
Latency Hiding by Redundant Processing: A Technique
for Grid­enabled, Iterative, Synchronous Parallel Programs

Jeremy F. Villalobos
University of North Carolina at Charlote

9201 University City Blvd
Charlotte, NC 28223­0001

(704) 530­7255

jeremyvillalobos@gmail.com

Barry Wilkinson
University of North Carolina at Charlotte

9201 University City Blvd
Charlotte, NC 28223­0001

(704) 687­8381
abw@uncc.edu

ABSTRACT
The increase in interconnected computational resources brought
about by the Grid creates the possibility to port multiple parallel
programming techniques to it. Porting parallel applications to
the Grid could reduce the total computation time, or it could be
used to create solutions with higher degrees of resolution.
However, the Grid brings with it network state conditions that all
too often work to the detriment of expediency in parallel
applications. This paper proposes an algorithm designed to
significantly reduce the amount of Wide Area Network (WAN)
latency experienced when running an interactive synchronous
parallel program on the Grid. The algorithm is called Latency
Hiding by Redundant Processing (LHRP) and in tests done on
two Grid nodes with emulated latency, it complemented Latency
Hiding (LH) by performing better than LH on jobs with low
internal computation time and performing worst than LH when
the computation time was enough to hide the latency.

Keywords
Grid, Synchronous, Parallel, Latency Hiding.

1. INTRODUCTION
Grid Computing uses interconnected computing resources in a
geographically distributed area. Multiple projects such as
Globus, GrADS, and Cactus [1,2,4] have increased the
development of tools that facilitate the creation of grid enabled
programs. One aspect that has to be considered is the network
state characteristics that are part of any Grid computing
organization and the need for new algorithms to deal with this
medium. The Grid has inherently high latencies when
communicating on a Wide Area Network (WAN). The Grid also
provides Grid-enabled programs with a heterogeneous
environment for which especial attention has to be paid in order
to make efficient use of the resources.

This paper focuses on a technique that can be used to reduce the
WAN latency on Iterative Synchronous Parallel Programs
(ISPAs) whose internal compute time is too low to allow normal
latency hiding to work. It is assumed that WAN latency is
always greater than Local Area Network (LAN) latency. This is

a realistic assumption since the computers connected through a
LAN are closer together than those connected through a WAN. It
is also assumed that the ISPA program only requires
synchronization with a relatively small amount of processes in its
vicinity. Examples of these algorithms can be those found on
NetLogo [13], an application to model complex systems.
Another application that can serve as an example is LeanMD
[11], a molecule simulation program. These simulations and
algorithms require only communication among neighboring
processes, which is one of the main requirements for LHRP to
work when grid enabling these applications.

2. PREVIOUS RELATED WORK
The problem of latency exists in many parallel computing
architectures. It is present in supercomputers with little impact
to performance. It is also present in cluster computers
(networked off-the-shelf computers with special software to
perform work in parallel.) Strumpen [12] applied latency hiding
to cluster computers. The Latency Hiding (LH) process in
parallel programs consists of managing the computation time and
the transfer of information over the network such that the idle
time on either resource is minimal. The new trend has been
porting parallel applications to the Grid, which often works
through the Internet. This new platform presents even higher
latencies, but with some new characteristics that previous
algorithms were not taking into consideration. This section
presents similar work that shows that porting parallel application
to the Grid is being pursued by other organizations, and that
those projects also have devised forms to manage Grid latency.

The idea of porting parallel applications (other than
embarrassingly parallel) to the Grid can be considered
impractical by some people. But recently, multiple projects have
sprung up to provide this capability. MPICH-G2 provides basic
tools necessary to run parallel programs on the Globus platform.
Other projects include Charm++ [7] and Java-PVM [6]. El
Maghraoui [3] also applies multiple tools to run parallel
programs on the grid such as check pointing, load balancing, and
process migration on a project called Internet Operating System
(IOS). The tools, although helpful, are just the beginning steps
in order to be able to tackle the task of porting parallel
applications. Dealing with latency is still left to the programmer
in the case of IOS. Koenig et al. [9] used Charm++ and AMPI in
conjunction to provide dynamic, application independent load
balancing and latency hiding. The paper proposes the use of
multiple “virtual processes” to manage the latency. The CPU's in
the grid are loaded with enough virtual processes so that the
internal computation exceeds the Grid latency, effectively hiding
the latency. The method is innovative in that it adapts MPI
applications with little recoding. But it only provides normal
latency hiding. It cannot hide latency if there is not enough

