degrees
of freedom because it can deform upon contact. However,
for the task of object modeling, the arm is not planned to
contact the target object or obstacles. The finite number of
controllable variables are sufficient to describe the collision-
free motion of the arm.

B. Approach

In order to address the autonomous and progressive mod-
eling of an object in an unknown and cluttered environment,
sensing and robotic manipulation have to be interleaved
closely in that sensing guides the manipulation and the
manipulation in turn enables further sensing in cluttered
space. Fig. 3 presents an overview of our proposed approach.

Starting with an initial RGB-D image of the target object
taken at the initial configuration of the robot (see assumption
(5) in Section II.A), the robot’s tip camera is adjusted to

1This notion indicates the projected directions of the arm’s spatial motion
on a plane.

(a) Frames are attached to each robot
section.

(b) Length si, curvature κi, and ori-
entation φi are controllable variables
per section.

Fig. 2: The robot frames and the controllable variables [22].
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Fig. 3: Overview of the progressive modeling approach. The
blocks for perception are in yellow, and those for robot
motion are in red.

first sense the environment and distinguish the target object
among the sensed obstacles (Section III.A). Then the tip
camera is steered towards the target object again to take an
RGB-D image, and the captured target object point cloud
is registered with the previous partial model (or image) of



the object (see Section IV). Next, the robot arm motion is
planned and executed based on the updated partial object
model for a short distance (See Section III.B).

As the above procedure is iterated, more and more images
of the target object are captured, and if the number of
captured images is sufficient to make a closed loop coverage
of the side surface of the object, the obtained object model
is refined by a global optimization algorithm.

There are two cases when a closed loop cannot be reached
in the current direction of wrapping the target object: (1) the
arm extends to its physical limit before closing the loop,
and (2) there is not enough space between the target object
and obstacles to allow the arm move forward (i.e., no more
collision-free motion forward for the arm can be found). In
both cases, the arm is retrieved and re-positioned to allow for
moving in the other direction around the object to continue
object model building.

If loop closing cannot be achieved from both directions
around the object, the program ends with a partial object
model (or disconnected partial models) without optimization.

III. PERCEPTION-BASED MOTION PLANNING AND
EXECUTION

A. Distinguishing Target Object and Obstacles

Distinguishing the target object from surrounding obsta-
cles is the first task for the continuum robot arm to accom-
plish towards perception-guided object modeling. By initially
making the tip camera facing the target object, a point cloud
of the target object can be obtained and marked. When it is
time to sense the environment (as shown in the first yellow
box of the flowchart in Fig. 3), the camera is turned to face
the space between the target object and obstacles, and the
obstacle point clouds are sensed, clustered, and distinguished
from the object point cloud based on Euclidean distance.
For each subsequent sensing of the environment as the robot
arm moves, the clusters in the newly sensed point clouds are
either merged (registered) with the existing ones or saved as
new clusters (i.e. new obstacles are discovered). Clustering
based on Euclidean distance is computed efficiently using
K-d tree data structure.

B. Planning and Execution of Robot Arm Motion

Starting from an initial configuration of the continuum
manipulator, Algorithm 1 first plans a collision-free arc for
the robot arm to follow. Such an arc is computed through
searching in the sensed cluttered space, taking into account
the partial object model, obstacles, and robot arm constraints
[22]. Collision detection between the arc and obstacles or
object is checked efficiently based on the algorithm in [27].

Next, the robot executes a small portion of the planned
motion by making the tip follow the arc and conform one
or multiple sections to the curvature and orientation of the
planned arc. The resulting arm configuration can be found
using constrained inverse kinematics [19]. The short distance
∆s, for which the robot arm moves along the planned arc,
can be scaled to guarantee that there is enough overlap
between two consecutive images taken of the target object.

As the robot arm moves along the first arc, the visible
region of the target object and environment grows. Thus,
robot motion is further planned. After each new sensing, our
Algorithm 1 searches another collision-free arc to replace
the current arc, such that the updated arc starts from the same
position as the current arc but is flatter (smaller curvature)
and longer to take advantage of the updated sensed space.
The robot arm is then made to follow and conform to the
updated arc. If no such replacement arc can be found due to
inevitable collision with the obstacles or exceeding the arm
limits, Algorithm 1 plans a new arc for the robot arm to
follow once the robot’s tip reaches the end of the current
arc, and the new arc maintains tangential continuity at its
connection to the end of the current arc.

