
Latency Hiding by Redundant Processing:  A Technique 
for Grid­enabled, Iterative, Synchronous Parallel Programs

Jeremy F. Villalobos
University of North Carolina at Charlote

9201 University City Blvd
Charlotte, NC 28223­0001

(704) 530­7255

jeremyvillalobos@gmail.com

Barry Wilkinson
University of North Carolina at Charlotte

9201 University City Blvd
Charlotte, NC 28223­0001

(704) 687­8381
abw@uncc.edu

ABSTRACT
The increase in interconnected computational resources brought 
about by the Grid creates the possibility to port multiple parallel 
programming techniques to it.   Porting parallel  applications  to 
the Grid could reduce the total computation time, or it could be 
used  to  create  solutions  with  higher  degrees  of  resolution. 
However, the Grid brings with it network state conditions that all 
too  often  work  to  the  detriment  of  expediency  in  parallel 
applications.   This  paper  proposes  an  algorithm  designed  to 
significantly reduce the amount of Wide Area Network (WAN) 
latency experienced  when  running  an  interactive  synchronous 
parallel  program on the Grid.  The algorithm is called Latency 
Hiding by Redundant  Processing (LHRP) and in  tests  done on 
two Grid nodes with emulated latency, it complemented Latency 
Hiding  (LH)  by performing  better  than  LH on  jobs  with  low 
internal computation time and performing worst  than LH when 
the computation time was enough to hide the latency.
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1.  INTRODUCTION
Grid  Computing uses  interconnected  computing resources  in  a 
geographically  distributed  area.   Multiple  projects  such  as 
Globus,  GrADS,  and  Cactus  [1,2,4] have   increased  the 
development of tools that facilitate the creation of grid enabled 
programs.  One aspect that has to be considered is the network 
state  characteristics  that  are  part  of  any  Grid  computing 
organization and the need for new algorithms to deal with this 
medium.   The  Grid  has  inherently  high  latencies  when 
communicating on a Wide Area Network (WAN).  The Grid also 
provides  Grid-enabled  programs  with  a  heterogeneous 
environment for which especial attention has to be paid in order 
to make efficient use of the resources.  

This paper focuses on a technique that can be used to reduce the 
WAN  latency  on  Iterative  Synchronous  Parallel  Programs 
(ISPAs) whose internal compute time is too low to allow normal 
latency hiding  to  work.   It  is  assumed  that  WAN  latency is 
always greater than Local Area Network (LAN) latency.  This is 

a realistic assumption since the computers connected through a 
LAN are closer together than those connected through a WAN.  It 
is  also  assumed  that  the  ISPA  program  only  requires 
synchronization with a relatively small amount of processes in its 
vicinity.   Examples  of these algorithms can be those found on 
NetLogo  [13],  an  application  to  model  complex  systems. 
Another  application that  can serve  as  an  example  is  LeanMD 
[11],  a  molecule  simulation  program.   These  simulations  and 
algorithms  require  only  communication  among  neighboring 
processes, which is one of the main requirements for LHRP to 
work when grid enabling these applications.

2.  PREVIOUS RELATED WORK
The  problem  of  latency  exists  in  many  parallel  computing 
architectures.  It is present in supercomputers with little impact 
to  performance.   It  is  also  present  in  cluster  computers 
(networked  off-the-shelf  computers  with  special  software  to 
perform work in parallel.)  Strumpen [12] applied latency hiding 
to  cluster  computers.   The  Latency  Hiding  (LH)  process  in 
parallel programs consists of managing the computation time and 
the transfer of information over the network such that the idle 
time  on either  resource is  minimal.   The  new trend  has  been 
porting  parallel  applications  to  the  Grid,  which  often  works 
through the  Internet.   This  new platform presents  even higher 
latencies,  but  with  some  new  characteristics  that  previous 
algorithms  were  not  taking  into  consideration.   This  section 
presents similar work that shows that porting parallel application 
to  the  Grid  is  being pursued  by other  organizations,  and  that 
those projects also have devised forms to manage Grid latency.