Administrator
Typewritten Text
15th Mardi Gras Conference, Jan. 30, 2008, Baton Rouge, Louisiana, USA.

work to keep the CPU busy while the information is being
transfered. Li et al. [10] propose a peer-to-peer strategy to run
asynchronous parallel programs on a Grid made up of clusters
and individual workstations. It is a type of SETI@HOME
project, but with general purpose asynchronous scientific
application. The algorithms covered by this approach include
fluid dynamics, aerodynamics, nuclear reactor dynamics and
systems of equations. The system deals with the latency by
“relaxed synchronization.” With relaxed synchronization, the
processes can continue to compute even if the information from
the neighbors has not being updated. One side effect of this
approach is that the simulations take more iterations to converge.
But, overall the technique is faster than the synchronized
approach. Li et al. [10] however, does not solve the latency
problem for other types of n-stencil problems, such as the game
of life and other complex adaptive system simulations. LHRP
can run both asynchronous and synchronous algorithms. LHRP
also hides the latency even if the compute time is less than the
transfer time.

3. DISCRETE SOLUTION TO THE HEAT
DISTRIBUTION PROBLEM
A discrete solution to the heat distribution algorithm was used to
test LHRP. The heat distribution algorithm computes iteratively
the temperature distribution of a section of a material. The
simplified version consists of a bidimensional square made of the
same material with some boundary conditions at the edges. The
formula to calculate one iteration in this problem is:

hx , y=
hx1, yhx−1, yhx , y1hx , y−1

4

The formula is applied to a matrix h whose values represent the
temperatures in the material. The location of that cell is denoted
by the subscript coordinates x and y. The basic process is to take
the average value of the neighbor cells and set this as the new
value. The equation is repeated for a number of iterations or
until the problem converges. This problem is parallelized by
partitioning the data matrix into sections. This is done by a
master process. The slave processes receive the data and iterate
on it. The implementation of this solution reveals one more
obstacle to parallelizing the heat distribution problem. If each of
the processes receives exactly the data matrix on which it will be
computing, it will have to request its neighbor processors for a
single cell of their data matrix every time they are computing on
the edge of the data matrix. Communicating often for only small
bits of information makes inefficient use of the network and it
slows down performance even with LAN latency and speed. The
solution is to allocate a data matrix on each processor in such a
way that the data matrices overlap by a border of some width of
cells. In this way, the computation section can be more easily
separated from the synchronization section and the network is
better used by transferring large chunks of data at a time. The
presence of the cells from a neighbor processor on the local
processor are called ghost points [14]. For the rest of the paper,
a border of ghost points will be referred as a border.

Implementing the procedure just mentioned on a LAN cluster
with MPI is fairly straightforward. It is also quite efficient. The
algorithm's total computation time can be divided into two
sections: the internal computation time, and the communication
or transfer time. The computation time is when the processor is
working to compute a new state in the data based on the previous
data. The communication time is when the borders are being
exchanged. Since there is no communication while the internal

computation is going on, the network is going unused during this
time. Then, when the borders are being exchanged, the CPUs
are idle. Since the LAN latency is significant in comparison to
the speed of the CPUs. The conventional approach leaves plenty
of room for improvement. Strumpen [12] solved this by first
computing the border, then starting the transferred of the borders
in a non-blocking form, and computing the core of the matrices
while the borders are being transferred. The last step is to wait
for the acknowledgment of the sent and received messages,
which is also referred to as the synchronization step.