Therefore, motion planning alternates between finding a
replacement for the current arc or a new arc. By first
exhausting the possibilities of updating the current arc that
the robot arm followed before adding a new arc, Algorithm
1 generates an efficient motion for the continuum arm to
observe a target object with as few robot sections mobilized
as possible. To move the robot along a planned arc can be
done either with a closed-loop controller [28] or without
one because our model building strategy (see Section IV)
is robust to motion uncertainty.

If the space between the object and obstacles is too small
at some point so that no collision-free path can be found for
the arm to move forward, Algorithm 1 exits and reports no
motion.

Algorithm 1: Planning and Execution of Robot Arm
Motion

1 if no previous path for the robot arm then
2 Plan the first arc for the robot arm;
3 else
4 Update the current arc the robot arm follows;
5 if updating fails then
6 Plan a new arc;
7 if no collision-free path can be found then
8 Set flag ”No Motion” and exit;
9 Move the robot arm forward along the newly updated

or planned arc for a short distance ∆s;

IV. PROGRESSIVE OBJECT MODELING

The objectives of progressive object modeling are (1) to
build a 3D point cloud model of the target object, and (2)
to obtain the 6D pose (i.e., position and orientation) of the
target object, both reasonably accurately, in the presence
of uncertainties in robot pose (e.g., caused by payload and
motion error) and camera pose w.r.t. the robot. In order to
achieve both objectives, we use a two-step approach:

• forward pairwise registration of the current point cloud
of the partial object model (starting from the first object
image) to each newly obtained object image as the robot
arm moves;



• global optimization of the registration results from
closed-loop images captured to increase accuracy of
both the 3D object model and its 6D pose.

A. Forward Pairwise Registration
To start, the object point cloud C1 of the first object RGB-

D image is registered (forward) to the object point cloud C2

of the next object image to form a partial object model with
the corresponding transformation matrix 2T̂1 from the frame
of C1 to that of C2. As the robot arm moves and takes a new
image of the object and obtains the object point cloud C3, C2

is then registered to C3, with the transformation matrix 3T̂2,
and so on. In general, each time a new object point cloud
Ci+1 is obtained from a new image, the point cloud Ci (of
the partial object model) is registered to Ci+1, i = 1, 2, ....
Note that the images of Ci and Ci+1 have sufficient overlap
regions to facilitate the registration of the two point clouds,
and Ci and Ci+1 are called neighboring point clouds.

We use the following strategy to register one object point
cloud Ci to the next one Ci+1:

• Extract and match ASIFT [29] keypoints between the
two RGB-D images, as shown in Fig. 4; if the matched
keypoint pairs are sufficient, compute the transformation
matrix i+1T̂i based on their 3D coordinates, using the
RANSAC [30], [31] and SVD [32] algorithms.

• Apply the ICP algorithm [33]: if a transformation matrix
is computed from the previous step, use it as the initial
input to the ICP algorithm; otherwise, use an identity
matrix as the initial estimate. Note that as the robot arm
motion between taking two object images is small, our
approach avoids large jumps in coordinates from one
image to the other to ensure the effectiveness of the
ICP algorithm. Each motion step can always be further
reduced to guarantee robust registration if necessary.

Fig. 4: Two images of neighbouring object point clouds and
their keypoints matching results.

With an initial transformation estimate from the keypoints
matching, the ICP algorithm converges much faster and
also achieves registration results in better quality. It takes
into account all the following factors in a weighted sum to
evaluate the quality of matching point pairs: distance between
the two points, color similarity of the two points based on
RGB values, distance between normals at the two points, and
the distance from one point to the approximate plane of the
other point.

A round of forward pairwise registration ends when either
(i) a closed loop is achieved such that the object point cloud

of the last image Cm sufficiently overlaps with the object
point cloud C1 of the first image or (ii) the robot arm has
reached its limit to extend further. In the case (ii), if loop
closure cannot be achieved with moving the arm around the
object in one direction (e.g., clockwise), the arm is retrieved
after images have been taken along one motion direction and
is commanded next to move around the object in the opposite
motion direction (e.g., counter-clockwise) to close the loop.

Once loop closure is achieved, the registration results are
optimized globally (indicated in Fig. 3) as detailed below.