The  idea  of  porting  parallel  applications  (other  than 
embarrassingly  parallel)  to  the  Grid  can  be  considered 
impractical by some people.  But recently, multiple projects have 
sprung up to provide this capability.  MPICH-G2 provides basic 
tools necessary to run parallel programs on the Globus platform. 
Other projects  include  Charm++  [7]  and  Java-PVM  [6].   El 
Maghraoui  [3]  also  applies  multiple  tools  to  run  parallel 
programs on the grid such as check pointing, load balancing, and 
process migration on a project called Internet Operating System 
(IOS).  The tools, although helpful, are just the beginning steps 
in  order  to  be  able  to  tackle  the  task  of  porting  parallel 
applications.  Dealing with latency is still left to the programmer 
in the case of IOS. Koenig et al. [9] used Charm++ and AMPI in 
conjunction  to  provide  dynamic,  application  independent  load 
balancing and  latency hiding.   The  paper  proposes  the  use  of 
multiple “virtual processes” to manage the latency.  The CPU's in 
the  grid  are  loaded  with  enough virtual  processes  so  that  the 
internal computation exceeds the Grid latency, effectively hiding 
the  latency.  The  method  is  innovative  in  that  it  adapts  MPI 
applications  with  little  recoding.   But  it  only provides  normal 
latency hiding.   It cannot  hide latency if   there  is  not  enough 
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work  to  keep  the  CPU  busy  while  the  information  is  being 
transfered.  Li et al. [10]  propose a peer-to-peer strategy to run 
asynchronous parallel  programs on a  Grid made up of clusters 
and  individual  workstations.   It  is  a  type  of  SETI@HOME 
project,  but  with  general  purpose  asynchronous  scientific 
application.   The  algorithms  covered  by this  approach include 
fluid  dynamics,  aerodynamics,  nuclear  reactor  dynamics  and 
systems  of  equations.   The  system deals  with  the  latency by 
“relaxed  synchronization.”   With  relaxed  synchronization,  the 
processes can continue to compute even if the information from 
the  neighbors  has  not  being updated.   One  side  effect  of this 
approach is that the simulations take more iterations to converge. 
But,  overall  the  technique  is  faster  than  the  synchronized 
approach.  Li  et  al. [10]  however,  does  not  solve  the  latency 
problem for other types of n-stencil problems, such as the game 
of life and other complex adaptive system simulations.   LHRP 
can run both asynchronous and synchronous algorithms.  LHRP 
also hides the latency even if the compute time is less than the 
transfer time.

3.  DISCRETE SOLUTION TO THE HEAT 
DISTRIBUTION PROBLEM
A discrete solution to the heat distribution algorithm was used to 
test LHRP.  The heat distribution algorithm computes iteratively 
the  temperature  distribution  of  a  section  of  a  material.   The 
simplified version consists of a bidimensional square made of the 
same material with some boundary conditions at the edges.  The 
formula to calculate one iteration in this problem is:

hx , y=
hx1, yhx−1, yhx , y1hx , y−1

4

The formula is applied to a matrix h whose values represent the 
temperatures in the material.  The location of that cell is denoted 
by the subscript coordinates x and y.  The basic process is to take 
the average value of the neighbor cells and set this as the new 
value.   The equation is  repeated for a number of iterations or 
until  the  problem converges.   This  problem is  parallelized  by 
partitioning the  data  matrix  into  sections.   This  is  done  by a 
master process.  The slave processes receive the data and iterate 
on it.   The  implementation  of this  solution  reveals  one  more 
obstacle to parallelizing the heat distribution problem.  If each of 
the processes receives exactly the data matrix on which it will be 
computing, it will have to request its neighbor processors for a 
single cell of their data matrix every time they are computing on 
the edge of the data matrix.  Communicating often for only small 
bits of information makes inefficient use of the network and it 
slows down performance even with LAN latency and speed.  The 
solution is to allocate a data  matrix on each processor in such a 
way that the data matrices overlap by a border of some width of 
cells.   In this way, the computation section can be more easily 
separated  from the synchronization section and the  network is 
better used by transferring large chunks of data at a time.  The 
presence of the  cells  from a  neighbor  processor  on the  local 
processor are called ghost points [14].  For the rest of the paper, 
a border of ghost points will be referred as a border.