Latency hiding works fine when the latency is homogeneous
throughout the network, or when there is enough internal
compute time to hide the highest latency in the network. The
issue with the Grid is that the WAN latency tends to be orders of
magnitude higher than LAN latencies. Although most of the
communication happens withing the LAN, there are points in
which the CPUs from different Grid nodes have to communicate
and synchronize. These points may not constitute the majority of
the communication, but the delay caused by these
communications slow down the rest of the process to WAN
latency, independent of the system's LAN latencies. Another
issue is not having enough internal compute time to hide the
latency. Having a reduced amount of internal compute time is
expected when porting a program to the Grid. Since a Grid
usually has more computer resources that a LAN cluster, it is
expected that a program would be able to use more of these
resources. If the original data set does not change, this means
that a smaller amount of work will be assigned to the Grid's
CPUs than it would be to a LAN cluster's CPU. LH's
performance goes down with decreasing internal compute time.

4. LATENCY HIDING BY REDUNDANT
PROCESSING (LHRP)
Latency Hiding by Redundant Processing(LHRP) addresses the
case in which a programmer wants to run an ISPA that does not
have enough work to keep the processors busy using LH. It is
also helpful to mention that limited bandwidth, 100 Mbps for
example, may increase the transfer time by having to wait
additional units of time for the transfer to reach the other side.

The main contribution of LHRP is to allow most of the internal
processors of each cluster to continue with the computation while
the information reaches designated processors. This is done by
having redundant copies of some of the data on the clusters on
each side of the Grid gap, which is the point where two Grid
nodes communicate. The Grid gap goes over the WAN,
therefore the latency is much higher than in inter-cluster
communications. LHRP uses some of the processors to
redundantly compute some part of the data. The side effect of
this behavior is having less CPUs devoted to computing the final
answer. However, this may not be a problem since there would
be more processors available in a computational Grid in
comparison to the amount of processors in a single local cluster

LHRP is design for grids that are made up of cluster computers.
The clusters are usually made up of tens or hundreds of
workstations or servers. The latency inside the clusters is low.
The Grid connects multiple clusters together with a high
bandwidth, high latency connection. Figure 1 shows a typical
Grid topology for these types of clusters. It is unusual to share a
single workstation in the Grid. LHRP is not designed to run a
Grid that is made up of single workstations such as it is assumed
in [10].

mailto:SETI@HOME

LHRP's features can be divided into three parts. First, the stages
of computation and communication are reviewed. The stages
describe when the processes compute, transfer, or do other tasks
that are specific to LHRP. The second part explains what is a
far border and how the nodes are design to behave when they
have a far border. The third part explains the versioning system
used by the buffer node. But first, some terminology has to be
explained before we go into the features of the algorithms

LHRP assigns three different types of procedures depending on
the location of the node. The types are: internal node, border
node, and buffer node. The internal node behaves just like a
node on the latency hiding implementation of an n-stencil
program with latency hiding. It is isolated from the Grid gap by
the border node. The border nodes are between the internal
nodes and the buffer nodes. The buffer and border nodes are the
ones that compute over the Grid gap. The border node behaves
almost the same as an internal node with all the neighbor
processors except for the places where it has to interact with the
buffer node.

Figure 2 shows an example of how the processors would get
different types of assignments depending on their position on the
computational Grid. The example in the figure is a 1x6 matrix,
CPUs one, two and three belong to grid01 and CPUs 4, 5, and 6
belong to grid02. The rectangles to the sides of the squares
represent the border. In a bidimensional CPU matrix, there
would also be a border at the top and bottom of the squares.
CPU 1 is considered an internal node since it only interacts with
CPU 2. CPU 2 gets an assignment of border node since it has
CPU 3 as a neighbor, and CPU 3 is a buffer node. Therefore,
CPU 2 has to exchange the local borders with CPU 3 as denoted
in the figure by the small lines between CPU 2 and CPU 3, but
also CPU 2 has to send the same border to CPU 4 which has an
identical copy of the data matrix in CPU 3.

The border node interacts normally with the buffer node that is
part of its local Grid node, but also sends the border of
information to the buffer node from the external Grid. The
border node has to be able to wait multiple cycles for the
acknowledgment of the borders it sends to the far buffer node,
therefore it is equipped with multiple buffers to store these

borders. The amount of extra buffers depends on the ratio of the
Grid latency to the internal network latency.
The buffer node is the most complicated of the nodes in LHRP.
It has two main features. First, it has multiple buffers to receive
the borders sent from the border node in order to be able to wait
for the borders across multiple cycles. Second, it has a different
algorithm to compute the core of the matrix in order to be able to
keep feeding data to the border node while the borders from the
external Grid arrive. The buffer nodes at each side of the grid
latency barrier are assigned the same data set. They handle the
redundant processing part of LHRP.

