
Ravi Kiran Karanam
Research Assistant
Department of Electrical and Computer Engineering
University of North Carolina at Charlotte
rkkarana@uncc.edu

Arun Ravindran
Assistant Professor
Department of Electrical and Computer Engineering
University of North Carolina at Charlotte
aravindr@uncc.edu

Arindam Mukherjee
Assistant Professor
Department of Electrical and Computer Engineering
University of North Carolina at Charlotte
amukherj@uncc.edu

Cynthia Gibas
Associate Professor
Department of Computer Science
University of North Carolina at Charlotte
cgibas@uncc.edu

Anthony Barry Wilkinson
Professor
Department of Computer Science
University of North Carolina at Charlotte
abw@uncc.edu

80 Xcell Journal Third Quarter 2006

Using FPGA-Based Hybrid Computers
for Bioinformatics Applications
Using FPGA-Based Hybrid Computers
for Bioinformatics Applications
Seamless integration of FPGAs into grid computing infrastructures
is key to the adoption of FPGAs by bioinformaticians.
Seamless integration of FPGAs into grid computing infrastructures
is key to the adoption of FPGAs by bioinformaticians.

Copyright © 2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

The past decade has witnessed an explosive
growth of data from fields in the biology
domain, including genome sequencing and
expression projects, proteomics, protein
structure determination, and cellular regu-
latory mechanisms, as well as biomedical
specialties that focus on the digitization and
integration of patient information, test, and
image records. Bioinformatics refers to the
storage, analysis, and simulation of biologi-
cal information and the prediction of exper-
imental outcomes.

To address the computing and data man-
agement needs in bioinformatics, the tradi-
tional approach has been to use clusters of
low-cost workstations capable of delivering
gigaflops of computing power. However,
microprocessors have general-purpose com-
puting architectures, and are not necessarily
well suited to deliver the teraflops of high-
performance capability required for compute
or data-intensive applications. The recent
availability of off-the-shelf high-performance
FPGAs – such as Xilinx® Virtex™-II Pro
devices with on-board high capacity memo-
ry banks – has changed the computing para-
digm by enabling high-speed processing and
high-bandwidth memory access.

Nallatech offers multi-FPGA comput-
ing cards containing between one and
seven Virtex FPGAs per card. Several such
cards are plugged into the PCI slots of a
desktop workstation and networked using
Nallatech’s DIMEtalk networking software,
greatly increasing the available computing
capability. This is our concept of a hybrid
computing platform. The hybrid platform
comprises several workstations in a cluster
that you can integrate with Nallatech
multi-FPGA cards to construct a high-per-
formance computing system.

Grid Computing
Grid computing is a form of distributed
computing that employs geographically
distributed and interconnected computing
sites for high-performance computing and
resource sharing. It promotes the establish-
ment of so-called virtual organizations –
teams of people from different organiza-
tions working together on a common goal,
sharing computing resources and possibly
experiment equipment.

devices), the BenBlue-II can provide
more than 200,000 logic cells on a
single module.

• Multi-FPGA management – DIMEtalk
To manage the large silicon resource
pool provided by the hardware, the
Nallatech DIMEtalk tool accelerates
the design flow for creating a reconfig-
urable data network by providing a
communications channel between
FPGAs and the host user environment.

• FUSE Tcl/Tk control and C++ APIs
Nallatech’s FUSE is a reconfigurable
operating system that allows flexible
and scalable control of the FPGA net-
work directly from applications using
the C++ development API, which is
complemented by a Tcl/Tk toolset for
scripting base control.

DNA Microarray Design – A Case Study
Our goal was to accelerate the Smith-
Waterman implementation in the
EMBOSS suite of publicly available bioin-
formatics code. The Smith-Waterman algo-
rithm is widely used to screen gene
databases for sequence similarity, with
many different applications in bioinfor-
matics research. Smith-Waterman is specif-
ically used in situations where faster
heuristic methods fail to detect some
potentially meaningful sequence hits.

Dr. Cynthia Gibas of the Bioinformatics
Center at UNC Charlotte currently uses
water.c, the Smith-Waterman implementa-
tion in the open-source EMBOSS software,
as a part of a DNA microarray design work
flow. The biology goal is to select the opti-
mal probe sequences to be printed on a
DNA microarray, which will then be used in
the lab to detect individual gene transcripts
in a target mixture with high specificity.

Hardware/Software Partitioning
The EMBOSS implementation of the
Smith-Waterman (water.c) is an extensive
C program comprising more than 400
functions. A partitioning strategy is
required to identify the functions that need
to be implemented on the FPGA and those
that remain in software (and run on the
processor). The partition is done by profil-

In recent years, grid computing has
become increasingly popular for tackling
difficult bioinformatics problems. The rise
of “bio-grids” (such as the NIH Cancer
Biomedical Informatics Grid and Swiss
Biogrid) is driven by the increasingly
enormous datasets and computational
complexity of the algorithms involved.
Computational grids allow researchers to
develop a bioinformatics workflow locally
and then use the grid to identify and exe-
cute tasks seamlessly across diverse com-
puting platforms.