Implementing the  procedure  just  mentioned  on a LAN cluster 
with MPI is fairly straightforward.  It is also quite efficient.  The 
algorithm's  total  computation  time  can  be  divided  into  two 
sections:  the internal computation time, and the communication 
or transfer time.  The computation time is when the processor is 
working to compute a new state in the data based on the previous 
data.   The communication time is  when the borders  are  being 
exchanged.  Since there is no communication while the internal 

computation is going on, the network is going unused during this 
time.  Then,  when the borders are being exchanged,  the CPUs 
are idle.  Since the LAN latency is significant in comparison to 
the speed of the CPUs.  The conventional approach leaves plenty 
of  room for  improvement.  Strumpen  [12]  solved  this  by first 
computing the border, then starting the transferred of the borders 
in a non-blocking form, and computing the core of the matrices 
while the borders are being transferred.  The last step is to wait 
for  the  acknowledgment  of  the  sent  and  received  messages, 
which is also referred to as the synchronization step.       

Latency hiding  works  fine  when  the  latency is  homogeneous 
throughout  the  network,  or  when  there  is  enough  internal 
compute time to hide the highest latency in the network.   The 
issue with the Grid is that the WAN latency tends to be orders of 
magnitude  higher  than  LAN  latencies.  Although  most  of  the 
communication happens withing the  LAN,  there are points in 
which the CPUs from different Grid nodes have to communicate 
and synchronize.  These points may not constitute the majority of 
the  communication,  but  the  delay  caused  by  these 
communications  slow  down  the  rest  of  the  process  to  WAN 
latency,  independent  of the  system's LAN latencies.   Another 
issue  is  not  having enough internal  compute  time  to  hide  the 
latency.  Having a reduced amount of internal compute time is 
expected  when  porting a  program to  the  Grid.   Since  a  Grid 
usually has  more computer  resources  that  a  LAN cluster,  it  is 
expected  that  a  program would  be  able  to  use  more  of these 
resources.  If the original data set does not change, this means 
that  a  smaller  amount  of work  will  be  assigned  to  the  Grid's 
CPUs  than  it  would  be  to  a  LAN  cluster's  CPU.   LH's 
performance goes down with decreasing internal compute time. 

4.  LATENCY HIDING BY REDUNDANT 
PROCESSING (LHRP)
Latency Hiding by Redundant  Processing(LHRP) addresses  the 
case in which a programmer wants to run an ISPA that does not 
have enough work to keep the processors busy using LH.  It is 
also helpful  to mention that  limited  bandwidth,  100 Mbps  for 
example,  may  increase  the  transfer  time  by  having  to  wait 
additional units of time for the transfer to reach the other side.    

The main contribution of LHRP is to allow most of the internal 
processors of each cluster to continue with the computation while 
the information reaches designated processors.  This is done by 
having redundant copies of some of the data on the clusters on 
each side of the  Grid gap,  which is the point where  two Grid 
nodes  communicate.   The  Grid  gap  goes  over  the  WAN, 
therefore  the  latency  is  much  higher  than  in  inter-cluster 
communications.   LHRP  uses  some  of  the  processors  to 
redundantly compute some part of the data.  The side effect of 
this behavior is having less CPUs devoted to computing the final 
answer.  However, this may not be a problem since there would 
be  more  processors  available  in  a  computational  Grid  in 
comparison to the amount of processors in a single local cluster

LHRP is design for grids that are made up of cluster computers. 
The  clusters  are  usually  made  up  of  tens  or  hundreds  of 
workstations or servers.  The latency inside the clusters is low. 
The  Grid  connects  multiple  clusters  together  with  a  high 
bandwidth,  high latency connection.   Figure  1 shows a  typical 
Grid topology for these types of clusters.  It is unusual to share a 
single workstation in the Grid.  LHRP is not designed to run a 
Grid that is made up of single workstations such as it is assumed 
in [10].  
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LHRP's features can be divided into three parts.  First, the stages 
of computation  and  communication  are  reviewed.   The  stages 
describe when the processes compute, transfer, or do other tasks 
that are specific to LHRP.  The second part explains what is a 
far border  and how the nodes are design to behave when they 
have a far border.  The third part explains the versioning system 
used by the  buffer node.  But first, some terminology has to be 
explained before we go into the features of the algorithms

LHRP assigns three different types of procedures depending on 
the location of the node.  The types are:  internal node,  border 
node,  and  buffer node.   The  internal  node behaves  just  like  a 
node  on  the  latency  hiding  implementation  of  an  n-stencil 
program with latency hiding.  It is isolated from the Grid  gap by 
the  border node.    The  border nodes are between the  internal  
nodes and the buffer nodes.  The buffer and border nodes are the 
ones that compute over the Grid gap.  The border node behaves 
almost  the  same  as  an  internal  node with  all  the  neighbor 
processors except for the places where it has to interact with the 
buffer node.  