The buffer node uses a versioning system to feed current
information to the local border node (The node that is part of the
LAN and needs to be updated more often.) At the same time, the
buffer node lets the information coming in from the far border
node get outdated by the slow latency. Because the data is also
on the border node at the other side of the Grid gap, there is no
node that immediately needs the outdated information.

Stages of Computation and Communication
 Figure 3 shows a graphical representation of the compute and
transfer modules for LHRP. In step one (1), the borders are
computed first as in a standard implementation of a latency
hiding n-stencil problem. For step one, all nodes behave the
same. In step two (2), The borders are transferred non-blocking
as in a standard implementation of LH. For step two, all the
nodes behave the same way. Only the border node performs step
three (3). In step three the node sends its border to a buffer
node. The node is design so that it can wait multiple cycles for
the border to arrive at the buffer node. In step four (4) the
compute section is done as in LH. At the same time, the buffer
node executes a versioning algorithm to generate results that
allow the rest of the LAN to continue working. Finally, in step
five (5), the nodes wait for the acknowledgment of the sent and
received messages. the buffer and border nodes also perform
this step with other neighbor CPUs, except if the border CPU is a
far buffer node or a far border node. In this case, the nodes can
wait multiple iterations until the acknowledgment arrives.

Figure 1: (1) Grid topology for cluster
computers. (2) Layout of CPU's for a

synchronous parallel application

Figure 2: LHRP's CPU assignment example for a 1x6 CPU
matrix.

Transferring Data over Grid Gap
The following two concepts are interrelated. As mention
previously, both border node and buffer node are equipped with
the ability to send and receive multiple borders respectively.
This means that the border node can send some quantity n of
borders x over the network without having to wait for the
acknowledgment of xk−1 before sending xk . For now, let's
assume that the border node is able to keep its data matrix
updated. The result is that the border node can maintain a

constant output of borders to the far border node of
X∗

1
1
b


borders per unit of time. Where X is the number of borders
available to be transferred,  is the LAN latency, and b is the
latency due to the bandwidth in borders per unit of time. Since
we have already established that the Grid environment is
characterized by high bandwidth and high latency, the model

reduces to X∗
1


. This concept presents an advantage because

it sends a stream of borders, which maximizes bandwidth use
while reducing the impact of point-to-point latency.

 LHRP needs to provide a way that allows the program to send a
stream of borders without allowing the data to get outdated. One
can reason that if the program waits until it has a batch of
borders to send, then the computation will stop after one
iteration, since the data falls out of date after just one iteration.
So, what the algorithm needs is another process that maintains
the processes busy while the batch of borders are sent across the
grid gap.

Buffer Node Versioning System
The process needed to maintain the processors busy while the
borders are transfered across the grid gap is the versioning
system. The versioning system uses identical copies of the data
matrix at the buffer nodes at each side of the grid gap to
maintain the creation of new borders for the LAN CPUs. Since it
uses the same data to maintain the data up to date, this is the part
of the algorithm that uses redundant processing.

In Table 1, the rows represent different cycles for each of the
nodes. The red separations (columns 2 and 12) represent the
network latency and the black separation (column 7) represents
the Grid latency. Therefore, we can imagined the version
number going over the network, either red or black columns, into
the other node. The purpose of the example's algorithm is for all
the cells in a one dimensional matrix to move on to the next
version, that is from version k to version k + 1, only if its
neighbors are also in version k. For the table, the Grid to
internal latency ratio is three, which means that on average a
border sent from node two will take about three cycles to reach
node four. Once the borders start to be transferred, the
subsequent data is transferred at the speed the bandwidth allows.
The numbers do not represent data, but the version of the data.
For example, in order for one cell to move to version two, its
neighbors must be in version one. This strategy create the need
for a temporary storage matrix, since some of the data may move
on to higher versions, and the old version may be needed by a
neighbor that has not been able to advance in version. As an
example, look at column-row coordinate (4,2). On this cell, the
column was able to compute version two; however, the cell to its
right is stuck at the time with version one. Eventually (5,2) will
need to compute version two, but (4,2) will have a version higher
than the one needed. In order to provide the correct old version,
a matrix of temporary old values is necessary. Only one matrix
is needed to store temporary values since the cells will go at most
one version ahead of its neighbors.

