
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-1

Partitioning
and Divide-and-Conquer Strategies

Partitioning

Partitioning simply divides the problem into parts.

Divide and Conquer

Characterized by dividing problem into subproblems of same form
as larger problem. Further divisions into still smaller sub-problems,
usually done by recursion.

Recursive divide and conquer amenable to parallelization because
separate processes can be used for divided parts.
Also usually data is naturally localized.

Chapter 4

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-2

Partitioning/Divide and Conquer Examples

Many possibilities.

• Operations on sequences of number such as simply adding
them together

• Several sorting algorithms can often be partitioned or
constructed in a recursive fashion

• Numerical integration

• N-body problem

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-3

Partitioning a sequence of numbers into parts and
adding the parts

Sum

x0 … x(n/p)-1 xn/p … x(2n/p)-1 x(p-1)n/p … xn-1…

Partial sums

+ +

+

+

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-4

Tree construction

Initial problem

Divide
problem

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-5

Dividing a list into parts

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0 P2 P4 P6

P4

Original list

x0 xn-1

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-6

Partial summation

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0 P2 P4 P6

P4

Final sum

x0 xn-1

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-7

Quadtree

Root

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-8

Image area

First division

Second division

into four parts

Dividing an image

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-9

Unsorted numbers

Sorted numbers

Buckets

Bucket sort

Sort
contents
of buckets

Merge lists

One “bucket” assigned to hold numbers that fall within each region.
Numbers in each bucket sorted using a sequential sorting algorithm.

Sequental sorting time complexity: O(n log(n/m).
Works well if the original numbers uniformly distributed across a
known interval, say 0 to a − 1.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-10

Unsorted numbers

Sort

Parallel version of bucket sort
Simple approach

Assign one processor for each bucket.

Buckets

contents
of buckets

Merge lists

p processors

Sorted numbers

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-11

Further Parallelization

Partition sequence into m regions, one region for each processor.

Each processor maintains p “small” buckets and separates the

numbers in its region into its own small buckets.

Small buckets then emptied into p final buckets for sorting, which

requires each processor to send one small bucket to each of the

other processors (bucket i to processor i).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-12

Unsorted numbers

Sort

Large

Another parallel version of bucket sort

Small
buckets

Empty
small
buckets

buckets

contents
of buckets

Merge lists

p processors

n/m numbers

Sorted numbers

Introduces new message-passing operation - all-to-all broadcast.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-13

Send Receive

Send

Process 1 Process p−1

Process 0 Process p − 1

Process 0 Process p −2

0 p−1 0 p−1 0 p−1 0 p−1

buffer buffer

buffer

“all-to-all” broadcast routine
Sends data from each process to every other process

See also
next slide

Corresponds to
set of small buckets

Corresponds to one
big bucket

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-14

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A3,0 A3,1 A3,2 A3,3

A2,0 A2,1 A2,2 A2,3

A0,0 A1,0 A2,0 A3,0

A0,1 A1,1 A2,1 A3,1

A0,3 A1,3 A2,3 A3,3

A0,2 A1,2 A2,2 A3,2

P0

P1

P2

P3

“All-to-all”

Effect of “all-to-all” on an array

 “all-to-all” routine actually transfers rows of an array to columns:

Tranposes a matrix.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-15

f(q)f(p)

δ

f(x)

xp qa b

Numerical integration using rectangles.

Each region calculated using an approximation given by rectangles:

Aligning the rectangles:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-16

Numerical integration using trapezoidal method

f(q)f(p)

δ

f(x)

xp qa b

May not be better!

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-17

A B

C
f(x)

Adaptive Quadrature

Solution adapts to shape of curve. Use three areas, A, B, and C.

Computation terminated when largest of A and B sufficiently close

to sum of remain two areas .

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-18

Adaptive quadrature with false termination.

f(x)

x

A B

C = 0

Some care might be needed in choosing when to terminate.

Might cause us to terminate early, as two large regions are the

same (i.e., C = 0).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-19

Simple program to compute π

Using C++ MPI routines

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-20

/**
pi_calc.cpp calculates value of pi and compares with actual value (to 25
digits) of pi to give error. Integrates function f(x)=4/(1+x^2).
July 6, 2001 K. Spry CSCI3145
**/
#include <math.h> //include files
#include <iostream.h>
#include "mpi.h"
void printit(); //function prototypes
int main(int argc, char *argv[])
{
double actual_pi = 3.141592653589793238462643; //for comparison later
int n, rank, num_proc, i;
double temp_pi, calc_pi, int_size, part_sum, x;
char response = 'y', resp1 = 'y';
MPI::Init(argc, argv); //initiate MPI
num_proc = MPI::COMM_WORLD.Get_size();
rank = MPI::COMM_WORLD.Get_rank();
if (rank == 0) printit(); /* I am root node, print out welcome */
while (response == 'y') {
if (resp1 == 'y') {
if (rank == 0) { /*I am root node*/
cout <<"__" <<endl;
cout <<"\nEnter the number of intervals: (0 will exit)" << endl;
cin >> n;

