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Abstract—Many networks nowadays contain both positive and  the important parametek, the k-dimensional subspace, and
negative relationships, such as ratings and conicts, which are visual patterns related to the community structures.

often mixed in the layouts of network visualization represented . o .
by the layouts of node-link diagram and node indices of ma- The visualization component presents a block-organized

trix representation. In this work, we present a visual analysis topology visualization for signed networks. The block-

framework for visualizing signed networks through emphasizing  organized visualization represents network topologianalti-

different effects of signed edges on network topologies. The level block structures and separates the visual space ¢e thr

theoretical foundation of the visual analysis framework comes  sections for representing communities, positive, and tiega

from the spectral analysis of data patterns in the high-dimensiont  e|ationships. Signed edges are visualized as curvedesplin

Sptfftri' space. Bdas'?d o the spectral aﬂa.'ys'ﬁ rehsut')t$a e mﬂ? oriented to two opposite directions, representing thejrasite

a block-organized visualization approach in the hybrid form o : ; ; ' - O

matrix, node-link, and arc diagrams with the focus on revealing mean_lngs. Taking a hybrid fo_rm of .matT'X' _node link, and
arc diagrams, the block-organized visualization arraripes

topological structures of signed networks. We demonstrate witfa ; . .
detailed case study that block-organized visualization and spectra ~ three representations as ordered layers consistentlyfioliryg

space exploration can be combined to analyze topologies of signed Strong visual connections.

networks effectively. The interactive exploration of signed networks combines

Keywords—Hybrid network visualization; block-organized the two components - spectral space exploration and block-
visualization; signed networks; spectral analysis; visual analytics; organized visualization. We have developed interactiarcfu
tions to explore network topologies and adjust the block-
. INTRODUCTION organized visualization. We use a case study to demonstrate
how complex network topologies can be interactively exgdor

Many networks in real-life applications are signed
Y P g with our approach.

networks, which can re ect a wide range of relationships,
such as like or dislike and friend and enemy. While signed The remainder of this paper is organized as follows. We
networks can be treated as special cases of multivariate netst review the related work of network visualization in
work visualization, such as coloring signed edges diffdyen Section Il. Section Il presents the spectral analysis ltesu
the impacts of negative edges to the network topology shouldnd Section IV describes block-organized visualizatiohe T
be studied and incorporated in the visual exploration @®ce interactive exploration process and case study are describ
of signed networks [19]. in section V. Section VI discusses the design of signed net-
fwork visualization, performance, and exploration experes.
Finally, we conclude this paper and discuss future work in
Section VII.

Our approach is built upon a theoretical foundation o
spectral network analysis, which studies spectral featafe
community structures. It is known that there are intimate
relationships between the combinatorial characteristics
graph and the algebraic properties of its adjacency magiix | Il.  RELATED WORK
however, _it is oft(_en not clear how_ to ana}Iyze a (_:omplexA' Designs of Network Visualization
network visually with spectral analysis theories. In thisrky
we concentrate on addressing two research challengesuafivis ~ Network visualization and visual analytics have been very
analytics: what are the important spectral patterns andtbow active research areas for the last 30 years [13], [22], [27].
use them to study signed networks. Due to the page limit, we concentrate on different designs of
network visualization, although recent work has extended t

Our visual analysis framework for studying signed multivariate and multimodal types [20].

networks contains two components. The spectral analysis co
ponent starts from two example signed networks, ktidock Node-link diagram: The most popular network
and k-partite networks, representing the internal and externavisualization approach has been the node-link diagrams-Cla
relationships of communities respectively. We describe thsical layout algorithms are force-directed approaches and
spectral features of general signed networks for intaracti spectrum-based approaches. Related to this work, Hu @i&l. [
exploration. The results provide essential information \f presented a node-link layout algorithm and demonstrated th
sual analysis of community structures, including identify quasi-orthogonal theorem on unsigned networks. Variatin



node-link diagrams include PivotGraph [29] with a grid-bds so[] =]

approach and Hive plot [21] with radially oriented lineaeax R ST T— B [
Matrix representation: Matrix representation has also 0
been a popular approach to visualize networks. Ghoniem e 0 =

al. [12] demonstrated the advantages of matrices and riokle-|
diagrams experimentally. Variations of the matrix visgali

tions include the gestaltmatrix [7], where cells also comd . % i

small graphics or glyphs; the Zoomable Adjacency Matrix . s o

Explorer (ZAME) [10], which was designed for exploring larg , 5 .

