THE

HANDBOOK

COMPUTER
NETWORKS

Distributed Networks, Network Planning,
Control, Management, and New Trends
and Applications

VOLUME 3

Hossein Bidgoli
Editor-in-Chief

Grid Computing Implementation

Barry Wilkinson, University of North Carolina at Charlotte
Clayton Ferner, University of North Carolina at Wilmington

Introduction 63
Grid Computing Infrastructure 63
Web Services 63
Grid Computing Standards 66
Software Components for Grid Computing 67
Grid Security 68
Basic Security Concepts 68
Grid Security Infrastructure 70
Large-Scale Grid Computing Security
Infrastructure 70

INTRODUCTION

This chapter addresses Grid computing implementation
that was introduced in Chapter 139. Grid computing al-
lows people to use geographically distributed, networked
computers-and resources collectively to achieve high-
performance computing and resource sharing. The imple-
mentation of grids has been evolving since the mid-1990s.
Early Grid computing work in the early to mid-1990s fo-
cused on customized solutions—that is, projects devel-
oped in-house software to achieve the interconnections
and Grid computing faculties. The early experiences
provided the impetus for later standardized work. One
of the most important technical aspects of Grid comput-
ing is the use of standard Internet protocols and open
standards. The use of standardized technologies is criti-
cal to the wide adoption of Grid computing. It has now
been recognized that XML and Web services provide a
very flexible standard way of implementing Grid comput-
ing components. We will begin by briefly outlining Web
services, XML, and Web Services Description Language
(WSDL). With that basis, we can then describe the com-
ponents of a Grid computing infrastructure.

GRID COMPUTING INFRASTRUCTURE
Web Services

Web services are software components designed to pro-
vide specific operations (“services”) that are accessible
using standard Internet technology. They are usually ad-
dressed by a uniform resource locator (URL). A URL is a
string of characters that is used to identify a resource on
the World Wide Web. URLs conform to a defined syntax
and include the protocol used to access the resource. For
example www.cs.uncc.edu is the URL of the main com-
puter science page at UNC-C, to be accessed by hyper-
text transfer protocol (HTTP). Web services are designed
to be accessed over a network by other programs. The
Web service itself may be located anywhere that can be
reached on the Internet. A Web service can be used as a
front end to an application to allow the application to be
accessed remotely through the Web service.

Resource Management 72
Data Management 72
Job Schedulers and Resource Managers 73

User Interface and Workflow Management 74
Portals 74
Workflow Editors 74

Conclusion 76

Glossary 76

Cross References 77

References 77

Web services build on previous distributed computing
concepts. An early form of distributed computing was
the remote procedure call (RPC) introduced in the 1980s.
This model allows a local program to execute a procedure
on a remote computer and then get back results from that
procedure. Later forms of distributed computing intro-
duced distributed objects, for example CORBA (Common
Object Request Broker Architecture) and Java RMI (re-
mote method invocation). A fundamental requirement of
all forms of RPCs is the need for the calling programs
to know details of accessing the remote procedure. Pro-
cedures have input and output parameters with specific
meanings and types. The specific calling details need to
be known by the calling program. These details can be
described using an interface description language (IDL),
Web services use an XML-based IDL, which provides a
very flexible and elegant solution, as we shall see.

RPCs introduced an important concept, that of a client-
server model with a service registry, which is retained
for Web services. In a client/server model, the client ac-
cesses the server for a particular operation. The server
responds accordingly. For this to happen, the client needs
to identify the location of the required service and know
how to communicate with the service to get it to provide
the actions required. You can achieve these two things
by using a service registry, which is usually a third party,
in a structure now known as a service-oriented architec-
ture (SOA), as shown in Figure 1. The sequence of events
then is as follows: First, the server (service provider)
“publishes” its service(s) in a service registry. Second, the
client (service requestor) can ask the service registry to
locate the service. Third, the client (service requestor)
binds with the service provider to invoke the service. An
interface description language (IDL) can be used to de-
scribe the service interface.

Key aspects of using Web services in a client-registry-
service model is the use of XML and Internet protocols to
make the arrangement completely platform-independent
and nonproprietary. Let us first consider XML and then
the XML language used to describe the Web service
functionality, called WSDL. Then we will discuss the

63

64 GRrip COMPUTING IMPLEMENTATION

Service registry

Register with registry

Request location of service

Request service details (WSDL file)
WSDL file

Server
(service provider)

Invoke service

(service requester)

Client

Figure 1: Service-oriented architecture

packaging communication protocols used to transmit the
XML documents, known as SOAP.

XML (Extensible Mark-up Language)

Mark-up languages provide a way of describing infor-
mation in a décument such that the information can
be recognized and extracted. The Standard Generalized
Mark-Up Language (SGML) is a specification for a mark-
up language ratified in 1986. A key aspect of SGML is
using pairs of named tags that surround information (the
body), a begin tag <tag_name> and a matching end tag
</tag_name>, where tag_name is the name of the tag.
Tags can be nested.

Hypertext Markup Language (HTML) is a subsequent
mark-uplanguage using asimilar approach but specifically
designed for Web pages. “Hypertext” refers to the text’s
ability to link to other documents. “Markup” refers to pro-
viding information that tells the browser how to display
the page and other things. The meanings of tags in HTML
are predefined—for example, to start bold text and
 to end bold text. Certain tags in HTML do not
necessarily require end tags, such as <P> alone, which
indicates the start of a new paragraph. Many tags can
have attributes that specify something about the informa-
tion between tag pair. For example, <FONT FACE=Times
COLOR=red> specifies that the text in the body will be red
and in Times font. The concept of attributes is very im-
portant and is used extensively in XML.

XML is very important standard mark-up language; it
is a “simplified” SGML, ratified in 1998. XML was de-
veloped to represent textual information in a structured
manner that could be read and interpreted by a computer.
XML is a foundation for Web services, and Web services
now form the basis of Grid computing. Two key aspects
of XML are:

» Names of tags and attributes are not predefined as they
are in HTML. Tags can be defined broadly at will but
must be defined somewhere and associated with the
document that is using the named tags.

» Tags are always used in pairs delineating information
to make it easy to process. (There is an exception to this

rule when the body between the tags is empty, in which
case the opening and closing tags may be combined
into a single tag of the form <tagName/>.)

Tag names and meanings can be created to suit the ap-
plication and become a specific XML language. As such,
an infinite number of XML languages could be invented,
and many have already been.

Namespace Mechanism
If XML documents are combined, there is the problem of
ambiguity if different documents use the same tag names
for different purposes. The namespace mechanism pro-
vides a way of distinguishing tags with the same name, and
is used widely within XML documents. With the name-
space mechanism, tag names are given an additional
namespace identifier to qualify it. The fully qualified name
is given by namespace identifier plus the name used in the
document. The namespace identifier used is a uniform
resource identifier (URI). A URI is a string of characters
used to identify a resource. An extension of URIs to cover
international language symbols is called an international
resource identifier (IRI). Typically, a namespace uses a
URL. (URLs are a subset of URIs and include the protocol
used to access the resource.) Even though the namespace
may be a URL, the URL is only used as a means of dis-
tinguishing tag names and solve any ambiguity. The URL
does not need to exist. However, typically one would place
a read-me document at the location if a URL is used. This
practice has been formalized into providing a Resource
Directory Description Language (RDDL) document.
Rather than simply concatenate the namespace identi-
fier with the local name throughout the document, the
names in the document are given a prefix separated from
the name with a colon. The association of namespace
identifier and prefix is done using the xmls attribute in
the root element, in which the qualifying name is the at-
tribute’s value. There can be more than one namespace
attribute, each associated with a different prefix, and there
will also be a default namespace defined for names with-
out a prefix.

GRiD COMPUTING INFRASTRUCTURE 65

Schemas

So far, we have not said which tags are legal in a docu-
ment and how the tags are associated with a particular
meaning and use. One way to define which tags are legal
in a particular XML document is to describe them within
the document in the document type definitions (DTD).
However, this approach has serious limitations in terms
of system integration and flexibility and is not currently
used for Web services. In fact, they are not allowed in
SOAP messages (the messaging protocol used for XML
documents; see below). An alternative and much more
powerful approach is to define legal tags in another
XMLdocument,called a “schema,” and associate that sche-
ma document with the content XML document, either
explicitly or by common agreement between the parties.
XML schemas, also expressed in XML, provide a flexible
way of handling legal element names and have the nota-
tion of data types. This approach also leads to different
XML languages, each with its own schema. Once a schema
exists for a particular XML language, it can be associated
with XML documents, or instances of possible documents
using the schema.

