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Abstract— It is a common practice to take advantage of
redundancy in a manipulator to avoid obstacles while the end-
effector is conducting a task-constrained motion, such as com-
pliant motion for assembly. However, existing approaches rely
on increasing the distance between the obstacles and the robot
arm to avoid obstacles, which may result in a conflict between
task motion and obstacle avoidance, i.e., when the rest of the
arm avoids obstacles, the end-effector can no longer follow
the task-constrained motion. We have observed that, in some
cases, the robot arm has to decrease the distance to obstacles
purposefully in order to both enable obstacle avoidance and
the end-effector task constrained motion. This paper introduces
a novel approach of null-space motion control to enable such
manipulator motion to achieve both task objectives and obstacle
avoidance, which is called the coordination of task motion
and self motion (CTS) method. The method is implemented
and tested on both a planar 4 degrees of freedom (DOF)
manipulator in simulation and a spatial 7-DOF manipulator
in real experiments, which show its effectiveness.

I. INTRODUCTION

Achieving both task-constrained motion and obstacle
avoidance is crucial for assembly and manufacturing us-
ing robot manipulators. There has been considerable study
on how to make a redundant manipulator avoid obstacles
while performing a task. The existing approaches include
potential-field based, null-space based, and sampling-based
approaches, configuration control methods, Jacobian trans-
pose methods, and quadratic programming methods.

A. Related literature

Inspired by the idea of artificial potential field [1],
potential-field based approaches [2], [3] use a vector field
over velocity space to generate movement trajectories. The
elastic strip framework introduced in [4] allows the suspen-
sion and resumption of task execution to enable other desired
behaviors, such as obstacle avoidance. However, the task
execution is interrupted in this case. One inherent problem
associated with the potential-field based approaches is that
attractive force from the goal and repulsive forces from
different obstacles can conflict with one another in opposite
directions, and therefore the effect of obstacle avoidance is
reduced or the robot is stalled in local minima [3].

A representative null-space based method is gradient pro-
jection introduced in [5]. A scalar k is used to adjust the
gradient projection in this method, and the value of k greatly
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affects the behavior of the manipulator. However, how to
select a proper value for k to have both fast convergence of
optimization and stable joint motions is not trivial [6], [7].

To resolve conflicts among different task constraints in
gradient projection, some researchers impose a hierarchy of
motion by prioritizing constraints. The hierarchy is based on
projecting the control of lower priority motion into the null
space of higher priority motion. In [8], force and positioning
tasks in joint and Cartesian space are combined with a
hierarchical controller to enforce a strict task hierarchy.
A multi-level hierarchy control structure was introduced
in [9] by establishing general priorities among behavioral
primitives. However, there can be violations of constraints
so that certain objectives cannot be achieved.

Sampling-based methods [10], [11], [12] search robot
configurations satisfying constraints, but are computation-
ally more expensive, conducted offline, and may not find
solutions. The manipulation planning framework presented
in [12] allows robots to plan in the presence of constraints
on end-effector pose as well as other constraints without
prioritizing the constraints.

Configuration control methods are derived from the idea
of minimizing a cost function[13]. Some recent work also
adopts this idea to control redundant manipulators with
multiple constraints[14], [15]. These methods essentially
only provide approximate solutions and achieve a trade-off
among tasks.

A novel approach of collision avoidance based on the
Jacobian transpose method is proposed in [16], which does
not require the calculation of the gradient of the minimum
distance function, and hence it is a computationally simple
algorithm. It is robust for multiple obstacle avoidance but
suffers from poor convergence properties, which is the in-
herent problem of the Jacobian transpose method.

Quadratic programming methods have been reported to
search for joint configurations (inverse kinematics) that max-
imize the distance between the manipulator and obstacles
under some inequality constraints (such as constraints on
joint limits) [17], [18], [19]. Dynamic equality constraints
(about escape velocity), which are regarded as the collision-
free criterion, are also found in literature [20]. However,
these methods suffer from heavy computational costs.