scale graphs; and the Compressed Adjacency Matrices [9 .| @ & T e N
which achieved compact visualization by cutting open and | N e
rearranging an adjacency matrix. Yo e e

0101 015 015

Arc Diagrams: It is sometimes useful to layout the nodes
of a network along a straight line and draw edges as circulai ¢
arcs [28].

Circular layout: The circular layout is achieved by posi-
tioning nodes on the circumference of a circle. Drawing sdge
as curves rather than straight lines increases the re#yaiiil
the drawings [11].

Hybrid approaches: Hybrid designs have been shown '
to be effective in many cases [3], [5]. For example, Topo-  ° _ T eees
Layout [2] detected subgraphs with specic charactersstic k-partite network k-block network
and applled an appropriate node-link IayOUt algorlthm tohea Fig. 1. Examples ok-partite andk-block signed networks. The top to bottom

subgraph. Nodetrix [15] took qdvantage of node-link diagza rows show the eigenvalue curves of 50 dimensions, specttarpain selected
for sparse networks and matrices for dense networks. subspaces, and node-link network visualizations. Pesiilges are in red and
negative edges are in blue.

o 00

Other approaches: There are a number of interesting
ways to visualize networks. For example, a canonical visual
matrix visualization only depended on the topological info A k-partite Network
mation and nodes were positioned based on computed metrics

and/or associated attributes of the nodes [13]. The k-partite network describes the relationships of nodes

between different communities. We rst provide the de oiti
and then summarize the study result in [30] for completeness
of our framework for general signed networks.

According to our knowledge, signed networks have not
been systematically studied in network visualization, levhi
conicts or controversy relationships in social or poldlc
networks have been visualized. For example, Brandes dd]al. [
presented a visual summary method for bilateral conict
structures embodied in event data. Suh et al [25] described
model for identifying patterns of con icts in Wikipedia &tes 0 1
based on users' editing history and relationships betweaen u 0 B Buk
edits. Kermarrec and Moin [18] presented a Signed LinLog A= %321 0 52k§
model for graph drawing. P : o :

B. Network Visualization and Analysis of Signed Networks

De nition: A k-partite network represents a graph with
communities such that 1) there are no links inside the com-
munities; and 2) nodes from different communities are dgnse
connected with the same signs. The adjacency maisixan
be written in the following form with proper permutation of
the nodes:

; 1)
Bii By 0
whereB;; is then; n; matrix to represent the relationships
We start with discussions of two example signed networksbetween community and communityj. We call A, as ak-
the k-block network with only internal edges insidk- partite matrix.
communities and thek-partite network with only external

cross-community edges. For each example signed network, we Spectral Patterns: For k-partite matrix, Wu et al. [30]

provide formal de nitions as well as descriptions and exteap 2> showed the approximation forms of eigenvectors and
of spectral patterns for visual exploration. spectral coordinates. They proved that such a matrix shows

k orthogonal clusters when the communities have similar

For general signed networks, we describe how the resultdensities and the rst eigenvalue has a different sign with
from the two example networks can be extended to explor¢he following k 1 eigenvalues in magnitude. Thepartite
general signed networks. According to the topology stmgctu network with k comparable communities showsorthogonal
determined by communities, all the edges of a network, nelusters in thek-dimensional spectral subspace spanned by
matter their signs, can be divided to internal or extern&l ca x;'s of the adjacency matrix with corresponding eigenvalues
egories. Therefore, the two special signed networks reptes jl1j j /3] j 1. Furthermorekl 1k has a different sign
the most important community structures of a signed networkwith the restk 1 eigenvalues.