Since a schema is also an XML language, there should
also be a schema for schemas. The schema for the
XML schema is predefined and specified in the XSD (XML
schema definition) language. More details on XML sche-
mas can be found at the W3C website (W3C Architecture
Domain XML Schema, n.d.).

SOAP

SOAP is a communication protocol for passing XML doc-
uments, standardized by the W3C organization (World
Wide Web Consortium). Originally, SOAP stood for sim-
ple object access protocol. However, the spelled-out ver-
sion has since been dropped because this name was not
accurate; specifically the protocol does not involve object
access. The draft W3C specification (Gudgin et al. 2003)
describes SOAP as follows:

SOAP Version 1.2 (SOAP) is a lightweight proto-
col intended for exchanging structured informa-
tion in a decentralized, distributed environment.
It uses XML technologies to define an extensible
messaging framework providing a message con-
struct that can be exchanged over a variety of
underlying protocols. The framework has been
designed to be independent of any particular
programming model and other implementation
specific semantics.

SOAP provides mechanisms for defining the communi-
cation unit (a SOAP message), the data representation,
error handling, and other features. SOAP messages are
transported using standard Internet protocols, most
likely HTTP.

Web Service Definition Language

In the Web services approach, there needs to be a way of
generally and formally describing a service, what it does,
how it is accessed, etc. in an IDL. The World Wide Web
Consortium (W3C) has published an XML standard for

describing Web services called Web Service Description
Language (WSDL). WSDL version 1.1 was introduced in
2001. WSDL version 2 was introduced in 2004 and made
a number of clarifyving changes.

A WSDL document describes three fundamental
properties of a service:

+ What it is—operations (methods) it provides
» How it is accessed—data format, protocols
* Where it is located—protocol specific network address

The abstract definition of the operations is contained
in the element called interface (called a portType in
WSDL version 1.1). This element contains elements
called operation that specify the types of message sent
and received (input and output elements). These opera-
tion elements loosely correspond to a method prototype.
The messages are further defined in terms of data types
being passed in the type element. The binding element
describes how to access the service—that is, how the ele-
ments in abstract interfaces are converted in actual data
representations and protocols (e.g. SOAP over HTTP). In
WSDL version 2, the service element described where
to find the service. The service element contains the
endpoint element, which provides the name of the end
point and physical address (URL). (The service element
was defined differently in WSDL version 1.1. The port
elements describe the location of a service and the serv-
ice element defined a named collection of ports.) More
information on WSDL version 2 is given by Booth and
Liu (2005).

Putting It Together
The basic parts of a service-oriented architecture are
the service provider (server), service requestor (client), and
service registry. Web services can use a UDDI (Universal
Description, Discovery and Integration) registry, which it-
self is a Web service. UDDI is a discovery mechanism for
Web services and provides a specification for modeling
information targeted primarily toward business applica-
tions of Web services. For Grid computing applications,
other ways of forming service information for discovery
are available including using WS-Inspection Language
(WSIL) (IBM 2001). After a registry is populated with
Web service entries, the client can access the registry to
find out whether the desired Web service exists in the reg-
istry and if so where it is located. The registry responds
with the identification of the server capable of satisfying
the needs of the client. Then, the client can access the
server for the Web service interface. The server responds
with a WSDL document describing the service and how to
access it. The client can then send the Web service a
request for an operation. The result of the operation is
returned in a message from the Web service. All messages
in this architecture are SOAP messages. It would be fea-
sible for the registry to return the WDSL interface docu-
ment and then with this in hand, the client could make
a request immediately to the Web service without asking
for its WSDL interface document.

Note that the registry itself has to be known both to
the client and the service provider. Of course, a registry is

66 GRrID COMPUTING IMPLEMENTATION

Network

Web service container

Web services

Client

WSDL
service
description

unnecessary if the client knows about the Web service al-
ready and the location of the Web service never changes.
However, in a dynamic and distributed Grid computing
environment, a registry or information service is neces-
sary. Now let us look at how to implement a Web service
and client. Web services are generally “hosted” in a Web
service container—that is, a software environment that
provides the communication mechanisms to and from
the Web services. Web services are deploved within such
an environment. There are several possible environments
that are designed for Web services, notably, Apache Axis
(Apache eXtensible Interaction System), IBM Websphere,
and Microsoft NET. The J2EE (Java 2 Enterprise Edi-
tion) server container is also a candidate for hosting Web
services especially in enterprise (business) applications.
Apache Axis requires an application server. It can be in-
stalled on top of a servlet engine such as Apache Jakarta
Tomcat. However, it could be installed on top of a fully
fledged J2EE server.

For the implementation, it is convenient to connect the
service code to the client through two Java classes that
act as intermediaries, one at the client end called a “client
stub” (also called a “client proxy”) and one at the serv-
ice end called a “server stub” (also called a “skeleton”).
These stubs provide a structured way to handle the mes-
saging and different client and server implementations.
Interaction is between the client and its stub, between the
client stub and the server stub, and between the server
and its server stub. The interaction between the stubs is
across the network using SOAP messages. The client stub
is responsible for taking a request from the client and
converting the request into a form suitable for transmis-
sion, which is called “marshaling.” The client stub is also
responsible for receiving responses on the network and
converting to a suitable form for the client. The server
stub is responsible for receiving a SOAP request from the
client stub and converting it into a suitable form for the
service, called “unmarshaling.” The server stub also con-
verts the response from the service into a SOAP message

Typically SOAP

messages typically

carried with HTTP
transport

Figure 2: Web services environment

for the client stub. The resulting Web service environ-
ment is shown in Figure 2.

Web services deployment descriptor (WSDD) is an
XML language used to specify how to deploy a Web serv-
ice. More details of Web services and their deployment
can be found in Graham et al. (2005).

Grid Computing Standards
Early Grid Computing Standards

Although Web services are very attractive as a basis for
creating a grid infrastructure, Grid computing requires
some way of representing state—that is, values that per-
sist from one invocation of the service to the next. Pure
Web services do not have state. Another feature needed in
Grid computing is the ability to make a service transient—
that is, to be able to create and destroy a service. Typically,
transient services are created by specific clients and do
not outlive their clients. Web services are usually thought
of as nontransient and do not have the concept of serv-
ice creation and destruction. Hence, some changes are
needed to the Web services approach if it is to be adapted
to Grid computing.

The Global Grid Forum (GGF), in developing stand-
ards for Grid computing, focused on using Web serv-
ices and originally developed two interrelated standards
called Open Grid Services Architecture (OGSA) and Open
Grid Services Infrastructure (OGSI). The term Grid service
was introduced as the extended Web service that conforms
to the OGSI standard. OGSA defines standard mecha-
nisms for creating, naming, and discovering Grid services
and deals with architectural issues to make interoperable
grid services. OGSA is described in the seminal paper
“The Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration” by Foster,
Kesselman, Nick, and Tuecke (2002). OGSI specifies the
way that clients interact with grid services (that is, service
invocation, management of data, security mechanism,
etc.). These standards appeared in the early 2000s and

GrID COMPUTING INFRASTRUCTURE 67

were implemented in the Globus Toolkit version 3 in
2003. In OGSI, the Web service model was extended to
enable state to be implemented. An extension of WSDL
was invented called Grid Web Service Description Lan-
guage (GWSDL) to support the extra features in Grid
services not present in Web services. However, OGSI had
a very short life. The Grid community at large did not
embrace OGSI, which was seen by many as too complex.
The push was made to align OGSA more closely with Web
services so that existing Web service tools could be used.
This led to the Web Services Resource Framework, which
is discussed below.

Web Services Resource Framework
Web Services Resource Framework (WSRF) presents
a way of representing state while still using the basic
WSDL for both Web services applications in general and
Grid computing in particular. Instead of modifying the
WSDL to handle state, the state is embodied in a separate
resource. Then, the Web service acts as a front end to
that resource as illustrated in Figure 3. The resource still
needs to be described in the WSDL file, which is achieved
in a resources properties section of the WSDL file. The
combination of a Web service and resource in this frame-
work is called a WS-Resource. The resource in this de-
scription can mean anything that has state and requires
access, such as a database, or variables of a Web service
that need to be retained between accesses.

The WSREF specification calls for a set of six Web serv-
ices specifications:

* WS-ResourceProperties

* WS-ResourceLifetime

* WS-Notification

* WS-RenewableReferences
* WS-ServiceGroup

* WS-BaseFaults

WS-ResourceProperties describes how resources are
defined and accessed. Other aspects of WSRF deal with
using multiple resources, resource lifetime, and how to
obtain notification of changes (WS-Notification).