B. Global Optimization

After forward pairwise registration that registered m object
point clouds C1, C2, ... Cm, the built partial object model
is subject to accumulation error of registration. Specifically,
1T̂m from registering Cm to C1 directly to close the loop
can be significantly different from the inverse of the product
mT̂m−1

m−1T̂m−2...
2T̂1, even though they should be the

same if there were no registration error. See Fig. 5 for the
pairwise coordinate transformations obtained from forward
pairwise registration.

Fig. 5: The frames of all the object point clouds and their
relations, illustrated as a closed loop.

Let O indicate the frame for the partial object model after
the loop is closed, which can be the same as the frame for
point cloud Cm. Then, the pose of each object point cloud
with respect to the object model frame O can be expressed
by the transformation transition as follows:

OT̂m = I, (1)
OT̂i = OT̂i+1

i+1T̂i, i = m− 1,m− 2, ..., 1. (2)

In order to reduce the accumulated registration error em-
bedded in the transformation transition result OT̂i, i = 1, ...,
m, our approach is to further refine OT̂i, starting from Cm,
by registering the point cloud Ci to both its neighbours Ci−1

and Ci+1, i = 1, ..., m, based on virtually generated matched
point pairs [34]. Note that Cm+1 = C1, and C0 = Cm.

The virtually generated matched points purely based on
the transformation matrix are also called virtual mates. To
generate virtual mates between Ci and its neighbours Ci−1

and Ci+1, we first sample points from Ci in the overlap
regions between Ci and Ci−1 and between Ci and Ci+1

respectively.
Suppose p is a sampled point from Ci, with its position

in the object point cloud frame denoted as p, and let q be
the virtually generated mate of p:

• if p is sampled from the overlap region between Ci

and Ci+1, then the position of its virtual mate i+1q



is obtained by transforming p from the frame i to the
frame i+ 1 based on i+1T̂i;

• if p is sampled from the overlap region between Ci

and Ci−1, then the position of its virtual mate i−1q
is obtained by transforming p from the frame i to the
frame i− 1 based on i−1T̂i, and i−1T̂i is the inverse
matrix of iT̂i−1.

Notice that virtual mates do not really exist in the point
clouds Ci−1 or Ci+1. They are introduced as the constraints
of both iT̂i−1 and i+1T̂i in the optimization to refine the pose
OT̂i. iT̂i−1 and i+1T̂i cannot be directly used as constraints,
because it is difficult to directly measure the change of
the registration result from the change of the rigid 3D
transformation matrix in the optimization.

Finally, we further transform all the positions of the gen-
erated virtual mates i+1q and i−1q to be in the object model
frame O, based on the current poses of their corresponding
object point cloud frames OT̂i+1 and OT̂i−1, respectively.
The refined pose OT̂i is computed based on all of those
virtually generated point pair positions p and q with respect
to the object model frame O.

Algorithm 2 starts from the refinement of OT̂m. If the
difference of the pose OT̂i (in terms of the sum of the
absolute differences of all matrix elements between two
transformation matrices) before and after the optimization
is greater than a tolerance threshold, then OT̂i−1 and OT̂i+1

also need to be refined; each pose OT̂i may be refined more
than once, depending on Ci−1 and Ci+1. Our Algorithm
2 ends when no more refinement is needed or a maximum
number of iteration is reached, and the globally optimized
estimate OTi for each object point cloud Ci is obtained.
Algorithm 2 is implemented using a double-ended queue.

Algorithm 2: GlobalOptimization

1 OT̂m = I , Queue = ∅;
2 for i = (m− 1) to 1 do
3 OT̂i =O T̂i+1

i+1T̂i;
4 end
5 OT̂m+1 =O T̂1, Cm+1 = C1;
6 OT̂0 =O T̂m, C0 = Cm;
7 Queue ← OT̂m;
8 while Queue 6= ∅ and num iterations <
maximum num iterations do

9 OT̂i = Queue.pop front(i);
10 OT̂i = Align(Ci, Ci−1, Ci+1), subject to OT̂i−1,

OT̂i+1, iT̂i−1, and i+1T̂i;
11 if change of OT̂i > tolerance threshold then
12 Queue.push back(OT̂i−1,

O T̂i+1);
13 end

C. Multiple Closed Loops

If the target object is very tall so that one closed-loop
of image taking cannot result in a complete model of its
entire side surface, multiple loops of image taking can be

conducted, depending on the need of the manipulation task.
That is, the continuum robot arm can be used to wrap around
the object in different routes, and each route will result in
a partial object model. Once each partial object model is
obtained from each closed loop and optmized, the next task
is to register such partial models together. We still apply
the ICP algorithm. The transformation matrix for changing
the initial robot pose for different routes can be used as the
initial estimate of the transformation for the ICP algorithm.
Notice that there should be a large overlap between two
partial object models, which makes the registration robust.

