
Skeleton/Pattern Programming with an Adder Operator for Grid
and Cloud Platforms

J. Villalobos, B. Wilkinson
Department of Computer Science, University of North Carolina, Charlotte, NC, USA

Abstract— Pattern operators are extensions to the Pat-
tern/Skeleton parallel programming approach used to apply
two types of communication patterns to the same data. The
operators are intended to simplify the wide range of possi-
ble patterns and skeletons. The abstraction helps manage
non-functional concerns on the Grid/Cloud environments.
This paper explains how the pattern operators work on
synchronous cyclic undirected graph patterns, and it shows
examples on how they are used. A prototype was created
to test the feasibility of the idea. The example used to
show the operator approach is the addition of termination
detection to a discrete solution to a PDE. The example
can be coded with 27.31% less non-functional code than
a similar implementation in MPJ, and its programmability
index is 13.5% compared to MPJ’s 9.85%. The overhead
for an empty pattern with low communication was 15%.
The use of pattern operators can reduce the number of
skeletons/patterns developed.

Keywords: Skeletons, patterns, grid, cloud, operators

1. Introduction
The advent of Grid computing during the past decade

has created a heterogeneous computing environment where
the users of computing resources have been exposed to
multiple types of architectures, network topologies, security
issues and other non-functional concerns. These challenges
need to be addressed. We are using the term heterogeneous
environment to refer to the Grid and to cloud computing.
Some aspects of cloud computing require the use of abstrac-
tions such as skeletons/patterns (SPs), particularly the need
to separate the resources of the cloud from the users and
developers. The main problem at hand is how to program
for this heterogeneous environment given all the possible
variations that may need to be accounted for in order to run
a single program in different configurations efficiently. The
approach we favor is the use of SPs.

Skeletons are directed, acyclic graphs, and their imple-
mentations are data parallel. The algorithms create a flow
of data that streams from one stage to the other until the
necessary algorithms have been performed to it. Patterns
are cyclic, undirected graphs. They are data-parallel and
they require synchronization during the execution. The start
and end of the patterns are the same as the skeleton, that
is, they start with some mapping of the initial data to the

nodes, and then end by converging the processed data into
a sink node. Figure 1 shows the common life cycle for
both skeletons and patterns. The most recurring skeletons
are map, reduce, workpool/farm, and pipeline. The most
recurring patterns are stencil and all-to-all. More complex
skeletons like divide-and-conquer can be constructed from
simpler skeletons through nesting [1] [2]. The patterns have
a wider set of non-standard pattern types that cannot be made
from a basic set of patterns as is the case with skeletons.

Source Sink

Compute Nodes

. . .

. . .

Fig. 1: Basic skeleton pattern organization.

There are three advantages to using SPs over the industry
standards today (MPI [3], OpenMP [4], and explicit thread
libraries). The first is that SPs hide deadlock and race con-
ditions from the user. They provide implicit parallelization
to the user programmer. This is done by giving the user
programmer an interface. When the user programmer gives
the implementation to a framework, the framework will run
the interface while taking care of the race conditions and
deadlock. The user is never aware of the problem. The sec-
ond advantage is a reduction in code and development time.
Macdonald et al. showed that coding with SPs requires less
coding, and is simpler in comparison to MPI [5]. Aldinucci
et al. also have shown frameworks such as Lithium and
Muskel that use object-oriented Java to provide the benefits
of skeletons to the user programmer [1]. Object-oriented
languages have created the abstraction that is necessary for
the concepts behind SPs to be provided in a form that is
simpler to understand. Previously, projects such as eSkel
[6], Sketo [7], and DPnDP [8] provided skeletons using
procedural C/C++ (which is not typed) but they create an
environment where mistakes are hard to find [8]. The third
advantage for SPs came in with the increased need to abstract
the parallelization away from the computational resources as
is needed in cloud and Grid computing. The abstraction is

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text
The 2010 International Conference on Grid Computing and Applications (GCA’10), July 12-15, 2010, Las Vegas, Nevada, USA.