Figure  2 shows  an  example  of how the  processors  would  get 
different types of assignments depending on their position on the 
computational Grid.  The example in the figure is a 1x6 matrix, 
CPUs one, two and three belong to grid01 and CPUs 4, 5, and 6 
belong to  grid02.   The  rectangles  to  the  sides  of the  squares 
represent  the  border.   In  a  bidimensional  CPU  matrix,  there 
would also be a  border  at  the  top and  bottom of the  squares. 
CPU 1 is considered an internal node since it only interacts with 
CPU 2.  CPU 2 gets an assignment of border node since it has 
CPU 3 as a neighbor, and CPU 3 is a  buffer node.   Therefore, 
CPU 2 has to exchange the local borders with CPU 3 as denoted 
in the figure by the small lines between CPU 2 and CPU 3, but 
also CPU 2 has to send the same border to CPU 4 which has an 
identical copy of the data matrix in CPU 3. 

The  border node interacts normally with the  buffer node that is 
part  of  its  local  Grid  node,  but  also  sends  the  border  of 
information  to  the  buffer  node from  the  external  Grid.   The 
border  node has  to  be  able  to  wait  multiple  cycles  for  the 
acknowledgment of the borders it sends to the far  buffer node, 
therefore  it  is  equipped  with  multiple  buffers  to  store  these 

borders.  The amount of extra buffers depends on the ratio of the 
Grid latency to the internal network latency. 
The buffer node is the most complicated of the nodes in LHRP. 
It has two main features.  First, it has multiple buffers to receive 
the borders sent from the border node in order to be able to wait 
for the borders across multiple cycles.  Second, it has a different 
algorithm to compute the core of the matrix in order to be able to 
keep feeding data to the border node while the borders from the 
external Grid arrive.  The  buffer nodes  at each side of the grid 
latency barrier are assigned the same data set.  They handle the 
redundant processing part of LHRP.

The buffer  node  uses  a  versioning  system  to  feed  current 
information to the local border node (The node that is part of the 
LAN and needs to be updated more often.)  At the same time, the 
buffer node  lets the information coming in from the far border  
node get outdated by the slow latency.  Because the data is also 
on the border node at the other side of the Grid gap, there is no 
node that immediately needs the outdated information. 

Stages of Computation and Communication
  Figure  3 shows a graphical representation of the compute and 
transfer modules for LHRP.  In step one (1),   the borders are 
computed  first  as  in  a  standard  implementation  of  a  latency 
hiding n-stencil  problem.   For  step  one,  all  nodes  behave the 
same.  In step two (2),  The borders are transferred non-blocking 
as in  a standard implementation of LH.  For step two, all  the 
nodes behave the same way.  Only the border node performs step 
three  (3).   In step three  the  node sends its  border  to a  buffer 
node.  The node is design so that it can wait multiple cycles for 
the  border  to  arrive  at  the  buffer  node.   In  step  four  (4)  the 
compute section is done as in LH.  At the same time, the buffer 
node  executes  a  versioning  algorithm  to  generate  results  that 
allow the rest of the LAN to continue working.  Finally, in step 
five (5), the nodes wait for the acknowledgment of the sent and 
received messages.   the  buffer  and  border  nodes  also perform 
this step with other neighbor CPUs, except if the border CPU is a 
far buffer node or  a far border node.  In this case, the nodes can 
wait multiple iterations until the acknowledgment arrives.

Figure 1: (1) Grid topology for cluster 
computers. (2) Layout of CPU's for a 

synchronous parallel application

Figure 2: LHRP's CPU assignment example for a 1x6 CPU 
matrix.