The gray highlight indicates when the first message starts to be
transferred from node two and five. Since it takes three cycles
for the border to arrive at the buffer node, it is until row three
that it is received by node three. This delay creates a type of
cascading of versions which is also highlighted in gray. Once
this cascade reaches the cells that are adjacent to the border of
the border nodes, the border nodes are left waiting for the
version to get up to date. Meanwhile, the buffer node will keep
working on getting the latest far border from the far border node
and updating the version of the cells until they are ready to

Grid to Local Latency Ratio = 3

1 2 3 4 5 6 7 8 9 10 11 12 13
Node 2 Node 3 Node 4 Node 5

ro
w

 c
o

o
rd

in
a

te
s

1 1 1 1 1 0 0 1 1 1 1
2 2 2 2 1 0 0 1 2 2 2
3 3 3 2 1 1 1 1 2 3 3
4 3 3 2 2 2 2 2 2 3 3
5 3 3 3 3 3 3 3 3 3 3
6 4 4 4 4 3 3 4 4 4 4
7 5 5 5 4 3 3 4 5 5 5
8 6 6 5 4 4 4 4 5 6 6
9 6 6 5 5 5 5 5 5 6 6

10 6 6 6 6 6 6 6 6 6 6
11 7 7 7 7 6 6 7 7 7 7
12 8 8 8 7 6 6 7 8 8 8
13 9 9 8 7 7 7 7 8 9 9
14 9 9 8 8 8 8 8 8 9 9
15 9 9 9 9 9 9 9 9 9 9

column
coordinates

Table 1: Model representing the versioning of columns inside
a buffer node.

Figure 3: Representation of compute and transfer
modules in LHRP

transfer borders with the border nodes. The whole process takes
WAN latency units of time to restart.
At this point, it may be clear how the interaction between the
border transfer over the grid gap and the buffer node's versioning
algorithms work together to provide latency hiding with the use
of redundant processing. To be thorough, lets analyze the
interaction now that both functions are well explained. The
border node sends its borders over the grid gap as soon as they
are computed. While the border is on its way to a remote Grid
node, the buffer node's versioning system creates new up to date
borders to be used by the LAN cluster. Note that because there
are identical sets of data at the buffer nodes, there is no need to
wait for information to proceed. The versioning system is able to
allow the border node to send its borders over the grid gap in
batches. But, the process does not last forever. Eventually, the
buffer node also runs out of up to date information and it has to
wait for borders to arrive from a remote Grid node. The time for
the whole cycle to start again is the grid latency. In the end, the
two processes working together are able to send the borders in
batches over the grid gap while at the same time maintaining the
local CPUs busy.

Modeling LHRP's Performance
This section creates a model that helps predict LHRP's
performance. LHRP does not completely hide the Grid latency,
but it does reduce it to less than what it would be with LH as
long as the compute time does not hide enough of the Grid
latency. The following describes the algorithm's theoretical
performance:
Let G be the Grid latency, I is the internal latency and B is the
amount of the data tuples being used by the buffer node. For the
example being used in this paper, B is the width of the data
matrix assigned to the buffer nodes. The average latency created
by LHRP can be computed to be:

1  G+B∗I
B

Equation 1 considers the Grid latency for the first transfer. The
subsequent transfers are started every I units of time. Once the
buffer runs out, the Grid latency is incurred again. The
algorithm assumes that the number of iterations required by the
problem is much higher than B. An example of the behavior
explained in this formula can show how dramatic the
improvement is. Suppose a Grid presents a LAN latency of 10
ms which is typical for an internal network. The WAN latency is
200 ms, and the programmer decides to use a buffer of 50. The
average latency for the program is 14 ms.