Administrator
Typewritten Text

needed mainly in Grid computing because the environment
is made up of multiple architectures and network topologies.
Ideally, service providers want an application to run on this
environment while minimizing the amount of knowledge the
user programmer needs to code it. In the case of cloud
computing, the environment tends to be more homogeneous
and controlled by a single entity, but the service provider
also wants to provide the computation resources in a way
that they can optimize the use of the hardware. The hardware
optimization leads to servicing more customers. SPs are a
pertinent option to abstract the use of the resources because
they allow the user programmer to code the problem using
the provided API, and they give the Grid/cloud maintainers
space to manage the non-functional requirements. The API
and interfaces, in effect, create an extra layer between the
hardware and the user programmer. One could argue that
skeletons have started to be introduced into the cloud;
MapReduce can be cited as a successful example of skeleton
use in the cloud environment [9]. More skeletons are needed
in the future since MapReduce is not optimal for all types
of parallel programming algorithms.

Despite the benefits, SPs have some persistent drawbacks.
In his manifesto, Cole explains that SPs must "show the pay-
back", and he stresses simplicity [6]. However, many still
believe that the number of SPs needed to address parallel
computing is infinite [10]. This has some implications; the
user programmer may be faced with a library of SPs so large
that he is discouraged from using the approach. On the other
extreme, the user programmer, despite having multiple SPs
to choose from, does not find the pattern that he needs for
the problem, and therefore is tempted to just use lower level
tools. One can intuitively surmise that there can be a basic
set of SPs from which all the other SPs can be created. This
could be possible by features such as nesting. In nesting,
the user programmer is able deploy new SPs from inside the
SPs, which allows for an exponential increase of SPs without
increasing the size of the basic set. Nesting also allows for
the use of libraries that contain SPs themselves. With some
operators and a basic set, one could see a Turing-complete
(so to speak) set of patterns from which all possible parallel
programs can be created.

Section 2 presents a high level explanation about pattern
operators. Subsection 2.1 presents an example using Java. It
explains the use of interfaces to create computation modules
and the interfaces used to create data containers. Subsection
2.2 presents some important details on implementing SPs
into a framework we call the Seeds framework. Subsection
2.3 presents the implementation of the adder operator in
Seeds using the tools explained in Section 2.2. Section 3
presents the results from measuring the adder operator on
the dimensions of performance and programmability. Finally,
Section 4 mentions the related work.

2. Pattern Operators
Pattern operators are elements that work on the same

piece of data. We present here the addition operator for
synchronous patterns. The creation of this operator comes
about to address stateful algorithms such as discrete solu-
tions to PDE’s and practical solutions to particle dynamics
algorithms. In these types of algorithms, there are different
communication patterns at different stages of programming.
In the example of a discrete simulation of heat distribution,
multiple cells on a stencil pattern work in a loop parallel
fashion, computing and synchronizing on each iteration.
However, every x iterations, they must implement an all-
to-all communication pattern to run an algorithm to detect
termination. That is used to check if all cells have converged
on a value and all the cells should at that point stop
computing. Figure 2 shows the example of this approach.

Fig. 2: Adding a Stencil plus an All-to-All synchronous
pattern.

Similarly, the practical approach to solving particle dy-
namics combines multiple communication algorithms. Let
us first review a simple version of particle dynamics. In this
version, an all-to-all communication pattern is run on every
iteration and the information for every particle is used to cal-
culate the future momentum of each particle. This has O(N2)
complexity. Another algorithm has a lower complexity, but
its implementation is to use a stencil where the particles will
calculate its momentum based on n of its closes neighbors.
This stencil pattern is performed for x iterations. Every x
iterations, the algorithm switches into an all-to-all pattern of
communication to update all particles and reduce the error
that the algorithm inevitably accumulates. With just these
two examples, it is easy to see that many more algorithms
fall into this category where one has multiple layers of
communication patterns that work on the same data. In the
example of heat distribution, the data is a set of pixels that
represent the heat energy present at that point. In the case of
particle dynamics, the data represents momentum for each
particle at that instant in time.