B. The stereotype of obstacle avoidance

Obstacle avoidance is normally considered as a subtask
while the motion of the end-effector, which is subject to
task constraints, is the main task. The general approach is to
neglect obstacle avoidance when the robot is far away from



the obstacle (using a threshold or an activation function) and
take it into account when the robot is close to the obstacle.
Note that when obstacle avoidance becomes active, it may be
considered a primary task instead, i.e, the priority is reversed
[14], [15], [21], [22], [23], [24], [25].

In the existing literature, to achieve obstacle avoidance is
to move the robot away from obstacles instead of closer to
obstacles. For instance, the potential-field based approaches
only allow the forces from the obstacles to be repulsive[2],
[13]. In the recent work of [21], the surroundings of an
obstacle are modelled as springs. The closer the robot is
to the obstacle, the more the springs will be compressed
(creating repulsive forces), and therefore the larger the
pseudo elastic energy is stored. This method also prevents the
robot from getting closer to the obstacle by minimizing the
energy. In [23], a repulsive force that increases the distance
between the robot and the obstacle is constructed and used
to reshape the joint velocity bounds to be tighter. As a
result, joint motions that are contrary to the constraints are
slowed down or denied. The approaches that solve obstacle
avoidance by finding the minimum norm of joint velocities
are also inherently constrained to deny any motion that
moves the robot closer to obstacles since the corresponding
joint velocities are commanded to be zero [14], [15].

However, when the robot end-effector executes a task-
constrained motion, preventing the arm from getting closer to
obstacles can miss the opportunity of achieving both obstacle
avoidance and the task-constrained motion, resulting in the
conflict between the two objectives.

Even though some existing methods could be potentially
extended to make the robot arm move closer to obstacles,
such as [25], [24], [16], [22], how to decide such motion
seems non-trival and depends on environmental information.

C. The contribution of this paper

This paper introduces a novel method of coordination of
task motion and self motion (CTS) to enable a redundant
robot manipulator to get closer to obstacles if moving away
from obstacles can conflict with the task-constrained motion
of its end-effector, in order to find a solution that achieves
both obstacle avoidance and task-constrained motion. The
method is based on analysing and exploiting the effects of
the two terms in the expression of gradient projection to
effectively control the null-space motion with a proper pro-
jection matrix. If a collision-free manipulator trajectory exists
for satisfying both obstacle avoidance and task-constrainted
motion, the method will enable the manipulator to find it and
execute it in real-time.

The paper is organized as follows. Section II describes
task and self motions of redundant manipulators. Section
III presents and discusses distance criteria between obstacles
and the manipulator. In Section IV, the concepts of obstacle
avoidance indicators are defined for task motion and self
motion to explore their coordination in achieving both the
task objectives and obstacle avoidance, and accordingly,
a method to parameterize the projection matrix for self
motion is introduced. In Section V, the algorithms of self

motion generation and control strategy are presented. In
Section VI, the effectiveness of the strategy is verified on
example tasks using a planar 4 degrees of freedom (DOF)
manipulator in simulation and a spatial 7-DOF manipulator
in real experiments. Section VII presents the conclusions.

II. TASK AND SELF MOTION OF REDUNDANT
MANIPULATORS

A redundant manipulator with n joint DOFs in m dimen-
sional workspace (m < n) satisfies x = f(q), where x ∈ Rm

is the pose of the end-effector in Cartesian space, q ∈ Rn

is the joint angle vector, and f(q) ∈ Rm is the forward
kinematics of the manipulator. To fulfill the task requirements
for the end-effector in the Cartesian space requires solving
the non-linear inverse kinematics problem. It is common to
differentiate x to obtain a linear system of equations