V. EXPERIMENTS AND ANALYSES

We have implemented and tested our approach of pro-
gressive object modeling in an augmented reality scenario,
where a simulated continuum manipulator with a fixed base
is situated in a sensed real environment with a real target
object of unknown model and real surrounding unknown
obstacles. A small and light-weight RGB-D camera (such
as [35]) is assumed carried by the continuum manipulator
(such as the OctArm) at its tip to sense the target object
and the environment. All images of the target object are
real images taken by a Microsoft Kinect camera, where the
relative configuration of the camera with respect to the object
(or vice versa) for each image is determined by planning the
simulated robot.

A. Progressive Object Modeling with a Continuum Arm

From each real RGB-D image of the target object, the
corresponding 3D object point cloud is obtained2 for object
model building. On the other hand, sensing of the obstacles
as the robot moves is simulated. We first obtain a real 3D
point cloud for each obstacle offline, which is unknown to
the motion planner of the continuum arm. Then, at each
environment sensing step of the robot’s operation, the camera
is turned3 to view the space between the target object and
the obstacles, and the portion of each obstacle point cloud in
the viewing frustum of the simulated camera is extracted for
robot motion planning. The robot arm only needs to avoid
the obstacle points during its motion without caring about
differentiating the obstacles.

Fig. 6 shows two table-top task environments in overhead
views unknown to the continuum robot manipulator, where
a three-section simulated continuum robot is at its initial
configuration in the sensed real world. The target object
is a milk box and a coffee can in Task 1 (Fig. 6(a)) and
Task 2 (Fig. 6(b) and (c)) respectively. In order to achieve
the closed-loop coverage of the side surface in Task 2,
the robot needs to move around the target object in two
directions, first clockwise and then counter-clockwise, which
we call subtasks Task 2-1 (Fig. 6(b)) and Task 2-2 (Fig. 6(c))
respectively.

2Since the tip camera is close to the target object, only the target
object (no obstacles) appears in the real RGB-D image, which simplifies
segmentation.

3The simulated camera at the tip of the continuum arm has an additional
actuated degree-of-freedom to turn left and right.



(a) Task 1 in Env. 1 (b) Task 2-1 in Env. 2 (c) Task 2-2 in Env. 2

Fig. 6: Top view of environments with different target
objects, obstacles, and robot arm initial configurations.

In Task 1, the robot arm is initially positioned outside the
unknown cluttered space. With the initial model of the target
object and the sensed obstacles, the robot arm starts moving
onto the first planned collision-free arc (Fig. 7(b)). As more
sensings are enabled, an updated arc is planned (Fig. 7(c))
for the robot arm to follow until a new arc is necessary (Fig.
7(d)). In the end, the robot arm is able to make a closed loop
coverage of the side surface of the milkbox (Fig. 7(e)). The
final refined model after global optimization is shown in Fig.
11(a). Note that the milk box is too tall for the tip camera
to sense the top surface.

In Task 2-1, the arm gradually moves around the object
from the concave side in clockwise direction (Fig. 8). As
shown in Fig. 9(b), the arm initially follows the red arc,
which is then updated to be the yellow arc when another
sensing is made. Eventually, the arm is able to maneuver
through the concave side by following the green arc. Due
to the section length limit, the arm stops after it covers the
concave side, resulting in an incomplete coverage of the side
surface of the coffee can.

TABLE I: Total number of images captured, the short dis-
tance ∆s used, and the total time for motion planning Tmp.

Task # images ∆s(cm) Tmp(ms)
1 11 3 20

2-1 5 6 23
2-2 7 6 31

To enable the tip camera to sense the coffee can from the
other direction, the initial configuration of the arm is reset as
displayed in Task 2-2. As shown in Fig. 10, the arm is able
to observe the unmodeled part of the coffee can by moving
in the counter-clockwise direction. By combining the images
captured in Task 2-1 and Task 2-2, the complete model (Fig.
11(b)) of the side surface is obtained, which also includes
some portion of the top surface.