For negligible compute time, LH latency formula would be just
the Grid latency. For the last example the result would be 200
ms. However, the average latency is not the only factor to
consider. Another two factors that should be considered when
comparing LH to LHRP are the loss in computational resources
by LHRP due to redundant computation and the computation
time. Computation time could be a variable to observe at which
point LHRP would start to be a better approach than LH. Let W
denote some total amount of work that has to be done in units of
time. The work can be divided by the number of CPUs
performing non-redundant work, with C being used by each
algorithm. The revised formula to predict performance for the
Grid gap is:

max G+B∗I
B

,
W
C  .

Figure 4 shows the estimated total time taken to complete an
average cycle by LH vs LHRP. The x axis represents the
computation time per subcell. The Grid latency for the model is
200 ms and the internal network latency is 10 ms. From the
chart, it can be inferred that for this example, it makes sense to
use LHRP when the computation takes 11,000 ns per subcell or
less. Once the computation time goes higher than that, this
creates enough computation time to hide the transfers with LH.
At that point, the redundant node in LHRP starts to reduce its
performance.

Figure 5 shows the plot with a variable Grid latency from 10 ms
to 170 ms and leaves the computation time factor constant at
2000 ns per subcell. The internal latency is left constant at 10
ms. It can be seen that LHRP starts out being slower than LH
mainly because of the node lost to redundant computation. Once
the Grid latency goes above 40 ms, LHRP starts gaining speed
over LH. This prediction will be revisited in the experimental
results section.

LHRP can have multiple Grids with multiple grid latencies in
between. Only one grid division is considered in this section to
simplify the explanation of the algorithm. Only one requirement
is needed for any number of grid divisions. The CPU matrix has
to have a straight line across the CPU matrix, horizontal or
vertical, that denotes the Grid division. In Grid division, having

10 20 30 40 50 60 70 80 90 100
110
120
130
140
150
160
170

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

LH vs LHRP

LHRP

LH

Grid Latency

C
al

cu
la

te
d

T
ot

al
 T

im
e

Figure 5: LH vs LHRP with variable Grid or WAN latency.

0 1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

LH vs LHRP

LHRP
LH

Compute time in nanosec per subcell

E
st

im
at

ed
 t

ot
al

 t
im

e
to

 c
om

p
u

te
 o

n
e

cy
cl

e
Figure 4: Estimated total time to complete one cycle as the

compute time changes.

a corner in the middle of the CPU matrix, for example, increases
the size of far borders in at least one processor which requires
the buffer node to be more complicated. LHRP does not have a
feature to deal with this processor arrangement.

LHRP has one more issue. The algorithm as described up to now
may need more accommodations when the buffer node needs to
exchange borders. The main issue here is that the versions may
not be the same. One buffer node may receive a far border
before its neighboring buffer nodes that are above or below it in
the CPU matrix. One way to deal with this is to have the buffer
nodes share the version number of the columns they have. In a
way this would tie up the buffer nodes to be synchronized to the
same versions. The program created to produce the experimental
results does not include this feature; therefore, it can only work
with one row in the CPU matrix. It can be speculated that this
additional level of complexness would slow LHRP somewhat.
But considering that the buffer nodes would be communicating
through their local networks, the cost would probably still justify
the use of this procedure. Implementing the version sharing
feature will be done for future work.

5. EXPERIMENTAL RESULTS
The test of LHRP consisted of a CPU matrix of one by six. A
single row as the CPU matrix's height is used since the exchange
of versions between buffer nodes was not implemented at the
time of testing. The algorithm was compared with LH. The
performance was observed while two factors were varied: the
Grid latency and the computation time. The environment used
for the test was made up of two blade Xeon servers with two
multi-threaded CPU, which is effectively four CPUs each. Each
of the servers had a complete installation of the Globus Toolkit
[4,5] as well as MPICH-G2 [8]. The latencies were emulated.
The network consisted of a 100 Mbps LAN.

Grid Latency

Grid latency is varied from 0 to 700 ms latency with an emulated
transfer of 100 Mbps. LH is supposed to be faster than LHRP
when the Grid Latency is small, because LH is using 6

processors to do the work and LHRP is effectively using only 5.
Figure 6 shows the results of this test.