ẋ = Jq̇, (1)

where J ∈ Rm×n is the manipulator Jacobian. According to
[5], the inverse solution to (1) is

q̇ = G1ẋ+ (G2J − In)Z, (2)

where G1 and G2 are generalized inverse matrices of J , i.e.
JG1J = J, JG2J = J . In is the n × n identity matrix,
and Z ∈ Rn is an arbitrary vector, which can be set as
Z = −k∇H , where k is a real scalar, and∇H is the gradient
of a smooth function to be maximized. So the solution (2)
can be rewritten as:

q̇ = G1ẋ+ k(In −G2J)∇H, (3)

The first part of (3) (q̇h = G1ẋ) is the particular inverse
solution of (1), which represents the joint motion mapped
from the task trajectory to the end-effector and is called the
task motion. The second part of (3) (q̇s = k(In−G2J)∇H)
is the homogeneous inverse solution of (1). Since Jq̇s = 0,
the motion of q̇s only changes the manipulator configuration
without affecting the task trajectory, and thus it is called self
motion. In order to successfully execute a task trajectory, the
manipulator has to avoid obstacles in the environment. So H
can be a function related to the distance to obstacles.

III. DISTANCE CRITERIA BETWEEN OBSTACLES AND
MANIPULATOR

We are interested in a distance function H to capture
the relation between obstacles and a redundant manipulator.
Let di be the minimum distance between link i of the
manipulator and obstacles, as shown in Fig. 1.

Now we define H∗ = dmin = min(di), i = 1, 2, ..., n
to capture the minimum distance between obstacles and the
manipulator. However, since the nearest link to an obstacle
can change during motion, the gradient of the above H∗

function will not be continuous, and thus the joint velocity
in (3) will not be continuous. Therefore, we further define
H as the weighted sum of distances between obstacles and
each link:

H =

i=n∑
i=1

βidi, i = 1, 2, ..., n, (4)



Fig. 1. The distance between an obstacle and link i.

where βi is a weight:

βi = δdi−dmin , 0 < δ < 1. (5)

The smaller a distance is, the greater its weight is. That is,
the weight of the distance between obstacles and the nearest
link is the largest. Now, H is a continuous function and so is
its gradient. Therefore, we use H to generate self motion so
that the joint motion is continuous. However, H∗ is better at
indicating the closest distance between the manipulator and
obstacles compared to H .

We compute ∇Hi, the partial derivative of H with respect
to the ith joint angle, by a discrete difference:

∇Hi =
∂H

∂qi
=
H(qi + ∂qi)−H(qi)

∂qi
, i = 1, 2, ..., n, (6)

where the constant ∂qi is obtained empirically. We further
denote ∇H = [∇H1,∇H2, ...,∇Hn]T .
∇H∗ is calculated similarly as ∇H .

IV. COORDINATION OF TASK AND SELF MOTION

While it is a common practice to optimize the null-space
motion of a redundant manipulator for obstacle avoidance
during the execution of the task motion in existing methods
of gradient projection, we notice that the manipulator can
often better achieve both the task objective and obstacle
avoidance if the self motion does not always optimize, i.e.,
does not always maximize a distance function between the
manipulator and obstacles. There are cases that the distance
needs to be decreased to avoid obstacles. Moreover, the task
motion can often help obstacle avoidance.

Hence, we are interested in controlling self motion to
coordinate with task motion so that both the task objective
and obstacle avoidance can be achieved. We first define the
concept of “obstacle avoidance indicator” for task motion
and self motion respectively and next introduce a method to
parameterize self motion in order to facilitate the control of
self motion through the values of those parameters.

A. Obstacle Avoidance Indicators

As the change of H∗ value during joint motion is more
indicative of how the manipulator relates to obstacles than

that of H , we define the obstacle avoidance indicator of joint
motion as:

Γ =
dH∗

dt
=
∂H∗

∂q

dq

dt
= ∇H∗·q̇ = ∇H∗·q̇h+∇H∗·q̇s. (7)

Note that since H∗ can be viewed as a piecewise continuous
function, Γ may not be continuous. However, we are only
interested in the values of Γ (and not its derivative). We
further define

Γh = ∇H∗q̇h, (8)

as the obstacle avoidance indicator of task motion, and

Γs = ∇H∗q̇s, (9)

as the obstacle avoidance indicator of self motion.
Self motion is not needed when Γh ≥ 0, i.e., when the

task motion can satisfy the task objective while not making
the manipulator closer to any obstacle. On the other hand,
self motion should be conducted when Γh < 0 and the
manipulator is close to colliding with an obstacle.