}
} else n = 0;

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-21

MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0); //broadcast n
if (n==0) break; //check for quit condition
else {
int_size = 1.0 / (double) n;//calcs interval size
part_sum = 0.0;
for (i = rank + 1; i <= n; i += num_proc) { //calcs partial sums
x = int_size * ((double)i - 0.5);
part_sum += (4.0 / (1.0 + x*x));

}
temp_pi = int_size * part_sum;

 //collects all partial sums computes pi
MPI::COMM_WORLD.Reduce(&temp_pi,&calc_pi, 1, MPI::DOUBLE, MPI::SUM, 0);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-22

if (rank == 0) { /*I am server*/
cout << "pi is approximately " << calc_pi
<< ". Error is " << fabs(calc_pi - actual_pi)
<< endl
<<"__"
<< endl;

}
} //end else
if (rank == 0) { /*I am root node*/
cout << "\nCompute with new intervals? (y/n)" << endl; cin >> resp1;

}
}//end while
MPI::Finalize(); //terminate MPI
return 0;
} //end main

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-23

//functions
void printit()
{
cout << "\n*********************************" << endl

 << "Welcome to the pi calculator!" << endl
 << "Programmer: K. Spry" << endl
 << "You set the number of divisions \nfor estimating the integral:
\n\tf(x)=4/(1+x^2)"
 << endl
 << "*********************************" << endl;
}//end printit

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-24

Gravitational N-Body Problem

Finding positions and movements of bodies in space subject to

gravitational forces from other bodies, using Newtonian laws of

physics.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-25

Gravitational N-Body Problem Equations

Gravitational force between two bodies of masses ma and mb is:

G is the gravitational constant and r the distance between the

bodies. Subject to forces, body accelerates according to Newton’s

2nd law:

F = ma

m is mass of the body, F is force it experiences, and a the resultant

acceleration.

F
Gmamb

r
2

--------------------=

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-26

Details
Let the time interval be ∆t. For a body of mass m, the force is:

New velocity is:

where vt+1 is the velocity at time t + 1 and vt is the velocity at time t.

Over time interval ∆t, position changes by

where xt is its position at time t.

Once bodies move to new positions, forces change. Computation
has to be repeated.

F m v
t 1+

v
t

–()
∆t

----------------------------------=

v
t 1+

v
t F∆t

m---------+=

x
t 1+

x
t

– v∆t=

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-27

Sequential Code

Overall gravitational N-body computation can be described by:

for (t = 0; t < tmax; t++) /* for each time period */
for (i = 0; i < N; i++) { /* for each body */
F = Force_routine(i); /* compute force on ith body */
v[i]new = v[i] + F * dt / m; /* compute new velocity */
x[i]new = x[i] + v[i]new * dt; /* and new position */

}
for (i = 0; i < nmax; i++) { /* for each body */
x[i] = x[i]new; /* update velocity & position*/
v[i] = v[i]new;

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-28

Parallel Code

The sequential algorithm is an O(N2) algorithm (for one iteration) as

each of the N bodies is influenced by each of the other N − 1 bodies.

Not feasible to use this direct algorithm for most interesting N-body

problems where N is very large.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-29

Distant cluster of bodies
r

Center of mass

Time complexity can be reduced using observation that a cluster of

distant bodies can be approximated as a single distant body of the

total mass of the cluster sited at the center of mass of the cluster:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-30

Barnes-Hut Algorithm

Start with whole space in which one cube contains the bodies (or

particles).

• First, this cube is divided into eight subcubes.

• If a subcube contains no particles, the subcube is deleted

from further consideration.

• If a subcube contains one body, this subcube retained

• If a subcube contains more than one body, it is recursively

divided until every subcube contains one body.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-31

Creates an octtree - a tree with up to eight edges from each node.

The leaves represent cells each containing one body.

After the tree has been constructed, the total mass and center of

mass of the subcube is stored at each node.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-32

Force on each body obtained by traversing tree starting at root,

stopping at a node when the clustering approximation can be used,

e.g. when:

where θ is a constant typically 1.0 or less.

Constructing tree requires a time of O(n logn), and so does

computing all the forces, so that the overall time complexity of the

method is O(n logn).

r d
θ---

≥

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-33

Subdivision
direction

Recursive division of two-dimensional space

Partial quadtreeParticles

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-34

Orthogonal Recursive Bisection
(For 2-dimensional area) First, a vertical line found that divides
area into two areas each with equal number of bodies. For each
area, a horizontal line found that divides it into two areas each with
equal number of bodies. Repeated as required.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-35

Astrophysical N-body simulation by Scott Linssen (under-
graduate UNCC student, 1997) using O(N2) algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 2004 Pearson Education Inc. All rights reserved.

slides4-36

Astrophysical N-body simulation by David Messager (UNCC
student 1998) using Barnes-Hut algorithm.