The internal latency for the Grid latency test was constant at 10
ms and compute time was held constant to 30 ns per subcell.
The data matrix was 300x300, each processor got 50x300=15000
cells for LH and 60x300=18000 cells for LHRP which
determines the work the CPU would need to do. Table 2 shows
calculations on how long the processors should take to compute
the sub-matrices with different numbers of cells.

Table 2: Difference in load on a processor due to the
redundant use of one processor

Algorithms Number
of Cells

Compute Time
per Subcell

Total Time to
Compute on Cycle

LH 15,000 30 0.45 ms

LHRP 18,000 30 0.54 ms

Note that the performance of LHRP over LH is very similar to
the predicted results shown above. It is important to note that
the emulation algorithms only emulate the delay part of the
network, but other factors such as congestion could change these
results in a real-world test.

Other measurements to consider include the use of system
memory because LHRP requires buffers to receive the borders.
LHRP also needs to keep an extra matrix with the same
dimensions of the data matrix to store old versions of the
columns. Table 3 shows the difference in memory footprint in
bytes when solving a 500x500 cell matrix. The average increase
in memory from using LH to using LHRP is 21%. The increase
is not significant and CPU performance as well as memory
capacity are projected to go up in the foreseeable future.
Latencies of any kind, on the other hand, are not expected to be
reduced because of physical limits such as the speed of light over
fiber optics and the speed of electrons through copper cable.

Table 3: LH vs LHRP. Memory foot print of each of the six
processes while computing on the same data. The amounts

are in bytes.

Process LH LHRP

0 35,724 41,856

1 7,408 8,228

2 7,408 10,932

3 7,408 10,928

4 7,412 8,528

5 7,408 8,232

6 7,544 8,532

Compute Time

In the next test, the computation time is changed. LH is better
than LHRP when the compute time is high because this provides
enough time to transfer the borders, and LH is using six
processors to do the work while LHRP is using five. Figure 7
shows the results gathered from the experiments. The total time
computed is expressed in seconds; the compute delay is in
nanoseconds per subcell. There is some difference in the units,

Figure 6: Total time computed in seconds and Grid latency
in milliseconds.

0 70 140
210
280
350
420
490
560
630
700
770
840
910
980
1050
1120
1190
1260
1330
1400

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

LH vs LHRP Grid Latency

LH Average

LH Min

LH Max

LHRP Average

LHRP Min

LHRP Max

Grid Latency (ms)

T
ot

al
 C

om
pu

te
 T

im
e

(s
ec

)

mainly because the theoretical model only runs one cycle
averaging values where more than one cycle is needed. In
contrast, the experiment included a few hundred cycles to allow
for the differences to build up and measure the average
performance. Nevertheless, for future work the theoretical model
can be modified to predict the programs behavior with greater
accuracy.

6. CONCLUSION AND FUTURE WORK
LHRP brings an effective solution to deal with the increase in
latency brought by the use of multiple clusters across the Internet
through the Grid. It complements LH when the amount of
internal computation is too low for it to be used to hide the
latency. LHRP trades in CPU power and memory capacity in
exchange for lower perceived latency at a time when there is
growing performance improvement of the former and flattening
performance of the latter. In the experiments conducted, LHRP
proved to be a better algorithm over LH when the internal
computation was low.

For future work, we will add the buffer node version sharing
feature. Currently the algorithm can only be used in a one
dimensional CPU matrix. The addition of this feature should
increase scalability at a small performance cost. LHRP could
also be tested with specialized network emulations tools. For the
experiment, the latency was emulated withing the program.
Also, the model used to predict the programs behavior can be
modified to increase accuracy. LHRP could also be extended to
accommodate future cluster topologies where LHRP can be used
on clusters of multi-core CPU's. In the near future, there will be
a 64 core CPU. This type of topology could use LHRP to bring
the LAN latency somewhat closer to the inter-CPU latency.
Adding LHRP to multi-core CPU's would also create the need to
implement it in multidimensional layers. In other words, the
block of work assigned to a CPU by the Grid would have to be
repartitioned with the LHRP algorithm to distribute the work
among the cores. Having LHRP on multiple layer would
increase the efficiency of both the Grid latency and the LAN
latency in relation to the inter-CPU latency.