Web services are traditionally addressed simply by
a URL, but this does not provide much functionality.
A specification called WS-Addressing has been introduced
to provide more than just the URL, and it is particularly

Figure 3: Web Services Resource Framework

Holds information
retained between
accesses

relevant to WSREF, as it provides a way of specifying re-
sources as well as the Web service. WS-Addressing intro-
duced a construct called an end-point reference (EPR).
An end point is the destination where the service can be
accessed. An end-point reference is a structure that pro-
vides the end point address as a URI (more recently as an
IRI). The structure also provides other, optional informa-
tion, consisting of reference parameters and metadata.
The metadata include information about the behavior,
capabilities, and policies of the end point.

According to the W3C document “Web Service Address-
ing 1.0 Core” (Gudgin and Hadley 2005), the reference
parameters are “namespace qualified element informa-
tion items that are required to properly interact with
the endpoint.” For WSREF, the reference parameter fea-
ture is used to convey the identity of the resource. (WS-
Addressing originally included a parameter named “refer-
ence properties” that was used.) The end-point reference
is then called “WS-Resource-qualified” (Czajkowski et al.
2004). The resource identity can simply be an assigned
number or a character string. It is called a “key” by
Ananthakrishnan et al. (2005). The end-point reference
tvpically would be returned when the WS-Resource
is created and can be used to identify it for access and
destruction.

Software Components for Grid Computing
The Globus project (Foster 2005; The Globus Toolkit

2006) provides reference implementations for Grid com-
puting standards and is a de facto standard itself. The
approach taken by Globus is to provide a toolkit of com-
ponent parts, which can be used separately or, more
likely, collectively for creating a grid infrastructure. The
Globus Toolkit has gone through four versions from the
late 1990s to 2005. Many of the ideas embodied in Glo-
bus were present from version 1 of Globus, including job
submission and security mechanisms. Globus version 2
describes the basic structural components within a grid
security environment as three pillars:

» Resource Management
* Data Management
« Information Services

This division of parts essentially remains in the current
release. The principal task of the resource management

Web Services Resource Framework
(WSRF)

Client

Web Service

Resource
properties

1
L1

68 GRID COMPUTING IMPLEMENTATION

component, GRAM (Grid Resource Allocation Manager),
is to submit jobs. These jobs are submitted to local re-
sources via a local scheduler. GRAM provides an interface
to local schedulers such as load sharing facility (LSF)
(Platform 2006), Portable Batch System (PBS) (Altair
Grid Technologies 2006), Sun Grid Engine (SGE) (Sun
N1 Grid Engine 6 2006), and Condor (Thain, Tannenbaum,
and Livny 2003), which then pass the job onto the com-
puter resources. Jobs often need data files, and the data
management component provides the ability to transfer
files to the required places. The key component is the grid
version of FTP called GridFTP. Grid Information Services
(GIS), as the name suggests, provide information about
the grid infrastructure. The information directory service
in Globus version 2 is called Metacomputing Directory
Service (MDS), which enables Lightweight Directory Ac-
cess Protocol (LDAP)-based information structures to be
constructed. Globus version 2 Grid Resource Information
Service (GRIS) provided information on the computa-
tional resources (configuration, capabilities, status). The
Grid Index Information Service (GIIS) was also provided
for pulling together information.

Globus version 3 retains the basic components of ver-
sion 2 but is implemented using OGSA/OGSI standards.
Globus version 4, introduced in 2005, builds on previ-
ous versions and implements the components using the
WSRF standard. Note, however, that versions are not
backward-compatible, as the standards they followed are
not compatible; although some pre-Web-services compo-
nents remain in later Web-service versions. Also note that
even in the WSRF Globus version 4, for efficiency rea-
sons, that some functionalities are not Web services. For
example, GridFTP is not a Web service, although there
is a Web-service front-end available (reliable file trans-
fer [RFT] service, see below). A common feature of all
versions (1, 2, 3, and 4) is the use of the public key in-
frastructure (PKI) for security. Security is considered in
detail in the following section.

GRID SECURITY
Basic Security Concepts

It is clearly necessary in the distributed structure of a
Grid infrastructure to secure communication and secure
access to resources to stop unauthorized access and tam-
pering. Security is also required in important transac-
tions on the Internet, and hence similar mechanisms that
are used there can be used in Grid computing, following
the strategy that standard Internet protocols should be
used for widespread adoption of Grid computing. There
are some special additional security requirements for
Grid computing. First, secure communication is needed
not only between users but also between users and re-
sources, such as computers, and between the resources
themselves. Second, specifically related to communica-
tion between resources themselves, it is necessary to del-
egate the user’s authority to programs to act on the user’s
behalf, including at remote sites, while preferably requir-
ing the user to sign on only once (single sign-on). Before
developing the full solution to these factors, let us first
consider general security concepts.

Two critically important security concepts are:

» Authentication—The process of deciding whether a par-
ticular identity is who he, she, or it says he, she, or it is
(applies to humans and systems)

* Authorization—The process of deciding whether a par-
ticular identity can access a particular resource, includ-
ing whether the specific type of access is allowed. This
latter aspect is commonly called Access control.

The traditional way to authenticate users is for each to
have a username and password. Users who wish to be
authenticated enter their username and password, which
are sent to a server through the network. Upon receipt,
the server validates the username and password and re-
sponds accordingly. There are two aspects to make such
password-based authentication workable:

* Information needs to be sent in a form that is unin-
telligible except to the parties involved, otherwise the
username and password could be stolen.

* The identity of the sender has to be proved in some
fashion.

The term data confidentiality is used to describe the pro-
tection of the information exchange from eavesdroppers,
and this is done by scrambling the binary patterns in a
process called “encryption.” There are many algorithms
that could be used to encrypt data. Usually, the algo-
rithm is not kept secret. Instead a number used in the
algorithm is kept secret. This number is called a “key.” To
make it difficult to discover the key, the key chosen is a
very large number, typically 128 bits or more. In secret key
cryptography or symmetric key cryptography, the same
key is used to encrypt the data as to decrypt it. In that
case, both the sender and the receiver need to know the
key, but the key has to be kept secret from everyone else.

It is possible to devise an algorithm that uses two
keys, one to encrypt the data and one to decrypt it. This
is known as “asymmetric key cryptography.” In this form
of cryptography, one key, called the “public key,” is made
known to evervone, while the other key, called the “private
key,” is known only to the owner. Data encrypted with
the receiver’s public key can be decrypted only by the re-
ceiver using his or her private key. Asymmetric key cryp-
tography is also called “public key cryptography” because
of the use of one key being made publicly available. In
asymmetric cryptography, there is no known practical
way of discovering one key from the other key. However,
it is slower to encrypt/decrypt data using public key cryp-
tography than using secret key cryptography. In addition,
if you were to encrypt data using a receiver’s public key,
the receiver cannot be sure of the identity of the sender,
as everyone has access to the public key. So mechanisms
need to be in place to confirm identities.

Data integrity is the name given to ensuring that data
were not modified in transit (either intentionally or by
accident). Data confidentiality—that is, protecting the
data from eavesdroppers—is obtained by encrypting
the data. To achieve data integrity, a binary pattern
called a “digest” is attached to the data, computed from
the data using a hash function. The digest is different

GRID SECURITY 69

Network
Original data Hash
Hello. m
This is my lidie Dte >
message. U
) v) If same,
Private i Public ok
Hash key key
Digital
signature
Digital
signature
Figure 4: Checking digital signatures

if the data have been altered in transit. To achieve both
data integrity and authentication, the digest is encrypted
with the sender’s private key to create a digital signature,
which is attached to the data instead of the digest itself.
The receiver can check the digital signature by decrypting
the signature (with the sender’s public key) and compar-
ing the result with the digest created separately from the
received data, as illustrated in Figure 4. Note that if data
can be decrypted with the sender’s public key, it can only
have been encrypted with the sender’s private key and
hence by the sender.

However, digital signatures alone are not sufficient to
ensure that the data are truly from the sender. It is possible
that the public key is a fake—i.e. from an attacker instead
of from the trusted sender. To cover this possibility, users
are issued certificates, which are digital documents listing
the user’s specific public key. A trusted third party called
a “certificate authority” (CA) certifies that the public key
does in fact belong to the user named on the certificate.