When Γh < 0 and the value of H∗ is lower than some
threshold (i.e., the manipulator is very close to some ob-
stacle), self motion is needed, and depending on the starting
value of Γs when self motion is added, there can be two kinds
of behaviors of self motion with respect to task motion:
(1) Γs ≥ 0 at the beginning of a self motion. The effect of
the self motion is to pull the manipulator away from obstacles
while executing the task motion. However, sometimes this
effect can be weaker than that of the task motion, which pulls
the manipulator closer to obstacles (since Γh < 0). In such a
case, the manipulator will be unable to avoid some obstacle
if it continues its (combined task and self) motion. On the
other hand, if the effect of self motion is stronger than that
of the task motion, self motion can prevent the manipulator
from continuing task motion while avoiding obstacles.
(2) Γs < 0 at the beginning of a self motion, i.e., both
Γh < 0 and Γs < 0 hold when a self motion is added.
If there exists a collision-free solution for the manipulator
to execute the task motion, the values of Γs and Γh will
increase over time and become positive, and as the result, the
task objective and obstacle avoidance can be both achieved.

It is important to note that the behavior (1) above is
the reason that existing gradient projection methods (as
discussed in Section I) sometimes either cannot make the
manipulator avoid obstacles or cannot make it continue task
execution. Therefore, we are interested in adding a self
motion with behavior (2) when behavior (1) cannot succeed
in achieving both task objective and obstacle avoidance.

A key insight about the desired effect of self motion in
behavior (2) is that Γh increases from initially being negative
to become positive as Γs increases as long as there exists
a collision-free solution for the manipulator to execute the
task motion. By allowing the manipulator move closer to
obstacles initially (with Γs < 0), the behavior of the self
motion is equivalent to adding search in the direction of the
negative gradient for such a collision-free solution (i.e., the
collision-free manipulator motion that also fulfills the task
objective) to exhaust the search scope. If such a solution



exists, it will be found, and Γh will increase its value from
negative to positive over time. In other words, if search for
a solution in the direction of the positive value of Γs, as the
effect of behavior (1) above, fails, conducting search in the
direction of the negative gradient, as shown in behavior (2),
will find the solution if the solution exists.

We next introduce a method to parameterize self motion
so that we can control self motion to be in the behavior (2)
through changing some parameter values when needed.

B. Parameterization of Self Motion

Here we present a parameterization method to enable the
control of self motion in order to obtain the desired self
motion behavior. We adopt the weighted generalized inverse
to express G1 and G2 in (3) as:

G1 = N−11 JT (JN−11 JT )−1, G2 = N−12 JT (JN−12 JT )−1

(10)
where N1 and N2 are diagonal matrices, and their diagonal
elements are positive. We set N1 as an identity matrix so
that G1 is Moore-Penrose generalized inverse of J and q̇h
is unique, which is known as the least norm solution.

We take N2 as a matrix of parameters to control self
motion. Let

N2 =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn

 (11)

We further denote the coefficient matrix of ∇H in (3) as Y :

Y = k(In −G2J) =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


=

(
A1 A2 . . . An

)
(12)

Y is a real symmetric matrix and its rank is n−m. Since the
redundancy of the manipulator is n−m, n−m parameters
in N2 can be tuned to change Y and consequently, the self
motion Y∇H in (3).