IIl. SPECTRALANALYSIS OF SIGNED NETWORKS



An Example: The left column of Figure 1 provides an We have performed a brutal experiment to explore the
example of thek-partite network. This network contains four variations of spectral patterns. By varying the four paramse
communities with 400 nodes and 100 positive internal edgesf edge ratios, internal positive, internal negative, mdé
and total 36000 negative external edges added randomly. Asositive, and external negative, we generate synthetigarés
shown in the curve of eigenvalues, there are three very highanging from the two example networks, to approximkte
positive eigenvalues and one very low negative eigenvalueyglock and k-partite networks for simulating general signed

representing the four communities in the network. networks. Due to the space limit, only example results with
the base network of 40% internal positive edges are shown
B. k-block Network in Figure 2. Both the rst 3 dimensions of spectral space

and eigenvalue curves of selected networks are presented as

De nition: A k-block signed network represents a graphgxample patterns.

with k communities such that 1) inside each community, node
are densely connected with the same signs; and 2) there are The examples in Figure 2 demonstrate several variations of
no links between different communities. The adjacency imatr the spectral patterns. The knowledge of the spectral patter
Ay of ak-block signed network can be written in the following can help users to select communities in the spectral space.

form with proper perm%tatlon of the ?odes: 1) By adding external negative edges, the network grad-

A ually changes to external dominated networks related to the
A, = ?@ .- X; ) k-partite network. The spectral patterns change from quasi-
0 ' Ac orthogonal lines or blocks to parallel lines along the ttdid
mension. The eigenvalue curves always contain 3 outstgndin
whereA is then; n; adjacency matrix of th&, community — absolute values, but they change from 3 positive values to 2
with nj nodes. We call, as ak-block matrix. positive and 1 negative value.
Spectral Patterns: For a k-block signed network with 2) By adding internal negative edges, the network gradually

ki blocks non-negative an#y blocks non-positive, we can changes to thi-block networks with dominant negative edges.

observek eigenvalues with large absolute values. The numbeiThe spectral patterns change from quasi-orthogonal limes o
of large positive eigenvaluesk;y) indicates the number of blocks to 3 quasi-orthogonal lines crossing at the Origin of
communities with dense positive internal relationshipsl an the spectral space. The 3 outstanding eigenvalues chammge fr

the number of negative eigenvaluds)(indicates the number all positive to all negative.

of communities with dense negative internal relationships

Speci cally, a k-block network with all non-negative entries omplex internal and external relationships. We argue dhbat
has k large positive eigenvalues and node coordinates fornfoMP pS. 9

k orthogonal lines in the subspace spanned by their correxPectral analysis results of the two example signed neswork
sponding eigenvectors. In contrast, fok-hlock network with can Sf"” be used to study general signed networks from the
all non-positive entries, we have a similar conclusion: exod following three aspects.

coordinates fornk orthogonal lines in the subspace spanned First, spectral analysis always presents the dominant com-
by eigenvectors corresponding kdarge negative eigenvalues. munity structures in the networks. Eigen-decomposition pr
duces an indexed set of linearly independent eigenvectors,

example of thek-block network. This network contains four Where the rst eigenvector having the direction of the lage

communities with 100 nodes each. Two communities havé/arance of the data. No matter how complex a network is,
2000 positive edges and the other two have 2000 negati\/(-ge dominant community structures are always revealed on
edges. The curve of eigenvalues reveals two positive outhe rst several dimensions. This is consistent with thet fac

standing eigenvalues and two negative outstanding eigersa that the community relat|onsh|ps of complex networks can be
which support our spectral analysis results. represented as a hierarchical structure.