Certificates are comparable to driver’s licenses and
passports as a form of identity. The most widely used
certificate format is the X.509. Version 1 of this format
was defined in 1988 by International Telecommunica-
tions Union (ITU). Versions 2 and 3 added some fields.
Information provided in the certificate includes the name
and digital signature of the issuer (certificate authority),
algorithm used for signature, name of the subject (user),
subject’s public key, public key algorithm used, and va-
lidity period. Names have to be unique and recogniz-
able. To this end, the X.500 distinguished name format
is used. The X.500 naming format is a hierarchical list
of attributes that is intended to make the name globally
unique. An example of a distinguished name is: /C=us/
O=University of North Carolina at Charlotte/
OU=Computer Science/CN=Barry Wilkinson, where
C indicates country, O the organization, OU the organiza-
tional unit, and CN the common name. Another possible
attribute is /L for location. How names are constructed
must be agreed on by all parties and is part of written cer-
tificate policies. There are obviously many possibilities,
even within the constraints of the X.500 distinguished
name format, from highly hierarchical to almost flat.

To obtain a signed certificate for themselves, users first
contact a certificate authority. Generally, the user gener-
ates his or her own public/private key pair and sends the
public key to the certificate authority, keeping the private
key in a very secure place. The certificate authority re-
turns a signed certificate. The certificate authority has to
be given some means of proving the identity of the user,
which may require some off-line procedure in which hu-
mans communicate—i.e. the user communicates with the
manager of the certificate authority. Once the user has
a signed certificate, the certificate can be sent with the
data to other parties. Alternatively, the data can be sent
without the sender’s certificate and the receiver retrieves
the sender’s certificate from a public place. Either way, the
receiver of a user certificate can verify the certificate by
verifying the CA’s signature. Then, it can trust the sender’s
public key contained in the certificate. It is necessary for
the receiver to have the certificate authority’s public key,
which is obtained from the certificate authority’s own
certificate. (The certificate authority signs its own certifi-
cate.) This process works if one can trust the certificate
authority and its public kev.

There are several protocols that use the above PKI, the
most notable being SSL (secure sockets layer), which can
be added on top of protocols such as HTTP and FTP. The
SSL protocol involves exchanging a sequence of messages
that includes randomly generated numbers, and provides
for mutual authentication, although in many Web ap-
plications the user is not authenticated, only the server.
Commercial certificate authorities exist, such as Veri-
sign and Entrust Technologies. Web browsers have built-
in recognition for such trusted certificate authorities to
allow SSL and other secure connections.

Certificates have a valid time period specified on the
certificate defined by “not before” and “not after” parame-
ters. Typically, the validity period set is quite long, say one
vear or five vears. It is critically important to maintain
the private key very securely, usually on your local com-
puter encrypted using a password. The private key will be
used to encrypt data that are to be decrypted with vour
public key and to decrypt data that was encrypted with
your public key.

70 Grip CompPutING IMPLEMENTATION

At the beginning of this section, we differentiated be-
tween authentication (the process of deciding whether a
particular identity is who he says he is), and authoriza-
tion (the process of deciding whether a particular identity
can access a particular resource). A simple authorization
mechanism is the access control list found in UNIX/Linux
based systems and also in Windows systems. An access
control list is a table listing the users and groups of us-
ers allowed to access particular resources and what type
of access is allowed. In a UNIX/Linux-based system, for
example, access to files and directories are controlled by
an access control list. The access control list concept can
be carried over to Grid computing systems, although the
distributed nature and different administrative domains
of resources of a grid make it desirable to have further
mechanisms, which we shall discuss in the next section.

Grid Security Infrastructure

Grid Security Infrastructure (GSI) is the Grid comput-
ing security that is implemented in Globus; it is a GGF
standard. GSI uses PKI and the SSL protocol for mutual
authentication. More recently, WS-Security can be used,
which is an extension to SOAP messaging for security.
Grid computing projects usually form their own certifi-
cate authorities. The Globus Toolkit provides an imple-
mentation of a certificate authority called “simpleCA”
that can be used for small projects. We shall discuss CAs
for larger projects later. First let us consider additional
security features required for Grid computing.

Delegation
Delegation is the process of giving authority to another
identity (usually a computer or process) to act on one’s be-
half. Implicit in delegation is the concept of single sign-on,
which enables users and its agents to acquire additional
resources without repeated authentication. Usually, the
user’s private key is password-protected (encrvpted with
a password) and each time a user has to access the pri-
vate key to perform a security-related operation, the user
would need to type in the password. Single sign-on avoids
this practice. Delegation is achieved by the use of addi-
tional certificates called “proxy certificates” (loosely called
“proxies”). Proxy certificates are signed by the user (or
the proxy entities themselves in a chain of trust) rather
than by the certificate authority. Proxy certificates are
created with new public and private keys and the user’s
name with the attribute /CN=proxy added to the name.
The private key of the proxy is not password-protected,
only file-system-protected in the user’s file system. (If it
were password-protected, it would defeat the purpose of
reducing the need for typing passwords). To combat this
insecurity, the validity period of proxy certificates is set to
be short, say 12 hours, and, of course, not past the valid-
ity of the original user certificate from which it is based.
Suppose the user wants to delegate his authority to a
third party to act on his behalf. This third party requires
a proxy certificate signed by the user and she makes a
request to the user for a signed proxy certificate, just as
the user asked a certificate authority for a certificate for
himself. Acting as his own proxy certificate authority,
the user returns a proxy certificate signed by himself.
The user also sends her own certificate, The third party

requires the user’s certificate to be able to validate to the
proxy certificate, just as the CAs certificate is required
to validate the certificate. As described by Ferreira et al.
(2004), both the certificate and the proxy certificate are
checked for the user’s name (the proxy with the added
proxy attribute). Once all validation is done, the third
party can issue requests to others on the user’s behalf, us-
ing the proxy’s private key to encrypt messages.

The delegation process can also be chained—that is,
the third party having the proxy can generate a proxy to
another party using the same procedure as described for
the user giving its proxy. In that case, the proxy issuing
its proxy certificate signs it. Proxy certificates are part of
the Globus GSI and are proposed as a standard (GT 4.0
Security: Key Concepts, n.d.). Proxies are used for delega-
tion locally as well as remotely. Creating a proxy is one
of the first actions a user must do when using Globus
with the command grid-proxy-init.

Credential Management

A certificate and corresponding private key are collectively
called the “credentials” (i.e. user credentials, proxy cre-
dentials, host credentials, etc.). However, the private key
is available only to the owner, and the word credentials is
used quite loosely as not including the private key, which
should not be transferred under any circumstances. It
is convenient to have a central credential repository to
store proxy credentials, which then can be accessed as re-
quired rather than having to maintain the credentials in
several places. Globus version 4 provides a proxy creden-
tial repository called MyProxy (MyProxy Credential Man-
agement Service 2006). MyProxy is accessed by other
components to store, retrieve, and renew proxy creden-
tials. These components include grid portals and job
managers, as described later.

Authorization

To connect to a remote site, you need permission (au-
thorization) and an account. The simplest authorization
mechanism is a form of access control list called a “grid-
map file.” The grid-map file is a file maintained at the
site and holds list of user’s distinguished name (as given
on their certificates) and their corresponding local ac-
count name. An entry might be: “C=us/0O=University
of North Carclina at Charlotte/OU=Computer
Science/CN=Barry Wilkinson” abw where abw is the
local username. The user’s local access rights apply. It is
allowable to map more than one user to a single local
account if desired—i.e., to have a group working with a
single account.

The grid-map file approach, although straightforward
and implemented in GT 4.0, does not scale well. It re-
quires each resource in the grid to maintain a separate
grid-map file containing entries for all those expected to
use the site. For a system with more than two or three
sites, this becomes unmanageable.

Large-Scale Grid Computing Security
Infrastructure

There are many issues in creating a large-scale Grid com-
puting infrastructure. In the previous section, we saw

GRID SECURITY 71

that the traditional access control list, although feasible
for a small system, is unworkable for a large system. Grid
computing is all about large-scale geographically dis-
tributed infrastructures. Many of the problems for large-
scale structures are still open research problems with
many potential solutions being suggested. Building a
large-scale grid system around the basic tools of GSI will
require additional scalable tools.

Authentication

Rather than have a single certificate authority, one might
choose to use multiple certificate authorities, perhaps
one at each major site in the Grid. This was done for
an undergraduate Grid computing course taught across
North Carolina (Wilkinson and Ferner 2005). Each user
receives a certificate issued by one of the certificate au-
thorities. When the certificate is submitted to another
site for authentication, it is necessary for that site to trust
the issuing certificate authority as illustrated in Figure 5.
Globus provides for the configuration of trusting multiple
certificate authorities. The certificate of the certificate au-
thority and a configuration file defining the distinguished
names of the certificates signed by the certificate author-
ity are simply loaded in the trusted certificate directory of
Globus. Each Globus installation would need these two
files for each certificate authority to be trusted. It is clear
that this approach is not scalable or flexible for a grid that
might grow or change in configuration. However, main-
taining a list of trusted certificate authorities is the way a
Web browser handles trusted certificate authorities.