2.1 Example
Figures 3 and 4 show an example where an all-to-all

termination detection algorithm is used to determine if there
is convergence after performing a stencil algorithm for some
number of iterations. A discrete approach to the problem
of heat distribution was used to test the code shown in the
figures. Figure 3 shows the code used to create the algorithm
for heat distribution. Some of the problem-specific code was
omitted in the interest of brevity. The class HeatDistribution

extends a Stencil abstract class. This requires the user
programmer to implement some signature methods. The
Javadoc for each signature method is used to instruct the
user programmer on the purpose of each method and their
interaction within the framework. The DiffuseData() method
is used to get the segments of data from the user programmer.
GatherData() is used to get the processed segments of data
back from the user. OneIterationCompute() is used as the
main computation method. Because the algorithms are loop-
parallel and the framework needs to gain back control in
order to organize multiple patterns, the user is instructed
the method should only run one iteration of the main loop
in the application. initializeModule() is used to allow the
user programmer to pass string arguments to the remote
instantiation just after the modules get initialized.

p u b l i c c l a s s H e a t D i s t r i b u t i o n ex tends S t e n c i l {
p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o n U I D = 1L ;
i n t LoopCount ;
p u b l i c H e a t D i s t r i b u t i o n () {

LoopCount = 0 ;
}
@Override
p u b l i c S t e n c i l D a t a D i f f u s e D a t a (i n t segment) {

i n t w = 10 , h = 1 0 ;
double [] [] m = new double [1 0] [1 0] ;
/ * * i n i t m a t r i x m w i t h f i l e or u s e r i n p u t * /
H e a t D i s t r i b u t i o n D a t a h e a t = new

H e a t D i s t r i b u t i o n D a t a (m, w, h) ;
re turn h e a t ;

}
@Override
p u b l i c vo id G a t h e r D a t a (i n t segment , S t e n c i l D a t a d a t) {

H e a t D i s t r i b u t i o n D a t a h e a t = (H e a t D i s t r i b u t i o n D a t a) d a t ;
/ * * p r i n t or s t o r e r e s u l t s * /

}
@Override
p u b l i c boolean O n e I t e r a t i o n C o m p u t e (S t e n c i l D a t a d a t a) {

H e a t D i s t r i b u t i o n D a t a h e a t = (H e a t D i s t r i b u t i o n D a t a) d a t a ;
double [] [] m = new double [h e a t . Width] [h e a t . He ig h t] ;
/ * * compute c or e m a t r i x * /
/ * * compute s i d e s (b o r d e r s) * /
/ * * compute c o r n e r s * /
/ * * s e t i f t h i s node i s done * /
h e a t . m a t r i x = m;
re turn f a l s e ;

}
@Override
p u b l i c i n t g e t C e l l C o u n t () {

re turn 4 ; / / f o u r nodes f o r t h i s example
}
@Override
p u b l i c vo id i n i t i a l i z e M o d u l e (S t r i n g [] a r g s) {

/ * n o t used * /
}

}

Fig. 3: HeatDistribution class extends Stencil and fills in the
required interfaces.

Figure 4 shows the TerminationDetection class, which
extends CompleteSyncGraph. Similar to the stencil pattern,
CompleteSyncGraph also requires some signature methods.
The pattern has a DiffuseData() and GatherData() method
but they are not used for this example since the second
pattern in the operator is used for its computation function
only. getCellCount() is the number of processes needed for

p u b l i c c l a s s T e r m i n a t i o n D e t e c t i o n ex tends CompleteSyncGraph {
@Override
p u b l i c A l l T o A l l D a t a D i f f u s e D a t a (i n t segment) { / / n o t used

re turn n u l l ;
}
@Override
p u b l i c vo id G a t h e r D a t a (i n t segment , A l l T o A l l D a t a d a t a) {

/ / n o t used
}
@Override
p u b l i c boolean O n e I t e r a t i o n C o m p u t e (A l l T o A l l D a t a d a t a) {