In practice, general signed networks may contain both

An Example: The right column of Figure 1 provides an

Second, we discuss general signed networks which contain
C. Discussions for General Signed Networks majority positive or negative edges. While the global com-
unity structure may be complex, it can be decomposed to
cal communities with structures similar to one of the two
example networks. For example, as shown in Formula 3, the
rst group of communities may appear askgartite network
and the second group appears kablock networks. Also,

For general signed networks, communities are Ioosel){n
de ned as collections of network nodes that interact unligua '©
frequently, including both positive and negative relasioips.
The adjacency matriA can be written in the following form
with proper permutation of the nodes:

) 1 the edge densities between these local structures should be
A Bi2 | Bk much smaller than the densities inside each local community
B21 Az J Bak Otherwise, two communities with both strong internal and
: : . : external connections, no matter their signs, should beeea
A= ’ ' J ' 7 (3) as one community instead. Therefore, even though a general
signed network may contain a complex hierarchical commyunit
: : j : structure, it can be decomposed to a numbek-bfock and
Byt B> j Ay k-partite networks.

where the de nitions oA andB;; are the same as in Formulas Third, for general signed networks with various combina-
1 and 2. tions of positive and negative edges. As shown in Figure 2,
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External negative edges of 0%, 15%, 30%, 50%, 98% of the maxiraxternal edges are added respectively.

e
3

! o \

Internal negative edges of 0%, 20%, 40%, 54%, 60% of the maxirmternal edges are added respectively.

Fig. 2. Example variations of spectral patterns of signeevoets with 40% internal positive edges and 2% external pesidges.

the patterns of node distributions in the spectral spacesadj splines also fully utilize the block spaces and provide rgjro
gradually when the ratios of negative to positive edges gban visual cues for external relationships between commumitie
Even for the cases whose positive and negative edges are Ordered L . Block ved visualization includ
comparable, especially when both positive and negativesdg raered Layers. block-organized visualization Inciudes
are large enough, the spectral features of both signed ardre€ layers iepafat'ﬂg aIrI] the wsualc e:‘em?]nts, lnodesedur
unsigned networks can be shown. The visualization of sglectr edges, and the matrix. The order of the three layers can be

patterns can also help users to identify similar patterns adjusted for different visualization purposes. For exampiie
' nodes and edges can be on the top for visualizing direct

connections between communities and the matrix can be on
IV. BLOCK-ORGANIZED TOPOLOGY VISUALIZATION the top for showing the distributions of connections indice
ommunities. The ordered layers ensure that block-orgdniz

The block-organized visualization is designed for generaﬁisualization can take advantage of all the visualizatiomfs.

signed networks through revealing important topology cstru
tures and visualizing the positive and negative connestian

different formats with different level-of-details. B. Muld-level Visualization
Multi-level visualization helps to abstract both internal
A. Block-Organized Visualization Design and external relationships and visualize the network wpol

gies. The block structure is very convenient for multi-leve
The block-organized visualization divides a 2D visualvisualization, especially for building a hierarchical ustr
space to three sections: blocks on the diagonal line forriate ture to visualize the nodes. The multi-level block-orgaxiz
relationships and two opposite regions for the two typesvisualization can be achieved with two options.
?r];g?r?:_fgggﬁgﬁcr)ilacﬂ‘ogﬁgggh c-;hri att)ﬁf'z ;jnelszlgrrlmﬁlc;m3e s First, we can emphasize selected communities and visualize
where thek-block andk-partite networks are well presented them in large sizes by increasing their importance degrees.

. : - . A The block structure automatically adapts to the change end r
in this form. The block-organized visualization integsatae : . A - .
following three concepts. organize the node-link and matrix visualizations consitye

Block Struct - Block ved visualizati Second, we can abstract the topology structures of commu-
b koct truc utres. oc -orl?atr#ze \c/j|sua.|ze:h|on u%esl_a nities at different level-of-details. The grids inside lkdiock
ock structure to organize all the nodes in the node-linke o the abstraction level and generate “super nodes” fo

diagram and all the rectangles in the matrix simultaneouslyinyjitving the networks. The size of a super node is adgliste
according to network topologies. The block structure ioaut ., e "humber of nodes it represents. It is also limited by the

matically generated during an interactive explorationcpes : :

: At X . size of the block it belongs to.
and can be adjusted for highlighting interesting commaaiti size of the block it belongs to
and connection patterns. With the overlaying of visual eeta
in the same block structure, we emphasize the consistarlvis

connections among all the representations. The block-organized visualization organizes the nodes in

Signed Edaes: We visualize sianed edaes with curved the network according to their block locations. The layout

