
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-1

Distributed Shared Memory

Chapter 9

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-2

Distributed Shared Memory

Making the main memory of a cluster of computers look as though it

is a single memory with a single address space.

Then can use shared memory programming techniques.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-3

Processor

Interconnection
network

Computers

Messages

DSM System

Still need messages or mechanisms to get data to processor, but

these are hidden from the programmer:

Shared memory

Memory

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-4

Advantages of DSM

• System scalable

• Hides the message passing - do not explicitly specific sending

messages between processes

• Can us simple extensions to sequential programming

• Can handle complex and large data bases without replication

or sending the data to processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-5

Disadvantages of DSM

• May incur a performance penalty

• Must provide for protection against simultaneous access to

shared data (locks, etc.)

• Little programmer control over actual messages being

generated

• Performance of irregular problems in particular may be difficult

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-6

Methods of Achieving DSM

• Hardware

Special network interfaces and cache coherence circuits

• Software

Modifying the OS kernel

Adding a software layer between the operating system and

the application - most convenient way for teaching

purposes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-7

Software DSM Implementation

• Page based - Using the system’s virtual memory

• Shared variable approach- Using routines to access

shared variables

• Object based- Shared data within collection of objects.

Access to shared data through object oriented discipline

(ideally)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-8

Sofware Page Based DSM Implementation

Memory

Virtual memory

Processors

Page
fault

page table

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-9

Some Software DSM Systems

• Treadmarks

Page based DSM system

Apparently not now available

• JIAJIA

C based

Obtained at UNC-Charlotte but required significant

modifications for our system (in message-passing calls)

• Adsmith object based

C++ library routines

We have this installed on our cluster - chosen for teaching

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-10

Consistency Models

• Strict Consistency - Processors sees most recent update,
i.e. read returns the most recent wrote to location.

• Sequential Consistency - Result of any execution same as
an interleaving of individual programs.

• Relaxed Consistency- Delay making write visible to reduce
messages.

• Weak consistency - programmer must use synchronization
operations to enforce sequential consistency when
necessary.

• Release Consistency - programmer must use specific
synchronization operators, acquire and release.

• Lazy Release Consistency - update only done at time of
acquire.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-11

Strict Consistency

Every write immediately visible

Disadvantages: number of messages, latency, maybe unnecessary.

Process A Process B

write(x)

write(y)

read(x)

read(y)

Process C

Inform other
processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-12

Consistency Models used on DSM Systems

Release Consistency

An extension of weak consistency in which the synchronization
operations have been specified:

• acquire operation - used before a shared variable or variables
are to be read.

• release operation - used after the shared variable or variables
have been altered (written) and allows another process to
access to the variable(s)

Typically acquire is done with a lock operation and release by an
unlock operation (although not necessarily).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-13

Release Consistency

Process A Process B

acquire(lock1)

acquire(lock1)

write(x)
write(y)

release(lock1)

read(x)
read(y)

release(lock1)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-14

Lazy Release Consistency

Advantages: Fewer messages

Process A Process B

acquire(lock1)

acquire(lock1)

write(x)
write(y)

release(lock1)

read(x)
read(y)

release(lock1)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-15

Adsmith

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-16

Adsmith

• User-level libraries that create distributed shared memory

system on a cluster.

• Object based DSM - memory seen as a collection of

objects that can be shared among processes on different

processors.

• Written in C++

• Built on top of pvm

• Freely available - installed on UNCC cluster

User writes application programs in C or C++ and calls Adsmith

routines for creation of shared data and control of its access.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-17

Adsmith Routines

These notes are based upon material in Adsmith User Interface

document.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-18

Initialization/Termination

Explicit initialization/termination of Adsmith not necessary.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-19

Process Creation

To start a new process or processes:

adsm_spawn(filename, count)

Example

adsm_spawn(“prog1”,10);

starts 10 copies of prog1 (10 processes). Must use Adsmith routine

to start a new process. Also version of adsm_spawn() with similar

parameters to pvm_spawn().

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-20

Process “join”

adsmith_wait();

will cause the process to wait for all its child processes (processes it

created) to terminate.