Transferring Data over Grid Gap
The  following  two  concepts  are  interrelated.   As  mention 
previously, both border node and buffer node are equipped with 
the  ability  to  send  and  receive  multiple  borders  respectively. 
This  means that  the  border node  can send some quantity  n  of 
borders x  over  the  network  without  having  to  wait  for  the 
acknowledgment  of xk−1 before  sending xk .   For  now,  let's 
assume  that  the border  node is  able  to  keep  its  data  matrix 
updated.   The  result  is  that  the border  node  can  maintain  a 

constant output of borders to the far border node of 
X∗

1
1
b


borders  per  unit  of time.   Where  X  is  the  number  of borders 
available to be  transferred,   is the LAN latency, and  b is the 
latency due to the bandwidth in borders per unit of time.  Since 
we  have  already  established  that  the  Grid  environment  is 
characterized  by high  bandwidth  and  high  latency,  the  model 

reduces to X∗
1


.  This concept presents an advantage  because 

it  sends a  stream of borders,  which maximizes  bandwidth use 
while reducing the impact of point-to-point latency.

  LHRP needs to provide a way that allows the program to send a 
stream of borders without allowing the data to get outdated.  One 
can  reason  that  if  the  program  waits  until  it  has  a  batch  of 
borders  to  send,  then  the  computation  will  stop  after  one 
iteration, since the data falls out of date after just one iteration. 
So, what the algorithm needs is another process that maintains 
the processes busy while the batch of borders are sent across the 
grid gap.  

Buffer Node Versioning System
The process  needed to maintain the  processors  busy while  the 
borders  are  transfered  across  the  grid  gap  is  the  versioning 
system.  The versioning system uses identical copies of the data 
matrix  at  the  buffer  nodes   at  each  side  of  the  grid  gap to 
maintain the creation of new borders for the LAN CPUs.  Since it 
uses the same data to maintain the data up to date, this is the part 
of the algorithm that uses redundant processing.  

In Table  1,  the  rows represent  different cycles  for each of the 
nodes.   The red separations (columns 2 and 12)  represent  the 
network latency and the black separation (column 7) represents 
the  Grid  latency.   Therefore,  we  can  imagined  the  version 
number going over the network, either red or black columns, into 
the other node.  The purpose of the example's algorithm is for all 
the  cells  in  a  one dimensional  matrix  to move on to  the  next 
version,  that  is  from version  k  to  version  k  +  1,  only if  its 
neighbors  are  also  in  version  k.   For  the  table,  the  Grid  to 
internal  latency ratio  is  three,  which means that  on average a 
border sent from node two will take about three cycles to reach 
node  four.   Once  the  borders  start  to  be  transferred,  the 
subsequent data is transferred at the speed the bandwidth allows. 
The numbers do not represent data, but the version of the data. 
For example,  in order for one cell  to move to version two, its 
neighbors must be in version one.  This strategy create the need 
for a temporary storage matrix, since some of the data may move 
on to higher versions, and the old version may be needed by a 
neighbor that has not been able to advance in version.   As an 
example, look at column-row coordinate (4,2).  On this cell, the 
column was able to compute version two; however, the cell to its 
right is stuck at the time with version one.  Eventually (5,2) will 
need to compute version two, but (4,2) will have a version higher 
than the one needed.  In order to provide the correct old version, 
a matrix of temporary old values is necessary.  Only one matrix 
is needed to store temporary values since the cells will go at most 
one version ahead of its neighbors.

The gray highlight indicates when the first message starts to be 
transferred from node two and five.  Since it takes three cycles 
for the border to arrive at the  buffer node, it  is until row three 
that it  is  received by node three.  This delay creates a type of 
cascading of versions which is  also highlighted in gray.  Once 
this cascade reaches the cells that are adjacent to the border of 
the  border  nodes,  the  border  nodes are  left  waiting  for  the 
version to get up to date.  Meanwhile, the buffer node will keep 
working on getting the latest far border from the far border node 
and  updating  the  version  of  the  cells  until  they are  ready to 