PKI trust can be chained. Suppose A receives B's cer-
tificate for validation, and B's certificate is signed by a
certificate authority C, whom A does not immediately
trust. If A is also given C's certificate, which is signed by
certificate authority D, whom A does trust, then A can
obtain the public key of B’s certificate authority and trust
it. One could construct a hierarchical, tree-like certificate
authority structure, with a single root certificate author-
ity that evervone trusts. This root certificate authority
signs certificates of certificate authorities below it, which
themselves can sign certificates of certificate authorities

Sign
certificates

environment

[T

Figure 5: Certificate authorities with mutual
trust

N

below and so on until a certificate authority is reached
that signs users’ certificates. If A wishes to accept B's
certificate, it needs to work back from B’s certificate to
the root certificate authority that it trusts. A certification
path is established that has to be navigated. A single-root
certificate authority has the disadvantage that if the root
is compromised, the whole system is compromised. How-
ever, the tree structure may be convenient in some organ-
izations having a similar physical hierarchical structure.

There are other certificate authority configurations us-
ing the feature that certificate authorities can be cross-
certified. Here, a pair of certificate authorities sign each
other’s certificates. Usually, a user trusts the certificate
authority that signs its own certificate. If a group of cer-
tificate authorities are cross-certified in pairs and there
is a path between the certificate authority of A and the
certificate authority of B, one can establish trust between
A and B. This avoids the single trust point of a tree struc-
ture and also enables arbitrary PKIs to be formed.

If more than one PKI already exists, either a tree or
some arbitrary network, a bridge certificate authority
may be attractive, which forms a trust between one cer-
tificate authority in one PKI and one certificate authority
in another PKI. Each such certificate authority is cross-
certificated with the bridge. The advantages of a bridge
configuration is that it reduces the number of cross certif-
icates from O(N?) to O(N), where N is the number of CAs
in the configuration, and the whole configuration is not
compromised if a single CA is compromised. An exam-
ple of a grid using bridge cross-certification is the SURA-
Grid (SURA NMI Testbed Grid PKI Bridge Certification
Authority, n.d.).

Authorization

Scalable authorization structures are also needed in
larger grids. The Communication Authorization Service
(CAS) is a component, available in Globus versions 3 and
4, designed to handle the authorization of many distrib-
uted users and many resources. CAS maintains informa-
tion on what rights the grid community grants to users.

Mutual
trust

h 4

CA1 CA2

F Y

Sign
certificates

environment

Request access to resource
using certificate signed by CA1

Trusted Certificates and
Distingushed name files

I

72 Grip COMPUTING IMPLEMENTATION

The user first asks CAS for permission to use a resource.
CAS gives the user proxy credentials with specific rights—
that is, a policy statement signed by CAS. The user then
presents these credentials to the resource. The resource
trusts credentials signed by CAS and accepts the request
it the policy statement contained in the credentials au-
thorizes the user for the specific request.

VOMS (Virtual Organization Membership Service)
is another system for granting authorization to access
resources in a virtual organization. In the VOMS system,
the user is assigned membership of groups with roles and
capabilities. This information is contained in the proxy
certificates returned to the user. Interestingly, this project
started by facing the difficulties of using grid-map files
but does provide an automatic way of creating grid-map
files. Another system that can create grid-map files lo-
cally is GUMS (Grid User Management System 2006).
In GUMS, the grid-map file can be created statically or
dynamically to jobs by the GUMS server.

Organizations will already have a local security system
in place for their networks and computers, with which
a grid security system may have to interface. One such
system, created by MIT, is Kerberos, which provides a
network authentication protocol. Kerberos uses tickets,
which are electronic credentials used to verify your iden-
tity and provide specific access rights. Users first receive
a ticket-granting ticket encrypted with their password. If
they can decrypt this ticket, they have proved their iden-
tity and can obtain additional tickets for specific access
rights. Kerberos has the single sign-on feature. For more
information, see the Kerberos documentation (Kerberos:
The Network Authentication Protocol, n.d.) The KX.509
project (KX.509: X.509 Certificates via Kerberos 20053)
provides a means of creating X.509 certificates that are
Kerberos-authenticated. These certificates are issued by
a Kerberos-authenticated server (KCA). PKINIT is an
Internet Engineering Task Force (IETF) Internet draft
for authentication in Kerberos that allows a Kerberos
ticket to be obtained using GSI credentials rather than a
Kerberos password.

SAML (Security Assertions Markup Language) is an
Organization for the Advancement of Structured Infor-
mation Standards (OASIS) standard XML language for
communicating user authentication and authorization in-
formation. SAML provides assertions that contain state-
ments. These statements are grouped into authentication
statements that indicate that the user has been authenti-
cated, attribute statements used for making access control
decisions, and authorization decision statements. SAML
is a language for use in single sign-on authentication and
authorization systems but is not an implementation. An
example of a system using SAML is Shibboleth. Detailed
information on SAML is given by Hughes and Maler
(2005). More information on Shibboleth can be found at
Shibboleth Project Web site (Shibboleth Project, n.d.).

RESOURCE MANAGEMENT
Data Management

One of the most challenging issues that has come up
in recent years is the management of the large amounts

of data being collected by scientists. The challenges of
managing large volumes of data are where to store it, how
to classify it, what metadata does it need, how to transfer
it, where to find data of interest, how to deal with repli-
cation, how to deal with distribution, etc. There are sev-
eral tools included with the Globus Toolkit that can assist
with dealing with data in particular for transferring files.

One component is GridFTP (Allcock et al. 2005).
GridFTP is actually a protocol, although the Globus
Toolkit has an implementation of GridFTP. The protocol
builds on the FTP protocol. The extension includes se-
curity, reliability, striping, third-party transfers, partial
file access, and parallel transfers. GSI security is used,
which is PKI-based. Reliability is achieved by having the
receiving server periodically send restart markers to
the sending server. These markers indicate which bytes
have been received so far. This allows the sending server
to restart the transfer as necessary. Striping is when either
the sending side, receiving side, or both are clusters shar-
ing a parallel file system. Striping allows for each node
in the cluster to send part of the file in parallel. GridFTP
also supports parallel data transfer through the use of
multiple TCP streams between pairs of hosts.

Third-party transfers are a very useful feature, in which
a user can initiate from one machine a file transfer that
takes place between two other machines. For example, a
scientist may want to run a program on a supercomputer
with data that currently resides in a data store on another
server, but the scientist is currently using a laptop for
access. Third-party transfer will allow the scientist to stage
the file on the supercomputer without the need to transfer
it to the local laptop, which may be impractical or even
infeasible if the file is large. Partial file access allows one to
transfer only part of a file by providing an offset and total
number of bytes desired. This is useful for file caching.

The GridFTP protocol is a low-level file transport pro-
tocol. It has very nice and useful features, but should
be viewed as a tool on which higherlevel tools
should be developed. Reliable file transfer (RFT) (Cher-
venak et al., 2004) is a WSRF-compliant Web service for
the transfer of files. Since it makes use of GridFTP, many
of the features of GridFTP are available through RFT,
such as GSI security, reliability, third-party transfers, and
parallel streams. RFT also allows for file deletion
and third-party file and directory transfers. RFT extends
the reliability of GridFTP by using a PostgresSQL data-
base to store restart markers. These restart markers are
used as checkpoints and will allow RFT to continue the
file transfer after server, network, container, or file system
failures. The RFT Resource is implemented as a Persistent-
Resource, which allows RFT to restart file transfers even
after the Web services container is restarted. RFT is a
very useful Web service for data management. Its primary
contribution is its reliability. Although it is still fairly low-
level, most higher-level tools should make use of RFT to
take advantage of the security and reliability.

Once a file is transferred between hosts (either FTP,
SFTP, GridFTP, or RFT) then there is an automatic dupli-
cation of that file. Often, the new copy is a temporary file
and will be destroved in short order. Other times, the
file persists. One might view this as wasted space. How-
ever, duplication can also be useful. If a scientist transfers

RESOURCE MANAGEMENT 73

a file from a data store to a supercomputer and another
scientist needs the same file for another computation
on the same machine, then the file would not need to be
transferred twice. More likely, there may be a copy of a
desired file on a file system that is more local than the file's
source. Transferring the file from the local file system will
likely be faster.