Versions available to wait for specific processes to terminate, using

pvm tid to identify processes. Then would need to use the pvm form

of adsmith() that returns the tids of child processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-21

Access to shared data (objects)

Adsmith uses “release consistency.” Programmer explicitly needs to

control competing read/write access from different processes.

Three types of access in Adsmith, differentiated by the use of the

shared data:

• Ordinary Accesses - For regular assignment statements
accessing shared variables.

• Synchronization Accesses - Competing accesses used for
synchronization purposes.

• Non-Synchronization Accesses - Competing accesses, not
used for synchronization.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-22

Ordinary Accesses - Basic read/write actions

Before read, do:

adsm_refresh()

to get most recent value - an “acquire/load.” After write, do:

adsm_flush()

to store result - “store”
Example

int *x; //shared variable
 .
 .
adsm_refresh(x);
a = *x + b;

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-23

Synchronization accesses

To control competing accesses:

• Semaphores

• Mutex’s (Mutual exclusion variables)

• Barriers.

available. All require an identifier to be specified as all three class

instances are shared between processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-24

Semaphore routines

Four routines:

wait()
signal()
set()
get().

class AdsmSemaphore {
public:

AdsmSemaphore(char *identifier, int init = 1);
void wait();
void signal();
void set(int value);
void get();

};

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-25

Mutual exclusion variables - Mutex

Two routines

lock
unlock()

class AdsmMutex {
public:

AdsmMutex(char *identifier);
void lock();
void unlock();

};

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-26

Example

int *sum;
AdsmMutex x(“mutex”);
x.lock();

adsm_refresh(sum);
*sum += partial_sum;
adsm_flush(sum);

x.unlock();

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-27

Barrier Routines

One barrier routine

barrier()

class AdsmBarrier {
public:

AdsmBarrier(char *identifier);
void barrier(int count);

};

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-28

Example

AdsmBarrier barrier1(“sample”);
.
.

barrier1.barrier(procno);
.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-29

Non-synchronization Accesses

For competing accesses that are not for synchronization:

adsm_refresh_now(void *ptr);

and

adsm_flush_now(void *ptr);

refresh and flush take place on home location (rather than locally)

and immediately.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-30

Features to Improve Performance

Routines that can be used to overlap messages or reduce number

of messages:

• Prefetch

• Bulk Transfer

• Combined routines for critical sections

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-31

Prefetch

adsm_prefetch(void *ptr)

used before adsm_refresh() to get data as early as possible.

Non-blocking so that can continue with other work prior to issuing

refresh.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-32

Bulk Transfer

Combines consecutive messages to reduce number. Can apply
only to “aggregating”:

adsm_malloc(AdsmBulkType *type);
adsm_prefetch(AdsmBulkType *type)
adsm_refresh(AdsmBulkType *type)
adsm_flush(AdsmBulkType *type)

where AdsmBulkType is defined as:

enum AdsmBulkType {
adsmBulkBegin,
AdsmBulkEnd

}

Use parameters AdsmBulkBegin and AdsmBulkEnd in pairs to
“aggregate” actions.
Easy to add afterwards to improve performance.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-33

Example

adsm_refresh(AdsmBulkBegin);
adsm_refresh(x);
adsm_refresh(y);
adsm_refresh(z);

adsm_refresh(AdsmBulkEnd);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-34

Routines to improve performance of critical
sections

Called “Atomic Accesses” in Adsmith.

adsm_atomic_begin()
adsm_atomic_end()

Replaces two routines and reduces number of messages.

Acquire
Refresh
local code
Flush
Release

adsm_atomic_begin()

adsm_atomic_end()

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-35

Sending an expression to be executed on home
process

Can reduce number of messages. Called “Active Access” in
Adsmith. Achieved with:

adsm_atomic(void *ptr, char *expression);

where the expression is written as [type] expression.

Object pointed by ptr is the only variable allowed in the expression
(and indicated in this expression with the symbol @).