In particular, we consider the case n−m = 1, i.e., there
is one redundant degree of freedom to realize self motion,
to show how N2 can be used to control the self motion. In
this case, the rank of Y is 1, and A2, A3, ..., An are linear
functions of A1 as the following:

A1 = σ1A1, σ1 = 1

w1A2 = w2σ2A1

...
w1An = wnσnA1

(13)

where σ1, σ2, ..., σn are determined by the manipulator Ja-
cobian J by setting N2 to be an identity matrix, i.e., w1 =
w2 = ... = wn = 1, in the above equation (13).

The first row of equation (13) can be written as

a11 = a11σ1, a12 =
w2

w1
a11σ2, . . . , a1n =

wn

w1
a11σn, (14)

and the first row of Y∇H is:

Y∇H(1) = a11∇H1 + a12∇H2 + . . .+ a1n∇Hn. (15)

Let (15) = 0, It follows that,

w1σ1∇H1 + w2σ2∇H2 + · · ·+ wnσn∇Hn = 0. (16)

Since we only need a single parameter to control the self
motion with one redundant degree of freedom, we choose w1

as the single parameter and let w2 = w3 = . . . = wn = 1. 1

From (16), we can solve w1 as a real number solution w
′

1,
i.e., w1 = w

′

1.
Since the common gradient projection has self motion

always maximize the distance to obstacles, the obstacle
avoidance indicator Γs of the self motion is positive. The
common gradient projection has w

′

1 = 1 (N2 to be an identity
matrix), so value of 1 is indicative and we can use w

′

1 = 1
to locate the sign of Γs.

As shown in Fig. 2, we can set w1 to be either greater
or less than w

′

1 to control the behavior of self motion. If
w

′

1 > 1, Γs > 0 if we set w1 < w
′

1, and Γs < 0 if we set
w1 > w

′

1. If w
′

1 < 1, Γs > 0 if we set w1 > w
′

1, and Γs < 0
if we set w1 < w

′

1.

Fig. 2. Sign of the obstacle avoidance indicator Γs of self motion when
the motion starts can be controlled by setting the value of parameter w1

relative to the solution w
′
1 of equations (16).

Note that as we change w1 to change N2 in (3), the self
motion remains in the null space of J , and the two parts on
the right hand side of (3) remain mutually orthogonal. The
parameterization of self motion introduced above allows us
to decide which self motion to add based on the sign of
Γs and its relation to Γh in our self motion generation and
control strategy, which will be introduced next.

By using N2 to adjust self motion, our approach renders
the value of parameter k in (3) less important and can be
set to a value from a large interval without affecting the
performance of the manipulator, which will be demonstrated
in the examples presented in Section VI.

V. SELF MOTION GENERATION AND CONTROL
STRATEGY

We now describe how to generate self motion in different
situations for effective coordination with the task motion.
Self motion is needed only when task motion alone cannot
avoid obstacles. When the minimum distance H∗ is greater
than or equal to a threshold, i.e., H∗ ≥ Hth, self motion is
not necessary, and we make q̇s = 0, i.e., only task motion
is adopted. When H∗ < Hth and Γh < 0, a self motion is

1Of course we can also use a different parameter, such as w2, and set
the other parameter values to be 1.



used to coordinate with task motion for obstacle avoidance.
Our strategy first searches a self motion starting with Γs > 0,
i.e., of behavior (1) (see Section IV.A), and if it fails to make
the manipulator avoid obstacles, our strategy next generates
a self motion starting with Γs < 0, i.e., of behavior (2). The
threshold Hth is set large enough so that the manipulator
will not collide with obstacles even when Γs < 0.

Let [0, T ] be the duration of the task trajectory. We use
Algorithm 1 and Algorithm 2 to decide a proper self motion
whenever needed by setting a proper value for w1, and then
compute and execute the corresponding self motion q̇s(t)
and task motion q̇h(t) using equation (3). In Algorithm 2,
∆ < T is an upper bound for a period of self motion, which
can be decided based on the threshold Hth and the velocity
bounds from the task trajectory. The resulting motions both
satisfy task constraints and avoid obstacles.