Grid to Local Latency Ratio = 3
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1 1 1 1 1 0 0 1 1 1 1
2 2 2 2 1 0 0 1 2 2 2
3 3 3 2 1 1 1 1 2 3 3
4 3 3 2 2 2 2 2 2 3 3
5 3 3 3 3 3 3 3 3 3 3
6 4 4 4 4 3 3 4 4 4 4
7 5 5 5 4 3 3 4 5 5 5
8 6 6 5 4 4 4 4 5 6 6
9 6 6 5 5 5 5 5 5 6 6

10 6 6 6 6 6 6 6 6 6 6
11 7 7 7 7 6 6 7 7 7 7
12 8 8 8 7 6 6 7 8 8 8
13 9 9 8 7 7 7 7 8 9 9
14 9 9 8 8 8 8 8 8 9 9
15 9 9 9 9 9 9 9 9 9 9

column 
coordinates

Table 1: Model representing the versioning of columns inside 
a buffer node.

Figure 3: Representation of compute and transfer 
modules in LHRP



transfer borders with the border nodes.  The whole process takes 
WAN latency units of time to restart.
At this point,  it  may be clear how the interaction between the 
border transfer over the grid gap and the buffer node's versioning 
algorithms work together to provide latency hiding with the use 
of  redundant  processing.   To  be  thorough,  lets  analyze  the 
interaction  now that  both  functions  are  well  explained.   The 
border node sends its borders over the grid gap as soon as they 
are computed.  While the border is on its way to a remote Grid 
node, the buffer node's versioning system creates new up to date 
borders to be used by the LAN cluster.  Note that because there 
are identical sets of data at the buffer nodes, there is no need to 
wait for information to proceed.  The versioning system is able to 
allow the  border node  to send its borders over the  grid gap  in 
batches.  But, the process does not last forever.  Eventually, the 
buffer node also runs out of up to date information and it has to 
wait for borders to arrive from a remote Grid node.  The time for 
the whole cycle to start again is the grid latency.  In the end, the 
two processes working together are able to send the borders in 
batches over the grid gap while at the same time maintaining the 
local CPUs busy.

Modeling LHRP's Performance 
This  section  creates  a  model  that  helps  predict  LHRP's 
performance.  LHRP does not completely hide the Grid latency, 
but it does reduce it to less than what it would be with LH as 
long  as  the  compute  time  does  not  hide  enough  of  the  Grid 
latency.   The  following  describes  the  algorithm's  theoretical 
performance:
Let  G be the Grid latency, I is the internal latency and B is the 
amount of the data tuples being used by the buffer node.  For the 
example  being used  in  this  paper,  B is  the  width  of the  data 
matrix assigned to the buffer nodes.  The average latency created 
by LHRP can be computed to be:

1    G+B∗I
B

Equation 1 considers the Grid latency for the first transfer.  The 
subsequent transfers are started every I  units of time.  Once the 
buffer  runs  out,  the  Grid  latency  is  incurred  again.   The 
algorithm assumes that the number of iterations required by the 
problem is much higher than  B.   An  example of the behavior 
explained  in  this  formula  can  show  how  dramatic  the 
improvement is.  Suppose a Grid presents a LAN latency of 10 
ms which is typical for an internal network.  The WAN latency is 
200 ms, and the programmer decides to use a buffer of 50.  The 
average latency for the program is 14 ms.

For negligible compute time, LH latency formula would be just 
the Grid latency.  For the last example the result would be 200 
ms.   However,  the  average  latency is  not  the  only factor  to 
consider.   Another two factors that should be considered when 
comparing LH to LHRP are the loss in computational resources 
by LHRP  due  to  redundant  computation  and  the  computation 
time.  Computation time could be a variable to observe at which 
point LHRP would start to be a better approach than LH.  Let W 
denote some total amount of work that has to be done in units of 
time.   The  work  can  be  divided  by  the  number  of  CPUs 
performing  non-redundant  work,  with  C  being  used  by  each 
algorithm.  The revised formula to predict  performance for the 
Grid gap is:

max G+B∗I
B

,
W
C   .