H e a t D i s t r i b u t i o n D a t a d = (H e a t D i s t r i b u t i o n D a t a) d a t a ;
re turn d . T e r m i n a t e d ;

}
@Override
p u b l i c i n t g e t C e l l C o u n t () { / / n o t used r e a l l y

re turn 4 ;
}
@Override
p u b l i c vo id i n i t i a l i z e M o d u l e (S t r i n g [] a r g s) { / * n o t used * / }

}

Fig. 4: Termination detection using all-to-tall pattern.

the computation and must return the same number on both
patterns so that communication patterns fit together.

Figure 5 shows the main data object used for both the
patterns. The main advantages sought in using the pattern
adder is to provide the user programmer with the ability to
have two communication patterns work on the same data.
Our approach to patterns has the requirement of having all
information used for communication travel in the form of
serializable objects. Additionally, the stencil pattern adds
other signature methods that are needed in order to con-
trol the communication on behalf of the user programmer.
CompleSyncGraph also adds signature methods. HeatDistri-
butionData implements both StencilData and AllToAllData
so that it can be handled by both patterns.

Both of these modules are inserted into the framework
using a bootstrapping executable class. Figure 6 shows the
executable the user programmer implements in order to add
the stencil pattern plus the CompleteSyncGraph pattern. The
two are added using an Operand class, which is used to hold
together three characteristics each pattern needs, which are:
the initialization arguments if any, the host anchors if any,
and an instance of the pattern’s module. Anchors are used
to tie a special node the host that has to run it. The main
use for the anchor is to specify where the source and sink
nodes are to be run, since they usually have to be where
the data is. The executable class also has some code to
start the framework and shutdown the framework, which
will self-deploy. After creating the operands, the pattern-
adder operator is deployed by starting a new pattern called
an AdderOperator. The framework, by default, will spawn
and monitor the new pattern on a separate thread. The user
programmer can just wait for the pattern to complete using
waitOnPattern() method.

u b l i c c l a s s H e a t D i s t r i b u t i o n D a t a
implements S t e n c i l D a t a , A l l T o A l l D a t a {

boolean T e r m i n a t e d ;
p u b l i c double [] [] m a t r i x ;
p u b l i c i n t Width , H e ig h t ;
SyncData [] S i d e s ;
p u b l i c H e a t D i s t r i b u t i o n D a t a (double [] []m

, i n t width , i n t h e i g h t) {
}
/ * * S t e n c i l da ta s i g n a t u r e methods * /
@Override
p u b l i c Data ge tBo t tom () {}
@Override
p u b l i c Data g e t L e f t () {}
@Override
p u b l i c Data g e t R i g h t () {}
@Override
p u b l i c Data getTop () {}
@Override
p u b l i c vo id s e t B o t t o m (Data d a t a) {}
@Override
p u b l i c vo id s e t L e f t (Data d a t a) {}
@Override
p u b l i c vo id s e t R i g h t (Data d a t a) {}
@Override
p u b l i c vo id s e tTo p (Data d a t a) { }
/ * * The A l l−to−A l l Data s i g n a t u r e methods * /
@Override
p u b l i c Data ge tSyncDa ta () { / * * r e t u r n da ta f o r a l l * / }
@Override
p u b l i c vo id s e t S y n c D a t a L i s t (L i s t <Data > d a t) {

/ * * g e t da ta from a l l * /
}

}

Fig. 5: The main data extends both the StencilData and
AllToAllData. The object is used to hold the state-full data
for the main processing loops.

p u b l i c c l a s s R u n H e a t D i s t r i b u t i o n {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

Dep loye r d e p lo y ;
t r y {

Seeds . s t a r t (" / p a t h / o f / s h u t t l e / f o l d e r / pga f " , f a l s e) ;
/ * * f i r s t p a t t e r n * /
Operand f = new Operand (