>lgned edges. 2€ signed edg Ve algorithm can also be different or the same for all the com-
splines oriented to two opposite directions, representtirgjy L

, X o . munities in the network.

opposite meanings. The positive connections stretch out to
the top right section and the negative connections to the To assist the visual exploration with spectral patterns, we
bottom left section. The different orientations help toarge  adopt a simple and ef cient spectrum-based strategy which
all the signed edges on the two opposite regions separatedlows us to combine multiple spectral dimensions. While
automatically by the blocks on the diagonal line. The curvedusers browse the spectral space, they can identify dimesisio

C. Node Layout



which spread out the nodes in the network. Often these are

the spectral dimensions with small absolute eigenvalues an

several dimensions can be involved for networks with multi-

ple communities. Users can specify the contributions of the

selected spectral dimensions to the X and Y node coordinatefy. 4. Color sets for block-organized visualization. Warators for positive
in the block-organized visualization by adjusting lineaights relationships and cold colors for negative relationshige left color on each
wy(x) for X coordinates and/vy(xi) for Y coordinates. The set is used for curved edges and the right color is used fomueix.

new coordinate(x%y9 of a node is computed for the two

dimensions respectively as follows: . o . - :
P y visualization system is shown in Figure 5. We use a real-life

XX= dwy(X) X 4 dataset to show how the block-organized visualizationesyst
yo= awy(x) X (4) can solve several important problems, which are essemtial f
understanding the topology structures of signed networks.
D. Curved Splines for Signed Edges

As shown in Figure 3, both the colors and orentations of
curves are used to visualize signed edges. The shapes of the
curved splines can be adjusted by the magnitudes of edges, as
any of the examples in Figure 3 (left). The orentations can be
one of the four cases as shown in Figure 3 (right), depending
on the relative positions of two nodes and the sign of the edge
We have all the edges stretched out to the intersection pbint
the row of one node and the column of another. As the matrix
is co-organized with the node-link diagram, the orientadiof
curved splines are also consistent with the directions gked
locations on the matrix.

The width of a curve can be adjusted with node sizes in the
multi-level visualization. The transparency value is cold
by the importance degrees of one community for internal edge
and two communities for external edges.

Fig. 5. Our visualization system encloses four panels: @kstganized
visualization (left top) and its parameter panel (left botjpand a spectral
space projection (right top) and its parameter panel (rightton). The
parameter panel of the spectral space shows the most sighigiganvalues
for the case study.

, _ _ _ A. Case Study
Fig. 3. Curved splines for signed edges. (left) The curveoigtroled by the
absolute edge value. (right) The four cases of curved splifepending on We use the Correlates of War dataset [24] to demonstrate
the sign of the edge and relative positions of nodes. the interactive exploration process. The relationshipsoafn-
For sianed network the si f ed t tries from 1993 to 2001 are accumulated as a signed network,
or Signed Networks, as e sSign of €4ges repreésents oppQg ye relationships are relatively stable during this tiarege.
i, , . The positive relationships range from 1 to 3 depending on
Generally we use a warm color for positive relationships and the alliance relationships; and the negative relatiorshapge

cold color for negative relationships. For overlaying thieved from -5 to -1 depending the disputation types. There ard tota
edges and matrix blocks, we prefer to use two sets of coIo(rj§16 nodes and 1998 edges in this network.

in similar tones, so that each layer in the block-organize

visualization can be shown well for building visual connet Figure 6 captures the snapshots of block-organized
Figure 4 shows the colors used in all the results of this papewisualization and spectral patterns during the interactx-
The node colors of communities are from the d3.js category2@loration process. As the step 1 shows, we start with the
function. The nodes are colored differently according teirth two spectral dimensions with the largest absolute eigergl

communities. We can adjust the weights of spectral dimensions for a better
separated node layout than the spectral patterns on thevest
V. VISUAL EXPLORATION OF NETWORK TOPOLOGY dimensions. At this moment, the block-organized visutitiwa