Figure  4 shows the estimated total  time  taken  to  complete  an 
average  cycle  by  LH  vs  LHRP.   The  x  axis  represents  the 
computation time per subcell.  The Grid latency for the model is 
200 ms and the internal  network latency is  10 ms.   From the 
chart, it can be inferred that for this example, it makes sense to 
use LHRP when the computation takes 11,000 ns per subcell or 
less.   Once  the  computation  time  goes  higher  than  that,  this 
creates enough computation time to hide the transfers with LH. 
At that point,  the redundant node in LHRP starts to reduce its 
performance.

Figure 5 shows the plot with a variable Grid latency from 10 ms 
to  170  ms  and  leaves  the  computation  time  factor  constant  at 
2000 ns per subcell.  The internal latency is left constant at 10 
ms.  It can be seen that LHRP starts out being slower than LH 
mainly because of the node lost to redundant computation.  Once 
the Grid latency goes above 40 ms, LHRP starts gaining speed 
over LH.  This prediction will be revisited in the experimental 
results section.  

LHRP can have multiple  Grids with multiple  grid  latencies  in 
between.  Only one grid division is considered in this section to 
simplify the explanation of the algorithm.  Only one requirement 
is needed for any number of grid divisions.  The CPU matrix has 
to  have  a  straight  line  across  the  CPU  matrix,  horizontal  or 
vertical, that denotes the Grid division.  In Grid division, having 
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Figure 5: LH vs LHRP with variable Grid or WAN latency.
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compute time changes.



a corner in the middle of the CPU matrix, for example, increases 
the size of far borders  in at least one processor which requires 
the buffer node to be more complicated.  LHRP does not have a 
feature to deal with this processor arrangement.

LHRP has one more issue.  The algorithm as described up to now 
may need more accommodations when the  buffer node needs to 
exchange borders.  The main issue here is that the versions may 
not  be  the  same.   One  buffer  node may receive  a  far  border 
before its neighboring buffer nodes that are above or below it in 
the CPU matrix.  One way to deal with this is to have the buffer  
nodes share the version number of the columns they have.  In a 
way this would tie up the buffer nodes to be synchronized to the 
same versions.  The program created to produce the experimental 
results does not include this feature; therefore, it can only work 
with one row in the CPU matrix.  It can be speculated that this 
additional  level  of complexness  would  slow LHRP somewhat. 
But considering that the  buffer nodes would be communicating 
through their local networks, the cost would probably still justify 
the  use  of  this  procedure.   Implementing  the  version  sharing 
feature will be done for future work.

5.  EXPERIMENTAL RESULTS
The test of LHRP consisted of a CPU matrix of one by six.  A 
single row as the CPU matrix's height is used since the exchange 
of versions  between  buffer  nodes was  not implemented  at  the 
time of testing.   The algorithm was  compared with  LH.   The 
performance  was  observed  while  two factors  were  varied:  the 
Grid latency and the computation time.  The environment used 
for the  test  was made up of two blade Xeon servers with two 
multi-threaded CPU, which is effectively four CPUs each.  Each 
of the servers had a complete installation of the Globus Toolkit 
[4,5] as well as MPICH-G2 [8].  The latencies were emulated. 
The network consisted of a 100 Mbps LAN.

Grid Latency

Grid latency is varied from 0 to 700 ms latency with an emulated 
transfer of 100 Mbps.  LH is supposed to be faster than LHRP 
when  the  Grid  Latency  is  small,  because  LH  is  using  6 

processors to do the work and LHRP is effectively using only 5. 
Figure  6 shows the results of this test.

The internal latency for the Grid latency test was constant at 10 
ms and compute  time was  held constant  to 30 ns  per  subcell. 
The data matrix was 300x300, each processor got 50x300=15000 
cells  for  LH  and  60x300=18000  cells  for  LHRP  which 
determines the work the CPU would need to do.  Table 2 shows 
calculations on how long the processors should take to compute 
the sub-matrices with different numbers of cells.

Table 2: Difference in load on a processor due to the 
redundant use of one processor

Algorithms Number 
of Cells

Compute Time 
per Subcell

Total Time to 
Compute on Cycle

LH 15,000 30 0.45 ms

LHRP 18,000 30 0.54 ms

Note that the performance of LHRP over LH is very similar to 
the predicted results shown above.  It is important to note that 
the  emulation  algorithms  only  emulate  the  delay  part  of  the 
network, but other factors such as congestion could change these 
results in a real-world test.