(S t r i n g) n u l l
, new Anchor (" Kronos " , Da taF lowRol l . SINK_SOURCE)
, new H e a t D i s t r i b u t i o n ()) ;

/ * * second p a t t e r n * /
Operand s = new Operand (

(S t r i n g) n u l l
, new Anchor (" Kronos " , Da taF lowRol l . SINK_SOURCE)
, new T e r m i n a t i o n D e t e c t i o n ()) ;

/ * * c r e a t e t h e o p e r a t o r * /
AdderOpe ra to r add = new AdderOpe ra to r (

new ModuleAdder (100 , f , 1 , s)) ;
/ * * s t a r t p a t t e r n and g e t t r a c k i n g i d * /
PipeID p_ i d = Seeds . s t a r t P a t t e r n (add) ;
/ * * w a i t f o r p a t t e r n t o f i n i s h * /
Seeds . w a i t O n P a t t e r n (p_ id) ;

Seeds . s t o p () ;
} catch (E x c e p t i o n e) {

/ * * c a t c h e x c e p t i o n s * /
}

}
}

Fig. 6: RunHeatDistribution is used to create the operator
and start the pattern.

2.2 Implementation Details
The SPs are divided into unstructured and structured. The

unstructured patterns are the templates such as the map,
reduce, and workpool/farm patterns. They are referred to as
unstructured because the number of processes can change
dynamically. A workpool/farm can work with 10 nodes the
same as it works with 1000 nodes without the need to modify
its implementation or having to add special code to the
framework to handle the change. These are features that are
inherent in the definition of these three skeletons. The other
algorithms that require a specific number of processes are
the pipeline skeleton, the synchronous loop-parallel patterns
such as the stencil and its modifications, and the complete
graph or all-to-all pattern.

Our Seeds framework implements the differences by
using UnorderedTemplate for the unstructured skeletons,
and OrderedTemplate for the structured SP’s. Furthermore,
each template is inherited to implement the specific pattern.
PipeLineTemplate inherits OrderedTemplate to implement
the skeletons. Figures 7 and 8 show the UML for the differ-
ent classes that inherit OrderedTemplate and UnorderedTem-
plate respectively.

Map and reduce skeletons are not implemented. There is
a template created for convenience called LoaderTemplate.
LoaderTemplate inherits UnorderedTemplate and its goal is
to load some initial data into the computation units for
OrderedTemplate algorithms. Once the computation units are
loaded, they can start working on one of the OrderedTem-
plate implementations. At the end of the OrderedTemplate
SP, control is returned to LoaderTemplate, which sends
back the data to the sink node. The data may have been
modified during the computation as it would happen when
implementing a stencil, or the data may not have any
significance once the job is complete.

Communicator
edu.uncc.grid.pgaf.communication

OrderedTemplate

PatternAdderTemplate
edu.uncc.grid.pgaf.operators

CompleteSyncGraphTemplate
edu.uncc.grid.pgaf.templates

StencilTemplate
edu.uncc.grid.pgaf.templates

PipeLineTemplate
edu.uncc.grid.pgaf.templates

Template

Fig. 7: The OrderedTemplate needs a specific number of
processes. The Stencil and CompleteSyncGraph inherit this
class.

In order to provide structure to the user programmer, an
interface is created using abstract classes that inherit the
BasicLayerInterface abstract class. This is used to provide

the user programmer with the signature functions that must
be implemented in order to successfully interact with the
framework. The interface is like a form presented to the
user with instructions on how it should be filled in. Figure 9
shows the UML diagram for the BasicLayerInterface class
and some interfaces that inherit it.

Template

UnorderedTemplate

PatternLoaderTemplate
edu.uncc.grid.pgaf.p2p.compute

WorkpoolTemplate
edu.uncc.grid.pgaf.templates

Fig. 8: Template class. OrderedTemplate and
UnorderedTemplate extend it.

The basic layer: If the user wants to implement some
skeleton or pattern, he needs to create at least three classes:
the module that implements an SP interface, at least one class
that implements a Data interface, and an executable class
that connects the module to the framework, and deploys the
framework if it is not running already. An example of this
procedure can be seen in Section 2.1.