7. REFERENCES
[1] Allen, Gabrielle; Benger, Werner; Dramlitsh, Thomas;

Goodale, Tom; Hege, Hans-Christian; Lanfermann, Gerd;
Merzky, Andre; Radke, Thomas; Seidel, Edward; Shalf,
John. Cactus Tools for Grid Applications. Cluster
Computing, pages 179 – 188, November 2004.

[2] Berman, Francine, Chien, Andrew, Cooper, Keith,
Dongarra, Jack, Foster, Ian, Gannon, Dennis, Johnsson,
Lennart, Kennedy, Ken, Kesselman, Carl, Mellor-Crumme,
John, Reed, Dan, Torczon, Linda, Wolski, Rich. The
GrADS Project: Software Support for High-Level Grid
Application Development, International Journal of High
Performance Computing Applications, pages 327-344,
2001.

[3] El Maghraoui, K. A Framework for the Dynamic
Reconfiguration of Scientific Applications in Grid
Environments. Doctor of Philosophy dissertation,
Rensselaer Polytechnic Institute at Troy, New York, 2007

[4] Foster, Ian, Kesselman, Carl. Globus: a Metacomputing
Infrastructure Toolkit, International Journal of High
Performance Computing Applications, pages 115-128,
1997.

[5] Globus. The Globus Toolkit, July 2007. URL:
http://www.globus.org/tookit/

[6] Java PVM (JPVM). The JPVM Home Page, September
2007. URL: http://www.cs.virginia.edu/~ajf2j/jpvm.html

[7] Kale, Laxmikant. Krishnan, Sanjeev. Charm++:Aportable
concurrent object oriented system based on C++,
Proceedings, Conference on Object Oriented Programming
Systems, Languages and Applications, September 1993.

[8] Karonis, Nicholas T., Brian Toonen and Ian Foster, MPICH-
G2: A Grid-enabled implementation of the Message Passing
Interface, Journal of Parallel and Distributed Computing,
Volume 63, Issue 5, Special Issue on Computational Grids,
Pages 551-563, May 2003.

[9] Koenig, Gregory. Kale, Laxmikant. Using message-driven
objects to mask latency in grid computing applications.
Proceedings of IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2005.

[10] Li, Z. Parashar, M. A Decentralized Computational
Infrastructure for Grid-Based Parallel Asynchronous
Iterative Applications. Journal of Grid Computing, 2006.

[11] Mehta, V. LeanMD: A Charm++ framework for high
performance molecular dynamics simulation on large
parallel machines. Master’s thesis, Univeristy of Illinois at
Urbana-Champaign, 2004.

[12] Strumpen, V.; Casavant, T.L. Exploiting communication
latency hiding for parallel network computing: model and
analysis. International Conference on Parallel and
Distributed Systems, pages 622-627, December 1994.

[13] Tisue, S. and U. Wilensky. NetLogo: A Simple Environment
for Modeling Complexity. Proc. International Conference
on Complex Systems (2004).

[14] Wilkinson, Barry; Allen, Michael. Parallel Programming,
Techniques and Applications Using Networked
Workstations and Parallel Computers 2nd Ed. Prentice Hall,
New Jersey, 2005.

0 20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

LHRP vs LH Compute Time

LH Average
LH MIN
LH MAX

LHRP Average
LHRP MIN
LHRP MAX

Compute Time in ns per Subcell

T
ot

al
 C

om
pu

te
 T

im
e

Figure 7: LH vs LHRP. Compute time test.

	Latency Hiding by Redundant Processing: A Technique for Grid-enabled, Iterative, Synchronous Parallel Programs
	1. INTRODUCTION
	2. PREVIOUS RELATED WORK
	3. DISCRETE SOLUTION TO THE HEAT DISTRIBUTION PROBLEM
	4. LATENCY HIDING BY REDUNDANT PROCESSING (LHRP)
	Stages of Computation and Communication
	Transferring Data over Grid Gap
	Buffer Node Versioning System
	Modeling LHRP's Performance

	5. EXPERIMENTAL RESULTS
	Grid Latency
	Compute Time

	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