Replica location service (RLS) (Cai, Chervenak, and
Frank 2004) attempts to make these scenarios possible
by creating a distributed registry of file replicas. RLS
introduces the terms logical file name, which is a unique
identifier associated with the file contents, and physical
file name, which refers to an actual file on an actual file
system. An RLS deployment consists of at least one local
replica catalog (LRC), which stores the logical to physical
file name mappings. Clients can query this catalog as well
as publish newly created files.

The RLS registry may be distributed, which allows
for scalability as well as reliability against a single server
crash. For a distributed configuration, RLS uses one or
more replica location index (RLI) nodes, which collect
logical to physical file name mappings from one or more
LRCs. Figure 6 shows such a configuration. When a client
queries the RLI, the RLI provides it with a list of LRCs
where it believes the desired mappings exist. The client
would then’ need to query those LRCs for the physical
locations of the desire file replica. Mappings are sent from
the LRCs to the RLIs using a soft-state update protocol.
This allows for the mappings to be transferred only pe-
riodically. Since the mappings have timeouts associated
with them, a RLI that is brought back online after a
failure will have its mapping restored.

The data replication service (DRS) (Chervenak et al.
2005) is a WSRF-compliant Web service built on top of
RFT and RLS. It attempts to make sure that a set of files
is available on a particular file system. It will query RLS
to find the desired files. Then it will use RFT to carry out

the transfer. After the files have been transferred, DRS
will register the duplicates with RLS. DRS is a very pow-
erful tool that provides a nice abstraction of data man-
agement to the user. There does not seem to be much use
of this level of abstraction in Grid applications yet. How-
ever, tools like DRS will be necessary components as the
Grid resources and number of users grow.

Job Schedulers and Resource Managers

The Globus Toolkit does not have schedulers built in
(with the exception of a “fork” scheduler, which is hardly
a scheduler). Schedulers are provided by third-party ven-
dors. There are two levels of scheduling in the Globus envi-
ronment: local scheduling, which Globus uses to carry out
the execution of a job on a local resource, and metasched-
uling, which is a higher level than the grid middleware.

The basic scheduling mechanism that ships with Glo-
bus as the default scheduler is Fork. Fork simply forks a
new process in which to run the job. Fork does not pro-
vide many features other than the ability to start a job
and monitor its status. It is meant only as a tool to allow a
server with Globus to function out of the box. Users desir-
ing more functionality should use one of the many other
third-party schedulers that provide a much richer set of
features.

There are many scheduling packages available, and
most of them provide similar functionality. A few of the
more popular or well-known scheduling systems are Port-
able Batch System (PBS) (Altair Grid Technologies 2006),
Sun Grid Engine (SGE) (Sun N1 Grid Engine 6 2006), Plat-
form Load Sharing Facility (LSF) (Platform 2006), Maui,
and Torque, all of which provide the basics mechanics
of scheduling and executing batch jobs on a variety of
execution servers. They have similar functionality, such
as allowing the user to specify scheduling algorithms, job
priority, job interdependency, and automatic file staging.

Replica Location
Index

Replica Location
Index

Replica Location
Index

Local Replica
Catalog

Local Replica
Catalog

Local Replica
Catalog

Local Replica
Catalog

Figure 6: Replica location service con-
figuration

Physical file

1

Physical file

2

Logical file ID

74 Grip CoMPUTING IMPLEMENTATION

The first implementation of PBS is the OpenPBS by
NASA. The PBSPro (by Altair) provides some additional
features such as a graphical user interface (GUI), se-
curity and access control lists, job accounting, desktop
idle-cycle harvesting, automatic load-leveling, username
mapping, and parallel job support by supporting librar-
ies such as the Message Passing Interface (MPI), Parallel
Virtual Machine (PVM), and High Performance Fortran
(HPF). SGE also provides a GUI, checkpointing, and sup-
port for parallel jobs.

Condor (Thain, Tannenbaum, and Livny 2003) is a
scheduler that is designed to allow users to make use of
idle machines. One of the benefits of Condor is that the
source code of the job does not need to be modified. How-
ever, if the source code can be recompiled and linked with
the Condor libraries, then the job can have the benefit of
being checkpointed. Checkpointing allows a job to be re-
started in mid-execution. The purpose of this is to allow
a job to recover after a server failure. Condor also inter-
cepts the system calls of the job and executes them on the
local machine (where the job was submitted). What this
accomplishes is to allow data to reside on a separate ma-
chine, which is less intrusive on the remote machine. Fur-
thermore, the user does not need to have an account on
the remote machine.

Nimrod (Abramson et al. 1995) is a tool that controls
the distributed execution of parameter-sweep applica-
tions. In parameter-sweep applications, the same program
will be executed many times on a slightly difference set
of input parameters each time. These types of applications
are very well suited for distributed computing, as each
execution can be run independently. Nimrod is a tool
that makes it easy to set up and control the execution of
parameter-sweep applications.

Metaschedulers

Metaschedulers are systems that are designed to work at
a very high level, on top of existing grid and scheduling
middleware, scheduling jobs between sites. Since grids
often include systems with heterogeneous resources, they
will also likely have a variety of local schedulers. Currently
available metaschedulers include Community Scheduler
Framework (CSF 2005), Nimrod/G (Buyva, Abramson,
and Giddy 2001), and Condor-G (Thain, Tannenbaum, and
Livny 2003). These metaschedulers provide similar func-
tionality, such as the ability to submit jobs, define sched-
uling policies, and make reservations for resources. The
resources themselves may use different local schedul-
ers, such as Fork, PBS, LSF, SGE, Nimrod, or Condor.
Metaschedulers make use of the Globus Toolkit and can
take advantage of the many features provided through
the toolkit, such as authentication through GSI, resource
discovery through GDS (grid data service), job execution
and scheduling through GRAM, and data management
through RLS and DRS.

USER INTERFACE AND WORKFLOW
MANAGEMENT

Most examples of Grids use a batch-mode processing
model. Unfortunately, this has been the mode of operation

since the beginning of the computer age. For Grids to
gain widespread acceptance and use, they will eventually
need to become as easy to use as, say, the World Wide
Web. As the World Wide Web and the browser propelled
the use of the Internet by scientists and the general popu-
lation and make the Internet a household name, a simi-
lar user-friendly environment will be necessary to propel
the use of grids by the general population. There are two
main thrusts in the area of graphical and intuitive user
interfaces for grids: portals and workflow editors, which
are discussed below.

Portals

Grid portals are browser-based dynamic content envi-
ronments that provide a single sign-on interface to grids.
Portals are similar to servlets, in that they are Java-based
components that generate dynamic content, usually in the
form of HTML, extensible HTML (XHTML), or wireless
markup language (WML), which is displayed in a browser.
Portals are made up of Java Web-based components called
“portlets,” which generate the content and are managed
in a portal container. Portals also use the client/server
relationship as with servlets.

Of course, the purpose of portals is to provide an inter-
face to grids. Although the architecture of portals is simi-
lar to servlets, there are a number of differences, which
necessitates a separate designation for portals. The most
salient of these differences include: portlets only need to
generate content fragments as opposed to complete doc-
uments, portlets are not associated with a URL, there can
be many instances of a portlet within a portal page, port-
lets can maintain persistent data, and portlets have ac-
cess to and require access to the user’s profile data.

The JSR 168 Portlet Specification (JSR-000168 Portlet
Specification 2003) defines a standard Java API for creat-
ing portlets. This is an important specification that will
ensure the interoperability of portal containers produced
by different vendors. Two well-known portal toolkits that
will help users created portals that are JSR 168—compliant
are open grid computing environments (OGCEs) (Gannon
et al. 2003) and GridSphere (Novotny, Russell, and
Wehrens 2004).

Workflow Editors

Workflow editors are another form of graphical user in-
terfaces to Grids. Whereas portals allow the user to start,
monitor, terminate, etc. a Grid application, workflow
editors also allow users to run several interdependent ap-
plications and describe dependencies between the appli-
cations, coordinating the inputs and outputs of various
Grid applications.