The advanced layer: This advanced layer user is inter-
ested in implementing a pattern that cannot be implemented
with the existing skeletons/patterns, or he wants to test a new
optimization method, or he wants to provide a pattern that
is more convenient to use than the options already offered
by the framework. In this case, the user needs to implement
at least two classes, and one interface. The advanced user
must decide if the SP needs a structured or unstructured
implementation, a class that inherits one or the other must
be created. If an unordered template is created, only one
class is needed. If the SP is structured, then the advanced
user must also implement a LoaderTemplate. The advance
user may see the need to create Data interfaces to be able to
steer the user programmer into the communication patterns
that are required by the advanced user’s SP; however, this
is optional.

The expert layer: The expert layer is the machine room -
it has many primitive data structures and behavioral patterns
that look like an MPI implementation. The objects that
the expert layer provide to the layer above tend to be
complicated because the heterogeneity of the environment. It
has long if statements that account for each type of network
the nodes might be in, and each type of memory management
system potentially available. The expert layer is only for Grid
computing experts and parallel programming researchers.

2.3 The Operators
The operators at present are only implemented for the

OrderedTemplate SPs because only the addition operator

seems to be beneficial in reducing SPs complexity for the
user programmer. Future endeavors may include adding
operators to unstructured skeletons, to get similar benefits
as we show can be had from the addition operator.

The operators are implemented by inheriting OrderedTem-
plate. Once this OrderedTemplate is loaded, OperatorTem-
plate runs the first SP to load the initial computational units.
Then it enters into the main loop-parallel cycle. It run the
first operand for n iterations, and then it runs the next SP
for x iterations until either one of the SPs return true. The
computation for these SPs return false if the program is
not done computing. When the main loop-parallel cycle is
done, the operator pattern returns the processed data units
to the first operand’s GatherData() method. The operator
implements LoaderTemplate to load and unload the initial
data from the first SP. The second SP only contributes the
computation operation, and the Diffuse/Gather operations are
ignored for this SP. Figure 9 shows a diagram that describes
most of the interaction among the classes that happens when
running the operator template. The small tabs inside the
square are used to mention the BasicLayerInterface class
that is used by the Template class. For example: Stencil class
inherits BasiclayerInterface, and it is used by StecilTemplate
class. Together, both classes implement a stencil pattern.
The two patterns are added into the PatternAdder interface,
which is then executed by the AdderTemplate. Because the
adder template is an OrderedTemplate, it must specify a
PatternLoader interface, which is the PatternAdderLoader
class. PatterAdderLoader inherits PatternLoader interface,
and it is executed by the PatternLoaderTemplate. Finally,
Seeds can execute the LoaderTemplate directly because it is
an UnorderedTemplate. All templates implement a function
for the client side node and one function for the server side
node. The server side corresponds to the source and sink
nodes, and the client side corresponds to the compute nodes.

3. Results
Tests were performed to validate the pattern adder op-

erator. The two main concerns for extensions to the SP
programming approach are the performance impact created
by the extension, and programmability of the extension. In
order to measure the performance overhead created by the
pattern adder operator, we implemented a simple algorithm
that uses both the stencil pattern and the complete pattern.
The algorithm is trivial; it consists of sending a long integer
type to the neighbor processes in the stencil pattern, and it
repeats the process for the complete pattern. We consider
this an empty grain size pattern. The time to run through
one iteration is measured for the stencil pattern and for the
complete pattern. The time taken to run the process is also
measured for the pattern adder operator. The overhead is
the difference between the pattern operator’s time and the
stencil plus the complete pattern’s time. Figure 10 shows
the result of this test. The test was performed on a 16-core

Fig. 9: Interface + Template pairs are drawn on the same
square. The diagram shows the hierarchical interaction be-
tween the classes in order to execute a PatternAdder operator.