Other  measurements  to  consider  include  the  use  of  system 
memory because LHRP requires buffers to receive the borders. 
LHRP  also  needs  to  keep  an  extra  matrix  with  the  same 
dimensions  of  the  data  matrix  to  store  old  versions  of  the 
columns.  Table  3 shows the difference in memory footprint in 
bytes when solving a 500x500 cell matrix.  The average increase 
in memory from using LH to using LHRP is 21%.  The increase 
is  not  significant  and  CPU  performance  as  well  as  memory 
capacity  are  projected  to  go  up  in  the  foreseeable  future. 
Latencies of any kind, on the other hand, are not expected to be 
reduced because of physical limits such as the speed of light over 
fiber optics and the speed of electrons through copper cable.  

Table 3: LH vs LHRP.  Memory foot print of each of the six 
processes while computing on the same data.  The amounts 

are in bytes.

Process LH LHRP

0 35,724 41,856

1 7,408 8,228

2 7,408 10,932

3 7,408 10,928

4 7,412 8,528

5 7,408 8,232

6 7,544 8,532

Compute Time

In the next test, the computation time is changed.  LH is better 
than LHRP when the compute time is high because this provides 
enough  time  to  transfer  the  borders,  and  LH  is  using  six 
processors to do the work while LHRP is using five.  Figure  7 
shows the results gathered from the experiments.  The total time 
computed  is  expressed  in  seconds;  the  compute  delay  is  in 
nanoseconds per subcell.  There is some difference in the units, 

Figure 6: Total time computed in seconds and Grid latency 
in milliseconds.

0 70 140
210
280
350
420
490
560
630
700
770
840
910
980
1050
1120
1190
1260
1330
1400

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

LH vs LHRP Grid Latency

LH Average

LH Min

LH Max

LHRP Average

LHRP Min

LHRP Max

Grid Latency ( ms )

T
ot

al
 C

om
pu

te
 T

im
e 

(s
ec

)



mainly  because  the  theoretical  model  only  runs  one  cycle 
averaging  values  where  more  than  one  cycle  is  needed.   In 
contrast, the experiment included a few hundred cycles to allow 
for  the  differences  to  build  up  and  measure  the  average 
performance.  Nevertheless, for future work the theoretical model 
can be modified to predict  the programs behavior with greater 
accuracy.

6.  CONCLUSION AND FUTURE WORK
LHRP brings an effective solution to deal with the increase in 
latency brought by the use of multiple clusters across the Internet 
through  the  Grid.   It  complements  LH  when  the  amount  of 
internal  computation  is  too low for  it  to  be  used  to  hide  the 
latency.  LHRP trades in  CPU power and memory capacity in 
exchange for  lower  perceived latency at  a  time  when there  is 
growing performance improvement of the former and flattening 
performance of the latter.  In the experiments conducted, LHRP 
proved  to  be  a  better  algorithm  over  LH  when  the  internal 
computation was low. 

For future  work,  we  will  add the  buffer  node version sharing 
feature.   Currently  the  algorithm  can  only be  used  in  a  one 
dimensional  CPU matrix.   The  addition of this  feature  should 
increase  scalability at  a  small  performance cost.   LHRP could 
also be tested with specialized network emulations tools.  For the 
experiment,  the  latency  was  emulated  withing  the  program. 
Also,  the model used to predict  the  programs behavior can be 
modified to increase accuracy.  LHRP could also be extended to 
accommodate future cluster topologies where LHRP can be used 
on clusters of multi-core CPU's.  In the near future, there will be 
a 64 core CPU.  This type of topology could use LHRP to bring 
the  LAN  latency  somewhat  closer  to  the  inter-CPU  latency. 
Adding LHRP to multi-core CPU's would also create the need to 
implement  it  in  multidimensional  layers.   In other  words,  the 
block of work assigned to a CPU by the Grid would have to be 
repartitioned  with  the  LHRP algorithm to  distribute  the  work 
among  the  cores.   Having  LHRP  on  multiple  layer  would 
increase  the  efficiency of both  the  Grid  latency and  the  LAN 
latency in relation to the inter-CPU latency.
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Figure 7: LH vs LHRP. Compute time test.
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