only contains one block, which is the entire network, and

_ For exploring topologies of signed networks, our pojher the matrix nor the node-link shows much information
visualization system combines two components, block-
X : > . of the network topology.
organized visualization and spectral space exploratidre T
visual exploration procedure includes a number of inter- Steps 2-8 demonstrate the procedure of identifying new

actions between the two components. The block-organizedommunities. Each time, we observe the spectral space and



step 1 step 2 step 3

step 4 step 5 step 6

step 7 step 8 step 9

Fig. 6. Interactive exploration of the Correlates of Waradat. Our interface encloses the block-organized visataiz on the left and a spectral space
projection on the right (the parameter panels are providetiamitted in this Figure). The steps 1-8 show the selected padterns and block re-organized
visualizations. The step 9 shows the grouping of two simi@mmunities, which reveals 6 communities for the nal topologyusture.

search for variations of patterns ranging from clustersrte | neous matrix pattern. Third, the external relationshig=eap to
structures. The rst three communities (steps 2-4) arecsete  be consistent between different communities. Fourth, feigu
from the initial spectral dimensions. We also switch to othe shows three large positive eigenvalues for the three commu-
spectral dimensions for additional communities. The nextf nities with positive-dominant internal relationships atvab
communities (steps 5-8) are selected from different s@wep.  negative eigenvalues for the two communities with negative
To search for these communities, we need to Iter the pasterndominant internal relationships. Fifth, the sizes of mashe
in the spectral space; otherwise the patterns are hiddeng@amomunities are comparable to each other.
large community structures. Note that the spectral spames f . .
these steps only show the patterns of the nodes remaining jn 10 €XPlore the external relationships, we have observed
the blue groups. These new communities are communities wit e connections between two groups. The rst group 1S the
smaller sizes (steps 5-7) or loosely connected communitie%ommu.n't'es. with red and brown nodes. We can adjust the
(step 8). !ock wsuahzatlon options to enlarge ;hese communities a
different detail levels. As Figure 7 (middle) shows, among
We can also adjust the hierarchical level of the topologythe rst group, there are both positive and negative exter-
visualization by searching for sub-communities or grogpin nal relationships. The matrix view shows positive-dominan
small communities with similar and related connections. Fo external edges. This group mixes tkeblock and k-partite
each identi ed community, we can select the community andstructures. The second group is the communities with the
check the spectral patterns from different dimensions suen orange, green, and red nodes. As Figure 7 (right) shows, All
that there are no sub-communities. The steps 5-8 can bediewghe connections between the communities with the orange
as searching for sub-communities of the blue block in stefand red nodes are through the green community. While the
4. From the result of step 8, we have observed that the tweize of green community is small (only 5 nodes), the role of
communities with red and purple nodes are similar, sincg thethis community is special in the network for connecting two
are both densely-connected negative-dominant blocksteeyd t densely connectek-block communities.
both connect to the community with brown nodes with positive
relationships. Step 9 shows the result of grouping these two VI. DISCUSSIONS
communities.
We identify step 9 reaches the right topology structure for A. Design of Block-Organized Visualization
several reasons. First, the block-organized visualimatiith Compared to the hybrid design approaches between node-
only internal edges in Figure 7 (left) shows a nlcely orderedink diagrams and matrix representauons [3]-[5], [14]5]1
matrix visualization. Second, each community is shown as $23], block-organized visualization is different by emplzng
positive-dominant or negative-dominant block with a hoeog the simultaneous visualization of three representatidltte



Fig. 7. A set of block-organized visualization for summarigthe Correlates of War dataset from 1993 to 2001. (Left) Tétevark manifests seven communities
with a noticeable block pattern (Western, Latin Americajrth@chor community, Islamic, African, Asia and the former Sowi@ion, and countries with only
loose connections), which matches the con guration degiaieghe Clash of Civilization [17]. (Middle) Multi-level wualization enlarged two communities (Latin
America and Asia) and highlighted their positive externahreections. (Right) The community with nodes in green (USA, CAd4iti, Dominican Republic,
Argentina) is the anchor of the orange (Western) and red coriti@sifLatin America), as all the links between orange andaeamunities are through the
green nodes.