Algorithm 1: ControlStrategy
1 t = 0; q̇s(t) = 0 for all t ≤ T ;
2 while t ≤ T do
3 if H∗(t) < Hth and Γh(t) < 0 then
4 solve for w′1, and choose a value of w1 based

on w′1 to make Γs(t) > 0 and compute q̇s(t);
5 call Algorithm 2 and get collisionF lag;
6 if collisionF lag = true then
7 choose a value of w1 based on w′1 to make

Γs(t) < 0;
8 call Algorithm 2 and get collisionF lag;
9 if collisionF lag = true then

10 return “no collision-free solution that
satisfies both obstacle avoidance and
task motion”

11 end
12 end
13 simultaneously execute

q̇(u) = q̇h(u) + q̇s(u)∀u ∈ [t, t+ τ ] and
continue the while loop;

14 t = t+ τ + 1;
15 end
16 else
17 t = t+ 1;
18 execute q̇(t) = q̇h(t) after q̇(t− 1) is done
19 end
20 end

VI. IMPLEMENTATION AND TESTING

We have implemented our coordination of task and self
motion (CTS) approach both in simulation and in real
experiments and verified its effectiveness.

A. Testing with a simulated planar manipulator
We have used a simulated planar 4-DOF manipulator as an

example, shown in Fig. 3. The length of each link is 2 units
(1 unit = 25 cm) in simulation. The position of end-effector
is (x1, x2). The orientation of end-effector is the angle x3
between the end-effector and the x1 axis.

Algorithm 2: GenerateSelfMotion

1 begin
2 u = t;
3 while H∗(u) ≤ Hth and Γh(u) ≤ 0 and u ≤ t+ ∆

do
4 if the combined task and self motion

q̇h(u) + q̇s(u) does not cause collision then
5 save q̇h(u) and q̇s(u);
6 u = u+ 1
7 end
8 else
9 return collisionF lag = True

10 end
11 end
12 τ = u− t ; /* τ is the actual period

of self motion. */
13 return collisionF lag = False and τ
14 end

We consider a linear trajectory for the end-effector in
the Cartesian space, as shown in Fig. 3. The initial pose
of the end-effector is (0, 0, 3π/2). The final desired pose
of the end-effector is (5, 5, π/4). We set 500 time steps
in the simulation. The initial manipulator configuration is
q1 = 0, q2 = q3 = q4 = π/2. A point obstacle is
set at (3, 1). This is a case that existing methods (solely
increasing the distance to obstacle) cannot achieve both task
objective and obstacle avoidance. With our CTS approach,
the manipulator can achieve both objectives simultaneously
with a self motion of behavior (2), as detailed below.

Fig. 3. A planar 4-DOF manipulator, its initial configuration, an intermedi-
ate configuration, the straight-line path for the end-effector and an obstacle.

We set k = 0.02 and Hth = 0.5unit. We found that the
manipulator task performance is not sensitive to k so that it
is relatively easy to determine a k value.

With CTS approach, the execution of the end-effector
trajectory consists of 4 processes shown in Table I. In process
1, minimum distance H∗ is greater than the threshold (shown
as the black line in Fig. 4), so only task motion is conducted
(shown in Fig. 5). H∗ decreases with time, and it becomes
less than the threshold from t = 32 steps, at which a self
motion is added, and the manipulator enters process 2.

To determine the self motion, our algorithm follows the
derivation in Section IV.B to get w

′

1 = 1.2857. By first



selecting a w1 < w′1, a self motion of behavior (1) is obtained
and the distance between the manipulator and current nearest
linke (link 2) is trying to be maximized. This cannot lead
to obstacle avoidance as evidenced in the attached video.
Therefore, our algorithm next sets w1 = 2 in process 2 to
generate a self motion of behavior (2). As shown in Fig. 5,
the obstacle avoidance indicator Γs starts being negative (see
the local amplification in Fig. 5) and increases to be positive
over time. As observed in Fig. 4, moving purposefully closer
to the obstacle changes the closest link from link 2 to link
3. This change of the nearest link is the opportunity gained
by moving the robot closer to the obstacle in the short-term,
and it is the key factor that enables achieving both the task
objective and obstacle avoidance simultaneously.