Example

int *x = (int*)adsm_malloc)”x”,sizeofint(int));
adsm_atomic(x,”[int] @=@+10”);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-36

Collect Access

Efficient routines for shared objects used as an accumulator:

void adsm_collect_begin(void *ptr, int num);
void adsm_collect_end(void *ptr);

where num is the number of processes involved in the access, and
*ptr points to the shared accumulator

Example
(from page 10 of Adsmith User Interface document):

int partial_sum = ... ; // calculate the partial sum
adsm_collect_begin(sum,nproc);
sum+=partial_sum; //add partial sum
adsm_collect_end(sum); //total; sum is returned

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-37

Other Features

Pointers

Can be shared but need to use adsmith address translation routines
to convert local address to a globally recognizable address and
back to an local address:

To translates local address to global address (an int)

int adsm_gid(void *ptr);

To translates global address back to local address for use by
requesting process

void *adsm_attach(int gid);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-38

Message passing

Can use PVM routines in same program but must use

adsm_spawn() to create processes (not pvm_spawn(). Message

tags MAXINT-6 to MAXINT used by Adsmith.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-39

Information Retrieval Routines

For getting host ids (zero to number of hosts -1) or process id (zero
to number of processes -1):

int adsm_hostno(int procno = -1);
- Returns host id where process specified by process number
procno resides. (If procno not specified, returns host id of calling
process).

int adsm_procno();
- Returns process id of calling process.

int adsm_procno2tid(int procno);
- Translates process id to corresponding PVM task id.

int adsm_tid2procno(int tid)
translates PVM task id to corresponding process id.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-40

DSM Implementation Projects

Using underlying message-passing software

• Easy to do

• Can sit on top of message-passing software such as MPI.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-41

Issues in Implementing a DSM System

• Managing shared data - reader/writer policies

• Timing issues - relaxing read/write orders

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-42

Reader/Writer Policies

• Single reader/single writer policy - simple to do with

centralized servers

• Multiple reader/single writer policy - again quite simple

to do

• Multiple reader/multiple writer policy - tricky

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-43

Simple DSM system using a centralized server

Centralized server

read(x)

(shared) int x;

(local) int x;(local) int x;

write(x, x’);

return

acknowledge

update x to x’

write completed

value of x

Request current
value of x

current

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-44

Simple DSM system using multiple servers

Servers

read(x)

(shared) int x;

(local) int y;(local) int x;

write(y, y’);

return

acknowledge

update y to y’

write completed

value of x

Request current
value of x

(shared) int y;

Process Process
current

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-45

Simple DSM system using multiple servers and
multiple reader policy

Servers

read(x)

(shared) int x;

(local) int x;(local) int x;

write(x, x’);

return

acknowledge

update x to x’

write completed

value of x

Request current
value of x

(shared) int y;

Process Process

invalidate x
message

if local copy invalid

current

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-46

Shared Data with Overlapping Regions
A New Concept Developed at UNC-Charlotte

Based upon earlier work on so-called over-lapping connectivity

interconnection networks

A large family of scalable interconnection networks devised - all

have characteristic of overlapping domains that nodes can

interconnect

Many applications require communication to logically nearby

processors

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-47

Overlapping Regions

Sphere of influence

Pi

Processor/computer

Example

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-48

Symmetrical Multiprocessor System with
Overlapping Data Regions

Memory

Processors

Memory

Processors

Communication Switch

Data region

Memory

Processors

Memory

Processors

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-49

Static and Dynamic Overlapping Groups

• Static - defined prior to program execution - add

routines for declaring and specifying these groups

• Dynamic - shared variable migration during program

execution

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-50

Shared Variable Migration between Data Regions

Servers

Processes

Migrate shared variables according to a usage algorithm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides9-51

DSM Projects

• Write a DSM system in C++ using MPI for the
underlying message-passing and process
communication.

• Write a DSM system in Java using MPI for the
underlying message-passing and process
communication.

• (More advanced) One of the fundamental
disadvantages of software DSM system is the lack of
control over the underlying message passing. Provide
parameters in a DSM routine to be able to control the
message-passing. Write routines that allow
communication and computation to be overlapped.