OGSA-DAI (Antonioletti, Atkinson, Baxter, et al. 2004;
Antonioletti, Atkinson, Borley, et al. 2004) is an initiative
to create middleware that makes accessing and inte-
grating databases much easier. OGSA-DAI provides the
mechanism through Web services to access a variety of
database types, including relational databases, XML files,
and flat files. The data that are extracted from databases
can be transformed using extensible stylesheet language
transformation (XSLT) or compressed using ZIP or GZIP,

UsER INTERFACE AND WORKFLOW MANAGEMENT 75

then delivered to a variety of sinks. The sinks can be other
OGSA-DAI services, URLs, FTP servers, GridFTP serv-
ices, or simply files. Although OGSA-DAI comes with a
GUI, it is intended to be middleware. OGSA-DAI is a very
powerful tool that can be very helpful in building other
tools, especially workflow editors.

GridNexus (Brown et al. 2006) is a workflow editor,
which uses Ptolemy (Lee 2003) as its GUI to develop work-
flows that are described in an XML scripting language
called JXPL. The GUI allows users to create actors, or
modules that can function as generic clients to Web serv-
ices and grid services. GridNexus also has an actor that
tunctions as a generic client to GRAM for the submission
of a batch job.

Figure 7 shows a workflow in GridNexus that uses a
Web service and a grid service. The actors are configured
by providing the WSDL of the Web service or Address-
ingLocator class of the grid service. Once the actor
is configured, its input and output ports are created to
match the inputs and outputs of the service. The user is

My Math Grid Service Client

. iy

tValue!

9:'.Ie.vstrtw

create

classs)

createCal MathService

getRe roperty

Const queryResourceProperties

AATAAYA 4

Math Web Service

My Math Grid Service Client 2

MathSenace

then able to call these services simply by providing input
to one of the ports.

Although the functionality of this workflow is very sim-
ple, it demonstrates how the output of one actor becomes
the input of another. Given that these actors represent
calls to remote services, chaining together these services
without the use of a workflow editor is a rather tedious
process. Consider the workflow shown in Figure 8. This
workflow implements a computational chemistry applica-
tion in which a user wishes to use a local molecule file as
input, convert it to an intermediate format, manipulate it
using an interactive program, manipulate it again using a
local program, run it through a Grid service that performs
analysis, then save the result of that to the local machine.,
The steps necessary to perform this work without the use
of a workflow editor is very tedious and prone to error.

The GRAM client (GridExec actor) allows the user to
run a job on a remote machine. The user can also per-
form file staging with this actor. If the file staging is not a
viable option, then there are also actors to perform these

My Math Grid Service Client 3

n

g

g
v

getResourceProperty
sourcePrope

nt?emimﬂm!':ne

,wwmnzmsﬁ

VAAAAY

A J

IxplDisplay

Figure 7: Simple GridNexus workflow

Const

Const2
l{v “examples /chemistry/molefiles fcapsaicm....

"examples/chemistry/molefiles /capsaicinQ...

Mol2Xmi2

@--’r! L]

Figure 8: Chemistry application using GridNexus

76 Grip Computing IMPLEMENTATION

functions through the use of GridFTP or SFTP (SSH file
transfer protocol). GridNexus also has a set of actors to
interface with OGSA-DAI.

Kepler (Altintas et al. 2005) is another workflow editor
that is based on Ptolemy. One significant difference be-
tween Kepler and GridNexus is that Kepler is an extension
of the Ptolemy system, whereas GridNexus uses Ptolemy
to produce scripts in JXPL, and the JXPL interpreter
provides the functionality. The Kepler approach has the
advantage of leveraging the functionality of the already
mature Ptolemyimplementation. The GridNexus approach
requires an additional language and corresponding in-
terpreter. However, the advantage of using a separate
language is that it separates the execution from the GUI,
allowing various parts of the workflow execution to mi-
grate to other processors.

Kepler has another component that provides a useful
advantage. The library GriddleS provides a rich set of in-
terprocess communication facilities. The GriddleS library
traps input/output system calls and redirects them to
services that can perform the desired operation on a local
file, remote file, replicated file, or shared buffer. Access to
remote files is available through GridFTP, SRB (storage
resource broker), or SCP (secure copy). The shared buffer
option allows for interprocess pipelined communication.

Although workflow editors make the coordination of
tasks and the inputs and outputs between those tasks
easier to manage, it is a challenge to adapt legacy code
to a workflow actor. There are no standards with respect to
how existing applications expect input or how they should
produce output. Some applications expect their input to
be on the command line, in input files, from standard in-
put, or in specially named files. Furthermore, file systems
may have substantially different configurations. For ex-
ample, large data files may need to be placed on scratch
files systems with large capacity but local to individual
processors of a cluster. Dealing with the differences of
these file systems is a formidable challenge for a workflow
editor.

CONCLUSION

This chapter has described the components of a grid infra-
structure, starting with Web services, which is an underly-
ing technology used in grid software such as Globus. Web
service technology is an attractive technology because of
its language- and machine-neutral interface. Web services
use XML. The SOAP protocol is used to carry information
using XML. The XML language WSDL is used to describe
the Web service interface in a language- and machine-
neutral manner. The concept of a Web service container is
also described in this chapter. With that introduction, we
then move onto Grid computing standards and how Web
services are used in Grid computing, in particular WSRF.,
Grid security is described in some detail, including ways
to arrange certificate authorities. Then, we describe com-
ponents for resource management and schedulers. The fi-
nal section describes workflow management components.
This chapter is intended to give the reader an understand-
ing of the various fundamental components needed to
create a Grid computing infrastructure.

GLOSSARY

Credentials: A certificate and corresponding private
key collectively. There can be user credentials, proxy
credentials, host credentials, etc. However, the private
key is available only to the owner, and the word cre-
dentials can be used quite loosely to not include the
private key.

Globus: A project that provided reference implementa-
tions for Grid computing standards. Provides a toolkit
of component parts, which can be used separately
or, more likely, collectively for creating a Grid
infrastructure.

Grid-Map File: A form of access control list for author-
ization. The grid-map file is a file maintained at the
site that holds the list of users’ distinguished names
(as given on their certificates) and their corresponding
local account names.

Grid Portals: Browser-based dynamic-content environ-
ments that provide a single sign-on interface to grids.

Open Grid Services Architecture (OGSA): Defines stand-
ard mechanisms for creating, naming, and discovering
services in a grid computing environment. Deals with
architectural issues to make interoperable grid services.

Proxy Certificates: Certificates used in Grid comput-
ing to allow delegation of the user’s authority. Proxy
certificates are signed by the user (or the proxy enti-
ties themselves in a chain of trust) rather than by the
certificate authority.

Public Key Infrastructure (PKI): A security arrange-
ment that uses public key cryptography. In this form
of cryptography, two keys (numbers) are used, one to
encrypt the data and another (the key) to decrypt the
data. One key, called the “public key,” is made known
to everyone, whereas the other key, called the “private
key,” is known only to the owner.

SOAP: A communication protocol for passing XML
documents, standardized by the W3C organization
(World Wide Web Consortium). Originally, SOAP
stood for simple object access protocol. However, the
spelled-out version has since been dropped because
this name was not accurate; specifically the protocol
does not involve object access.

Uniform Resource Locator (URL): A string of charac-
ters used to identify a resource on the World Wide Web:
it includes the protocol used to access the resource.
For example, www.cs.uncc.edu is the URL of the
main computer science page at UNC-C, to be accessed
by hypertext transfer protocol (HTTP).

Web Service: A softwarecomponent designed to provide
specific operations (“services”) that are accessible us-
ing standard Internet technology. A Web service is usu-
ally addressed by a uniform resource locator (URL).

Web Services Resource Framework (WSRF): A set of
specifications that present a way of representing state
while still using the basic WSDL for Web services ap-
plications. Instead of modifyving the WSDL to handle
state, the state is embodied in a separate resource.

Web Service Definition Language (WSDL): An XML
standard for formally describing a Web service—what
it does, how it is accessed, etc. The standard is pub-
lished by the World Wide Web Consortium (W3C).

REFERENCES 77

Workflow Editor: A graphical user interface to grids
that allow the user to run several interdependent ap-
plications and describe dependencies between the
applications, coordinating the inputs and outputs of
various grid applications.

WS-Resource: The combination of a Web service and
resource in the Web Services Resource Framework
(WSRF).

XML (Extensible Mark-up Language): A standard
mark-up language developed to represent textual in-
formation in a structured manner that could be read
and interpreted by a computer. XML is a foundation
for Web services, and Web services now forms the ba-
sis of Grid computing.

CROSS REFERENCES

See Cluster Computing Fundamentals; Grid Computing
Fundamentals; Next Generation Cluster Networks; Utility
Computing on Global Grids.

REFERENCES

Abramson D., R. Sosic, J. Giddy, and B. Hall. 1995. Nim-
rod: A tool for performing parametised simulations
using distributed workstations. The 4th IEEE Svm-
posium on High Performance Distributed Computing.
http://www.csse.monash.edu.au/%7Edavida/papers/
nimrod.pdf (accessed April 21, 2007).