To integrate the computing power of
FPGA-based hybrid computing platforms
with the existing computing infrastructure
used by the bioinformatics community, we
have grid-enabled the hybrid platform
using the open-source Globus Toolkit.
Thus, the hybrid platform and the associat-
ed software are available as a grid resource
so that bioinformatics applications can be
run over the grid. The hybrid platform par-
titions the tasks to be run on processors and
FPGAs and uses application program inter-
faces (APIs) to transfer data to and from the
FPGAs for accelerated computation.
Bioinformaticians can now take advantage
of the computing power of our FPGA
hybrid computing platform in a transpar-
ent fashion.

Hybrid Computing Platform
The different FPGA related components in
the hybrid platform are:

• High-capacity motherboard – BenNUEY
The Nallatech BenNUEY mother-
board features a Xilinx Virtex-II Pro
FPGA and module sites for as many
as six additional FPGAs. The
PCI/control and low-level drivers
abstract the PCI interfacing, resulting
in a simplified design process for
designs/applications.

• Virtex-II expansion module – BenBlue-II
The Nallatech BenBlue-II DIME-II
module provides a substantial logic
resource ideal for implementing appli-
cations that have a large number of
processing elements. Through support
for as many as two on-board Xilinx
Virtex-II Pro FPGAs (XC2VP100

Third Quarter 2006 Xcell Journal 81

ing the execution characteristics of the
code. First, the legacy C code in the water.c
file is profiled using the Linux gprof tool.
Profiling tells us where a given code spends
time during execution, as well as different
functional dependencies.

Table 1 shows the results of profiling in
terms of the execution times of the top five
functions executed by the code, listed in
decreasing order of execution time. Note
that one function, embAlignPathCalcSW,
accounts for 83% of the total amount of
program execution time. The
embAlignPathCalcSW function uses the
Smith-Waterman-based local alignment
algorithm to create a “path matrix” con-
taining local alignment scores of compar-
ing probe and database sequences at
different matrix locations, and a compass
variable to show which partial result is used
to compute the score at a certain location.

Once the code profiling is done, the com-
putationally intense embAlignPathCalcSW
call is mapped to the FPGA network using
VHDL, while the rest of the code is run on
the processor. Calls to the computationally
intense embAlignPathCalcSW function in
the C code of the water.c file are then
replaced with corresponding application
program interface (API) calls to the FPGA
network. These APIs transfer data between
the FPGA network and the processor, such
that the calculation of the scores in the
path matrix is done inside the FPGA net-
work. All other parts of the code, including
backtracking, are executed on the processor

in software. A flow diagram of these steps is
shown in Figure 1.

Hardware Implementation
When comparing a target sequence (T)
from a database with a probe sequence (P),
the scores and the compass values of the
path matrix in the embAlignPathCalcSW
function are calculated using a systolic
array of basic processing elements (PEs).

Figure 2 shows the systolic array imple-
mentation of the path matrix algorithm for
Smith-Waterman with three PEs. Each PE
passes the score and compass values it cal-
culates to the successive PE, which in turn
uses these values to calculate its path and
compass values. At each clock cycle the
path and the compass values are stored in
the block RAM. At the end of the compu-
tation, each block RAM has the correspon-
ding row of the path matrix stored in it.

The output of the computationally inten-
sive function involves huge amounts of data
transfer (the order of probe length times the
target length). As a result, the improvements
achieved in computing performance are
compromised by communication latency. To
decrease communication latency, two addi-
tional functions (embAlignScoreCalcSW
and embAlignWalkSWMatrix) were moved
to the FPGA from software. These functions
do the backtracking and calculate the score
and alignment sequence for the given probe
and target. The functions operate on the path
matrix and calculate the maximum path
value. Then, starting at the location of the
maximum path value, the functions back-

82 Xcell Journal Third Quarter 2006

Each sample counts as 0.01 seconds.

Percentage Cumulative Self Time Function ms/call ms/call Name of Function
Time Time (sec) (sec) Calls (self) (self)

83.32 178.94 178.94 32768 5.46 5.65 embAlignPathCalcSW

5.12 189.94 11.00 32768 0.34 0.35 embAlignWalkSWMatrix

4.62 199.87 9.93 32768 0.30 0.30 embAlignScoreSWMatrix

2.92 206.13 6.26 2719612928 0.00 0.00 ajSeqCvtK

1.86 210.13 4.00 53936723 0.00 0.00 match

Profile the Smith-Waterman Algorithm (C/C++)

Design the Most Computational Function/FPGA Network (VHDL)

Utilize API to Merge Smith-Waterman Algorithm (C/C++)