Xeon 2.93GHz server with 64GB memory. The number of
processes is varied from 4 to 16. All the communications for
this experiment were through shared memory. The results
show that the overhead goes down as more processes are
used for the computation. This is in part because the in-
creasing communication overhead helps mask the overhead
due to the operator. The overhead in comparison to an empty
grain size is 15%, so grain size has to be adjusted to justify
the use of the operator. The network speed also has an
effect on the overhead. As Figure 10 shows, the increase
in communication overhead reduces the overhead incurred
due to the operator. The same test was done on a cluster
of 3 dual-CPU Xeons (3.4GHz) with 8GB memory running
four threads per server. The overhead for this test on an
empty grain size pattern was 0.03% for nine processes. The
network used was a Gigabit Ethernet.

Fig. 10: Operator overhead measured on a shared-memory
multi-core server.

Next, we measured the programmability. For this test
we implemented the heat distribution algorithm using MPJ-
Express. We also implemented the problem using the Seeds

framework, and a serial version of the problem was used
as control. The lines of code (LOC) were tagged on each
implementation with the tags: functional, non-functional,
automatic, comment, and log. The main tags are:
• Functional: The code that is dedicated to solving the

problem. Most of the LOC in the serial implementation
are considered functional.

• Non-functional: Is code primarily written to organize
parallel processes and communications. MPJ-Express,
and Seeds include code of this type to solve the problem
in parallel.

• Automatic: This code is generated code by the IDE.
Eclipse was used for the test. The generated code
includes the class declaration, import lines, package
declaration, and interface signature functions. Setters
and getter can also be included as automatic code.

The programmability index is defined as:

functional
functional + non-functional

(1)

A higher ratio means a program with less non-functional
code, and therefore we assume more readable and paral-
lelized in less time. Figure 11 shows the result from this
assessment. Seeds reduces the number of non-functional
code by 27.31% over MPJ implementation. MPJ’s pro-
grammability index for this implementation is 9.85%, and
Seed’s programmability index is 13.50%.

Fig. 11: the y axis shows the number of lines of code
for each implementation. The LOC were counted for the
serial implementation as well as for the Seeds and MPJ
implementation.

4. Related Work
As referenced in Section 1. our work builds upon several

frameworks designed to implement skeletons, patterns or
both. Cole proposed a series of guidelines that must be met
in order to create feasible skeleton interfaces [6]. McDonalds

et al. created the three-layer development environment for
the CO2P3S project. On that project, the three layers were
created as a way to leave some flexibility in the frame-
work; it allows the programmer to create new patterns if
needed. We have incorporated that idea into Seeds. Simi-
larly, Aldinucci et al. has provided three layer development
environments to explored the use of skeletons as a way
to manage non-functional requirements on behalf of the
user programmer [11]. Future research will give Seeds non-
functional requirement features such as scalability and load-
balancing. The same middle layer (the advanced layer) will
be used for that purpose. Seeds assumes all the other non-
functional requirements, such as security, are done by the
Grid middleware. The nested feature is important for any SP
framework. Lithium [1], Muskel [2] and other frameworks
have implemented the feature [6]. Our work comes closest to
the work of Gomez et al. Their pattern operators implement
the same concept that set us in the direction to create the
pattern operators [12]. Their work is based on workflows
and includes other types of operators that are used to manage
non-functional concerns. The user programmer, in the Triana
framework is given more control over the resources where
the program runs. Our work differs from Triana in that
we provide the pattern operators as a pure object-oriented
framework without the need for XML language constructs,
scripts, or a GUI. Also, we have measured the effects
of the tool. The use we intend for pattern operators is
targeted toward high performance parallel computing in a
heterogeneous environment. A similar idea by Gomez et
al. that can be useful to port from the problem solving
environment (PSE) into SP frameworks is to use pattern
operators to add a behavioral pattern (such as check pointing,
visualization, and interaction) to a SP parallel application.