TABLE I
PARAMETERS OF MOTION PROCESS

Process Time step Motion N2 Diagonal Entry
(1) 0-31 Task motion only
(2) 32-60 Task and self motion 2, 1, 1, 1
(3) 61-266 Task and self motion 2, 1, 1, 1
(4) 266-500 Task motion only

As the nearest link changes from link 2 to link 3, process
3 is entered, which differs from process (2) only in practi-
cal implementation of our algorithm, in that the analytical
expression for H∗ changes as the nearest link changes. In
process 3, the self motion (which has Γs > 0) reduces the
negative effect of task motion (which has Γh < 0), as shown
in Fig. 5. In process 4, Γh > 0, and thus only the task

Fig. 4. Distances between links and the obstacle.

Fig. 5. Obstacle avoidance indicator as a function of time.

motion is conducted until the task is completed at t = 500.

B. Testing with a spatial manipulator both in simulation and
real experiments

A spatial 7-DOF Barrett WAM redundant manipulator
is also used to demonstrate the effectiveness of our CTS
method. The manipulator starts at a given configuration
having the end-effector at (0.5m, 0.1m, 0.5m) and aligned
with the Z axis. The task is to move the end-effector
along a straight line from the starting configuration to
(0.5m,−0.5m, 0.5m) while maintaining the end-effector
orientation, i.e., both the position and the orientation of the
end-effector are constrained. Here we set k = 0.01 (k in the
interval [0.01, 0.03] presents desired motion behavior). The
test cases (simulation and real experiments) are presented in
the following section and also in the attached video.

1) Avoiding one obstacle: We first consider the case
where the manipulator needs to avoid a cylindrical pole
aligned with the Z direction during the execution of the
end-effector task motion. The bottom of the pole is located
at (0.35m, 0.0m), the height of the pole is 0.7m, and the
diameter is 0.02m. We set Hth = 0.1m. With our proposed
CTS method, when H∗ < Hth and Γh < 0, a self motion
of behavior (1), i.e., starting in the positive direction of Γs

is first conducted, but it fails to enable the manipulator to
avoid the obstacle. Next, a self motion of behavior (2), i.e.,
starting in the negative direction of Γs is obtained. Moving
the arm purposefully closer to the obstacle enables the arm to
bypass the top of the obstacle, after which the arm can move
even further away from the obstacle by solely increasing
the distance. Fig. 6 shows snapshots of the task-constrained
collision-free trajectory obtained. All the joint angles are
mostly smooth within the limits, as shown in Fig. 7.

Fig. 6. A task-constrained collision-free trajectory.

In this example, the self motion is not turned on until
H∗ < Hth at time step 350, when a self motion of behavior
(2) is added. As shown in Fig. 8, Γs starts being negative and
increases to positive values, which moves the manipulator
closer first and then further away from the pole. The arrow
marked in Fig. 9 also indicates that the distance is being
decreased with a larger slope at that time step under the effect
of self motion with behavior (2). The self motion is turned
off when Γh becomes positive at time step 1, 080. Between
time steps 1, 080 and 6, 000, only task motion is executed,
which moves the manipulator away from the obstacle.

2) Comparative study: We compared our approach with
existing gradient projection and configuration control method
[5], [13] using the one-pole example described above, and the
results are shown in the attached video. The existing method
relies on increasing the distance to obstacles for obstacle



Fig. 7. Joint angles (radian) in the 1-pole case.

Fig. 8. Obstacle avoidance indicator in the 1-pole case.

avoidance. In the first comparison, the main task has the top
priority. As can be seen in the video, the existing method
requires the self motion to move away from the obstacle
and results in a conflict with the main task. In the second
comparison, the priority is switched, i,e, obstacle avoidance
has the priority over the main task. As shown in the video, the
existing method (solely increasing the distance) requires the
arm to retract itself to avoid the obstacle, which leads to the
detour of the end-effector and violation of task constraints.