that the layout algorithms for these approaches are very difwith up to 1222 nodes and 33428 edges. As we only use
ferent, as matrix visualization is achieved by matrix-tesing  the spectral dimensions with the largest absolute eigeasal
algorithms and node-link diagram can be generated by a nunwherek = o(N), the spectral decomposition is very ef cient
ber of techniques, such as force-directed algorithms. Bloc for large sparse matrices as many social networks [1].
organized visualization arranges the nodes in the node-lin
diagram and rectangles in the matrix visualization coasidy,
which is shown to be effective on taking advantages of al
representations and is ef cient as operations includinghbo
user interaction and network visualization are controltad
the same block structure.

The complexity of the rendering pipeline &N)+ O(E)
@s follows. The block organization only traverses nodespnc
therefore the complexity i©(N). The generation of network
layout for each block of siza is O(k n), therefore the total
complexity is O(N). The generation of the curved edges is
linear to the number of edges @E). This is a nice feature
The block-organized visualization is different from adja- as having a real-time interactive visualization processisial
cency matrix, as the number of blocks or communities is ofteno visual exploration.
signi cantly smaller than the number of nodes in a network.
Therefore, the main drawback of adjacency matrix for notC Interactive Exoloration of Complex Networks
being intuitive for identifying connections is not an issioe ' P P

block-organized visualization. It worths to mention that spectral analysis studies the most
The co-organized node-link diagram preserves the direchigni cant data features in the spectral space. Many spkctr

connections for edges and separates the internal and akter@nalysis approaches are designed for balanced networks, in

connections. The internal connections can be observed b\%hich the sizes of communities are comparable to each other.

combining the matrix and node-link diagrams, and the esiern N Such cases, small communities are often treated as sub-

connections can be observed with the curved edges in tHyoups of '?fge communities. Wg_should b(_a aware that the
multi-level visualization. We avoid the hair ball of node- order and dimensions of communities found in the study need

link diagram by organizing nodes in blocks and using block® Pe combined with prior knowledge of community sizes for
structures to achieve multi-level visualization. generating the correct hierarchical topology structures.

The block-organized visualization and spectral spacecexpl . Finding the number of communitidshas been a challeng-
ration work together well. The block-organized visualiaat N9 problem for spectral analysis. For networks similartte t
takes the interaction with spectral dimensions efciently WO example signed networks, our spectral analysis framewo
linear performance as shown in the performance section. TH&2S provided a clear mechanism to identify them. For complex
network layout is based on our spectral analysis frameworR€WOrks, such as networks with both derkspartite andk-

and the visualization provides an interaction mechanism foPlOCK structures, the numbers of outstanding eigenvalues a
exploring effects of individual eigenvectors. not always the same ds Users need to be aware of the

variations of spectral patterns, ranging from clustersine |
structures, can all suggest separate communities. For such
cases, user may need to divide the nodes in the spectral
The spectral decomposition is performed with QR al-space gradually with any “similar” spectral patterns dgrihe
gorithm by a reduction to Hessenberg form [26], which isinteractive exploration process. We also need to combihe al
O(N?) with N as the number of nodes in the network. In ourinvolved visualizations, spectral patterns, matrix pate and
experiment, this step only takes160:2 second for networks node-link diagram, to determine if a community needs to be

B. Computation Complexity



further divided and if we have found the righfor a sucecssful
exploration result.

(23]

VI [14]
This paper presents a study of signed networks from both
spectral analysis and visualization aspects. On the s;bectr[l‘r’]
analysis aspect, we have demonstrated the quasi-orthibgona
relat_ionships of spectral decomp_ositi(_)n and topologycstimes [16]
of signed networks. On the visualization aspect, we have

presented a block-organized approach for visualizing igéne
signed networks through a consistent interactive explorat [17]
mechanism.

CONCLUSIONS ANDFUTURE WORK

18

The impacts of negative edges should be further studie<[j ]

to visualize different types of conict relationships. Weea |19
also interested in open-box approaches to utilize the quasi
orthogonal spectral patterns in selected sub-spaces foe mo

intuitive visual exploration.

[20]
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