Allcock, W., J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, et al. 2005. The Globus Striped
GridFTP Framework and Server. Proceedings of Super
Computing 2005 (SC05), Seattle.

Altair Grid Technologies. 2006. Portable Batch System
Home Page. www.openpbs.org (accessed January 20,
2006).

Altintas, 1., A. Birnbaum, K. Baldridge, W. Sudholt,
M. Miller, C. Amoreira, et al. 2005. A framework for
the design and reuse of Grid workflows. Inrernational
Workshop on Scientific Applications on Grid Com-
puting (SAG'04), Lecture Notes in Computer Science
3458.

Ananthakrishnan, R., C. Bacon, L. Childers, J. Gawor,
J. Insley, and B. Clifford 2005. How to build a service
using GT4. http://www-unix.mcs.anl.gov/~childers/
tutorials/BAS/SDSC/GT4BuildAServiceV15.pdf (ac-
cessed December 29, 2005).

Antonioletti, M., M. P. Atkinson, R. Baxter, A. Borley,
N. P. Chue Hong, B. Collins, B., et al. 2004. OGSA-DAI
status report and future directions. Proceedings of the
UK e-Science All Hands Meeting. Nottingham, United
Kingdom.

Antonioletti, M., M. P. Atkinson, A. Borley, N. P. Chue
Hong, B. Collins, J. Davies, et al. 2004. OGSA-DAI
usage scenarios and behaviour: Determining good
practice. Proceedings of the UK e-Science All Hands
Meeting.

Booth, D., & C. K. Liu (2005). Web Services Description Lan-
guage (WSDL)version 2.0part 0: Primer. www.w3.0rg/2002/
ws/desc/iwsdl20-primer{accessed January 4, 2006).

Brown, J., Ferner, C., Hudson, T., Stapleton, A., Vetter, R.,
Carland, T., et al. (2006). GridNexus: A Grid Services

Scientific Workflow System. International Journal of
Computer & Information Science 6(2):72-82.

Buyya, R., D. Abramson, and J. Giddy. 2001. Nimrod-G
resource broker for service-oriented grid computing.
IEEE Distributed Syvstems Online, 2(7).

Cai, M., A. Chervenak, and M. Frank. 2004. A peer-to-peer
replica location service based on a distributed hash ta-
ble. Proceedings of the SC2004 Conference, Pittsburgh.

Chervenak, A. L., N. Palavalli, S. Bharathi, C. Kesselman,
and R. Schwartzkopf. 2004. Performance and scal-
ability of a replica location service. Proceedings of the
International IEEE Symposium on High Performance
Distributed Computing, HPDC-13.

Chervenak, A., R. Schuler, C. Kesselman, S. Koranda, and
B. Moe. 2005. Wide area data replication for scientific
collaborations. Proceedings of 6th IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid2005), Car-
diff, Wales.

CSF: Community Scheduler Framework. 2005. www.
globus.org/toolkit/docs/4.0/contributions/csf/CSF_
Release_Notes.html (accessed January 20, 2006).

Czajkowski, K., D. F. Ferguson, I. Foster, J. Frey,
S. Graham, 1. Sedukhin, et al. 2004. The WS-Resource
Framework, version 1.0, 03/05/2004. www.globus.org/
wsrf/specs/ws-wsrf.pdf#search="WSResource%20Fr
amework%2003%2F05%2F2004 (accessed December
29, 2005).

Ferreira, L., V. Berstis, J. Armstrong, M. Kendzierski,
A. Neukoetter, M. Takagi, M., et al. 2004. Introduction
to Grid Computing with Globus. IBM RedBooks. www.
redbooks.ibm.com/abstracts/sg246895.html (accessed
December 28, 2005).

Foster, 1. (2005). Globus Toolkit version 4: Software for
service-oriented systems. IFIP International Confer-
ence on Network and Parallel Computing. Lecture
Notes in Computer Science, 3779:2-13.

Foster, 1., C. Kesselman, J. M. Nick, and S. Tuecke. 2002.
The physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Global Grid Forum. Also reprinted as “Chapter 8: The
Physiology of the Grid” in eds. 2003. Grid computing:
Making the global infrastructure a reality, edited by
F. Berman, G. Fox, and T. Hey, 217-49. Chichester,
England: Wiley.

Gannon, D., G. Fox, M. Pierce, B. Plale, G. von Laszewski,
C. Severance, et al. 2003. Grid portals: A scientist’s
accesspointforgridservices(draft 1)September19,2003.
http://www.extreme.indiana.edu/groc/ggf-portals-
draft.pdf (accessed May 11, 2007).

The Globus Toolkit. 2006. www.globus.org/toolkit (ac-
cessed May 25, 2006).

Graham, S., D. Davis, S. Simeonov, G. Daniels,
P. Brittenham, Y. Nakamura, et al. 2005. Building Web
services with Java: Making sense of XML, SOAP, WSDL,
and UDDI. 2nd ed. Indianapolis: SAMS.

Grid User Management System. 2006. http://grid.racf.bnl.
2ov/GUMS (accessed January 2, 2006).

GT 4.0 Security: Key Concepts. n.d. www.globus.org/
toolkit/docs/4.0/security/key-index.html (accessed
December 29, 2005).

Gudgin, M., M. Hadley, and T. Rogers. (2006). Web serv-
ices addressing 1.0 - W3C recommendation May 2006.

78 Grip CompuTinG IMPLEMENTATION

http://www.w3.org/TR/ws-addr-core/ (accessed May
11, 2007).

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J-J.,
& Nielsen, H. F., eds. 2003. SOAP Version 1.2
Part 1: messaging framework W3C recommendation
24 June 2003. www.w3.0org/TR/2003/REC-soap]2-
part1-20030624/#intro (accessed December 29, 2005).

Hughes, J., and E. Maler, eds. 2005. Security Assertion
Markup Language (SAML) 2.0 Technical Overview.
http:/xml.coverpages.org/SAML-TechOverview20v03-
11511.pdf (accessed May 25, 2006).

IBM. 2001. Web Service Inspection Language. http:/www-
128.ibm.com/developerworks/library/specification/
ws-wsilspec (accessed May 25, 2006).

JSR-000168 Portlet Specification, Final Release. 2003.
www.jcp.org/aboutJava/communityprocess/final/
jsr168 (accessed January 20, 2006).

Kerberos: The Network Authentication Protocol. n.d. http:/
Web.mit.edu/kerberos (accessed January 2, 2006).

KX.509: X.509 Certificates via Kerberos. 2005. http://
kx509.0rg (accessed January 2, 2006).

Lee, E. 2003. Overview of the Ptolemy Project Techni-
cal Memorandum UCB/ERL MO03/25. University of
California, Berkeley, CA, 94720. http://ptolemy.eecs.
berkeley.edu (accessed January 20, 2006).

MyProxy Credential Management Service. 2006. http://
grid.ncsa.uiuc.edu/myproxy (accessed May 25, 2006).

Novotny,J., M. Russell, and O. Wehrens. 2004. GridSphere:
An advanced portal framework. 30th EUROMICRO
Conference (EUROMICRO'04), Rennes, France,

Platform. 2006. Platform LSF Family of Products Home
Page. www.platform.com (accessed January 20, 2006).

Shibboleth Project. n.d. http://shibboleth.internet2.edu
(accessed January 2, 2006).

Sun N1 Grid Engine 6. 2006. www.sun.com/software/
gridware/index.xml (accessed January 20, 2006).

SURAgrid User Management and PKI Bridge Certification
Authority. n.d. Available at https://www.pki.Virginia.
edu/nmi-bridge (accessed May 11, 2007).

Thain, D., T. Tannenbaum, and M. Livny. 2003. Condor
and the Grid. In Grid computing: Making the global in-
frastructure a reality, edited by F. Berman, A. J. K. Hey,
and G. Fox 299-335. Chichester, England: Wiley.

W3C Architecture Domain XML Schema. n.d. www.
w3.org/XML/Schema. (accessed January 4, 2006).

Wilkinson, B., and C. Ferner. 2005. Grid Computing Fall
2005 Course Home Page. www.cs.unce.edu/~abw/
ITCS4010F05/index.html (accessed December 28,
2005).

	Handbook_front
	Handbook_Chapter.pdf
	page63
	page64
	page65
	page66
	page67
	page68
	page69
	page70
	page71
	page72
	page73
	page74
	page75
	page76
	page77
	page78