3) Avoiding two obstacles: In this example, the manip-
ulator needs to execute an end-effector straight-line trajec-
tory (from (0.35m, 0.25m, 0.5m) to (0.35m,−0.4m, 0.5m)
along Y-axis) and avoid two poles. The bottoms of the two
poles are located at (0.25m, 0.1m) and (0.25m,−0.1m)
respectively. They both have height 0.7m. Hth is 0.05m.

Fig. 10 shows snapshots of a task-constrained collision-
free trajectory obtained in this case with our CTS method.
The manipulator starts executing the task motion with self
motion off until H∗ < Hth. The manipulator enters the
threshold two times (at time steps 1, 140 and 4, 000) in
this case. Based on the negative sign of Γh, there are two
self motions of behavior (2) (i.e., starting with Γs < 0)
added at time step 1, 140 and 4, 000 (see Fig. 11 and
the local amplification figure). The self motions enable the
manipulator to move across the top of the obstacle to achieve
the objective of obstacle avoidance while executing the end-
effector task trajectory.

Fig. 9. H* in the 1-pole case.

Fig. 10. A task-constrained collision-free trajectory in the 2-pole case.

Note that in time steps between 1, 140 and 4, 000, i.e.,
when the manipulator is in the middle of the two poles,
there will be a local minimum if the conventional gradient
projection method is used since the distance between the
manipulator and the left pole decreases, the distance to the
right pole increases as the manipulator tries to execute the
task motion. Using the CTS method eliminates this local
minimum, even if the distance between the poles is less than
2Hth, i.e., H∗ < Hth remains true when the manipulator is
in between the two poles. This is because during the period,
self motion is not always on, but turned on and off based on
the sign change of Γh, and each time self motion is needed
again after being off, a new self motion is generated to ensure
collision-free task-constrained movement.

The same tests in simulation are also executed in real
experiments with position control. Fig. 12 shows a snapshop
of the real Barrett WAM used in the 1-pole and 2-pole cases.

The attached video shows the simulations with both the
4-link planar manipulator and the Barrett WAM and the exe-
cutions with an actual Barrett WAM. In all cases, the control
strategy based on our CTS approach worked well, and the
manipulator successfully avoided obstacles while executing
the end-effector task trajectories without interruption.

VII. CONCLUSIONS

In this paper, we have introduced a novel method, the
CTS method, to coordinate quasi-static task motion and self
motion for redundant manipulators to enable the manipula-
tor achieve both the task objective and obstacle avoidance
simultaneously. We have defined the concepts of obstacle
avoidance indicators for task and self motions at any time
t and subsequently described a way to change the weight
matrix of generalized inverse to obtain the kind of self
motion when needed for obstacle avoidance. A planar 4-
DOF manipulator and a spatial 7-DOF manipulator are



Fig. 11. Obstacle avoidance indicator in the 2-pole case.

(a) Execution in the 1-pole case

(b) Execution in the 2-pole case

Fig. 12. Executions of planned trajectories.

used in simulation and real experiments to demonstrate the
effectiveness of the approach.

The CTS method offers several advantages. First, the
method is more effective for obstacle avoidance while ac-
complishing the task objective than existing methods, as it
both exploits the effect of obstacle avoidance of task motion
and expands the search for a suitable self motion by allowing
the manipulator to move closer to obstacles. Second, it only
involves simple computation for each desired self motion
and is thus efficient. Third, the method is insensitive to the
value of the scalar k, and thus k can be easily chosen as
a constant in a considerably large interval without affecting
the performance of the method.

However, further study is necessary to ensure smooth
transition when a self motion is added or removed. Our
empirical tests show that selecting the value of w1 to be
close to w′1 increases the smoothness of transition. More
investigation is also needed for cases with higher DOF
redundancy, i.e., higher-dimensional null-space motion.
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