Path and Compass

Output

Tristate Buffer
Data IN

Multiplexers
INPUT

Sequence

Block

RAM

Block

RAM

Block

RAM

ADDR

Addr SEL

Addr SEL

Addr SEL

Delay

Delay

Processing Element

Processing Element

Processing Element

ADDR

ADDR

ADDROutput Control

Element

Data IN

Data IN

Figure 2 – Systolic array of three PEs for the path matrix calculation

Figure 1 – Design flow for accelerating water.c on the FPGA-processor hybrid computer

Table 1 – Profiling results of the EMBOSS Smith-Waterman implementation

Third Quarter 2006 Xcell Journal 83

track through the path values in the path
matrix based on the compass values to deter-
mine the best alignment. The output of the
FPGA is now the score and the alignment
sequence, which is only about the size of the
probe sequence, thus greatly reducing com-
munication latency.

Grid-Enabling the Hybrid Computing Platform
The first step to grid-enable our resource was
to install the components of the grid software
utility package called Globus Toolkit 4.0
(GT4). The GT4 is an open-source reference
implementation of key grid protocols. The
toolkit includes software for security, infor-
mation infrastructure, resource manage-
ment, data management, communication,
fault detection, and portability.

The core of GT4, the open grid serv-
ices architecture (OGSA), is an integra-
tion of grid technologies and Web service
technologies. Above the OGSA, the job
submission and control is performed by
the grid resource allocation and manage-
ment (GRAM). GRAM provides a single
interface for requesting and using remote
system resources for the execution of
“jobs.” The Globus security interface
enables the authentication and authoriza-
tion of users and groups in the grid
through the exchange of signed certifi-
cates. Certificates are created and main-
tained by a tool called SimpleCA in GT4.

Installation and Integration with
the UNC-Charlotte VisualGrid
To test our installation in a real grid, we
took advantage of a new grid project called
VisualGrid, a collaborative project between
UNC-Charlotte, UNC-Asheville, and the
Environmental Protection Agency. The
FPGA-based hybrid computing platform is
added as a client to VisualGrid through the
master CA server.

Results
We implemented a prototype acceleration
task comparing a 40-nucleotide probe
sequence with target database sizes of as
many as 1,048,576 targets of an approximate
length of 850 nucleotides both in software
(processor) and an FPGA hybrid computing
platform. The probe sequence and the target

database reside in the main memory of the
host computer (dual Opteron-based Sun
Java W1100z workstation).

For each call to the embAlign-
PathCalcSW, embAlignScoreCalcSW, and
embAlignWalkSWMatrix functions from
water.c, a 32-bit probe and target combina-
tion is sent over the PCI interface to the PCI
FIFO on the Nallatech BenNUEY mother-
board at a rate of 33 MHz. From the PCI
FIFO, the data is transferred to a 32-bit,
512-word-long input FIFO on the Virtex-II

Pro FPGA of the BenNUEY motherboard.
The systolic array reads the data from this
FIFO. The 40-processing-element-deep sys-
tolic array operates at 40 MHz.

After the systolic array completes pro-
cessing on a single string, the output val-
ues from the block RAM are used to
calculate the alignment. The alignment
results are then written back to a different
block RAM. Finally, the host processor
reads the output alignment string from
the block RAM over the PCI interface.

The hybrid computing platform was
accessed through the VisualGrid with jobs
submitted through the UNC-Charlotte
VisualGrid Portal. The EMBOSS water.c
program ran in software on the worksta-
tion and separately on the FPGA-based
hybrid computing platform. Figure 3
shows the comparison between the run

times of the two implementations. For
small databases, the processing times of
the processor and the hybrid computing
platforms are comparable. However, as
databases get larger, the processor com-
puting time rises exponentially, while the
hybrid computing platform shows a linear
increase. For a database size of 1,048,576
strings, the hybrid computing platform is
44 times faster than execution on a
processor. Such large databases are com-
mon in bioinformatics applications.

Conclusion
We have demonstrated the computing
potential of a grid-enabled hybrid com-
puting platform for sequence-matching
applications in bioinformatics. A careful
partitioning of the computing task
between the processor and the FPGAs on
the hybrid platform circumvented the
potential I/O bottleneck associated with
large bioinformatics databases. The abili-
ty to submit jobs over the grids enables
ready integration and use of the hybrid
computing platforms in bioinformatics
grids. We are currently involved in inte-
grating the hybrid computing platform
on the large inter-university SURAGrid
(www.sura.org/SURAgrid).

This research was partly funded by NSF Award
Number 0453916, and by Nallatech Ltd.

0

10000

20000

30000

40000

50000

60000

25
6

51
2

10
24

20
48

40
96

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Strings in Database

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Processor + FPGA
Processor

Figure 3 – Execution time for water.c for different sizes of sequence database
strings running on a processor and a processor + FPGA hybrid system