Table I shows the number of images captured, the short
distance ∆s used, and the total time for planning the robot
arm motion in the experiments. ∆s is set to be both suf-
ficiently small to ensure a sufficient overlap between the
images captured in two consecutive sensings and also large
enough to be efficient. Choosing ∆s as 3cm in Task 1 and
6cm in Task 2 provides roughly a 25◦ to 30◦ change of
viewing angle between two consecutive images. The total
time Tmp is the sum of the planning time for every arc for

the arm to move along to capture all the images of the target
object, which is very short and indicates that our algorithm
is a real-time motion planning algorithm.

The most time-consuming process is image registration
for model building. Depending on the size of the sensed
point clouds and whether the ASIFT keypoint matching
provides a good initial estimate for the ICP algorithm, the
time cost for conducting one pairwise registration varies from
2 to 3 minutes. Refining the entire model using the global
optimization algorithm is much faster and typically requires
a total of 1 to 1.5 minutes.

The attached video shows the 3D arm motion of our
presented experiments here.

B. Refining Models by Global Optimization

With an initial object model obtained after a sequence
of pairwise registration, the model is further refined using
the global optimization algorithm. Using the milk box as an
example, we next explain how the model is improved both
visually and statistically. As shown in Fig. 12, the initial
model is subject to the artifact like the loose connection
between the two surfaces as indicated in (a), which is
corrected in the refined model (Fig. 12(b)).

Two statistical analyses are conducted to quantify the
improvement of the model quality by applying the global
optimization algorithm to reduce the accumulative error of
the pairwise registration. In the first analysis, the mean
distances of all the points to their K-nearest neighbors are
computed for the models obtained before and after the global
optimization. As shown in Fig. 13(a), the plotted curve is
shifted to the left after the optimization, which indicates
that the points are distributed closer to their neighbors. This
reflects that for the same object points appearing in different
images, the distances between their 3D positions obtained
from those different images are further reduced in the model
after optimization (with the ideal case being zero distance,
see Fig. 12 again for example).

The second analysis is based on the number of neighbors
of all the points, which are searched in the radius of 3mm.
As seen from Fig. 13(b), the plotted curve of the refined
model is shifted to the right compared to the model before
the optimization. Therefore, the points in the refined model
have more neighbors within 3mm radius, which also shows
that the points are located in the closer proximity of their
neighbors.

VI. CONCLUSIONS

This paper presents a general approach of progressive
object modeling with a continuum manipulator in unknown
and cluttered environments. By interleaving manipulation
and perception, a continuum robot with a fixed base is able
to gradually maneuver through the unknown space without
colliding with the objects and sense the unmodeled target
object from different viewpoints. The model of the target
object is progressively built as the robot arm moves. The
obtained model, which might be partial, is further refined
using a global optimization algorithm after the closed-loop



(a) Initial arm configu-
ration.

(b) The arm follows
the planned arc.

(c) The planned arc is
updated.

(d) The arm follows
a new arc.

(e) The arm finishes
observing the object.

Fig. 7: Snapshots of the arm motion and the sensed object surfaces in Task 1.

(a) Initial arm con-
figuration.

(b) The arm
moves and senses.

(c) The arm reaches
its physical limit.

Fig. 8: Snapshots of the arm motion in Task 2-1.

(a) Coffee can has both con-
cave and convex sides.

(b) Cross section top view.
The arm sequentially follows
the red, yellow and green arc.

Fig. 9: Illustration of the shape of the coffee can and the arm
motion. The white dots in (b) correspond to three goal points
the arm tip tries to reach in three consecutive sensings.

coverage of the side surface is achieved. The experiments of
modeling real objects from real RGB-D images taken based
on the planned motion of the continuum robot demonstrate
the effectiveness of the introduced approach, which can be
applied to a real continuum robot.

One possible future extension is to consider a continuum
robot with a mobile base. With a mobile base, the assumption
(3) (Section II.A) can be relaxed as the robot can move
forward with no limit. As the continuum robot needs to
map the environment and localize its base at the same time,
SLAM techniques [36] can be used. However, a mobile
base usually requires larger space between the object and
obstacles to move around.
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