5. Conclusion and Future Work
Much of the literature focuses on skeletons, and somewhat

on patterns. Our work shows how the number of synchronous
patterns can be reduced by using the addition operator.
However, it does not show how the synchronous patterns
can be scaled automatically for the number of resources.
Specifically, the interfaces shown require the user to specify
how many processes need to be used to work on the program.
A better approach would allow for an automatic scalability
of these patterns. Aldinucci has mentioned these goals in his
literature. We also believe this goal would better promote
patterns for the grid and cloud environments.

We presented an object oriented implementation to pro-
vide an adder operator to skeletons/pattern parallel appli-
cations. A sample program was shown and its creation
was discussed from the user programmer’s perspective.
Subsequently, the implementation of the pattern adders was
presented. The advance user’s perspective was discussed,
and some notes about the Seeds framework and the expert
programmer’s perspective was also discussed. The pattern

operator can be used to reduce the number of patterns that
are needed by the user programmer. We believe that provid-
ing a basic set of skeletons/patterns plus useful operators will
increase the popularity of this parallel programming model.

6. Acknowledgment
We thank the UMLGraph.org team for providing the

tools create class diagrams from source code [13]. The
Seeds framework uses packages for SSH access using the
Ganymed libraries [14]. Globus [15] access is done through
Java Cog [16]. Network overlay organization is done using
JXTATM [17], and use of the UPNP communication protocol
for routers is also implemented [18]. Thanks to all these
software providers.

References
[1] M. Aldinucci, M. Danelutto, and P. Teti, "An advanced environment

supporting structured parallel programming in Java," Future Generation
Computer Systems, vol. 19, 2003, pp. 611-626.

[2] Marco Aldinucci, Marco Danelutto, and Patrizio Dazzi, "Muskel: an
Expandable Skeleton Environment," Scalable Computing: Practice and
Experience, 2008, pp. 325-341.

[3] R. Hempel, "The MPI Standard for Message Passing," Proceedings of
the nternational Conference and Exhibition on High-Performance Com-
puting and Networking Volume II: Networking and Tools, Springer-
Verlag, 1994, pp. 247-252.

[4] L. Dagum and R. Menon, "OpenMP: an industry standard API for
shared-memory programming," Computational Science & Engineering,
IEEE, vol. 5, 1998, pp. 46-55.

[5] S. MacDonald, K. Tan, J. Schaeffer, and D. Szafron, "Deferring design
pattern decisions and automating structural pattern changes using
a design-pattern-based programming system," ACM Trans. Program.
Lang. Syst., vol. 31, 2009, pp. 1-49.

[6] M. Cole, "Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming," Parallel Computing, vol. 30, 2004,
pp. 389-406.

[7] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, "A library of
constructive skeletons for sequential style of parallel programming,"
Proceedings of the 1st international conference on Scalable information
systems - InfoScale ’06, Hong Kong: 2006, pp. 13-es.

[8] S. Siu, M.D. Simone, D. Goswami, and A. Singh, Design patterns for
parallel programming, 1996.

[9] J. Dean and S. Ghemawat, "MapReduce," Communications of the
ACM, vol. 51, 2008, p. 107.

[10] T. Mattson, Patterns for parallel programming, Boston [u.a.]: Addison-
Wesley, 2007.

[11] M. Aldinucci, M. Danelutto, and P. Kilpatrick, "Autonomic manage-
ment of non-functional concerns in distributed & parallel application
programming," Parallel and Distributed Processing Symposium, Inter-
national, Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp.
1-12.

[12] M.C. Gomes, O.F. Rana, and J.C. Cunha, "Pattern operators for grid
environments," Sci. Program., vol. 11, 2003, pp. 237-261.

[13] "UMLGraph - Declarative Drawing of UML Diagrams,"
http://www.umlgraph.org/index.html, Mar. 2010.

[14] "Ganymed SSH-2 for Java," http://www.ganymed.ethz.ch/ssh2/, Mar.
2010.

[15] I. Foster, "Globus Toolkit Version 4: Software for Service-Oriented
Systems," Network and Parallel Computing, 2005, pp. 2-13.

[16] G. von Laszewski, I. Foster, and J. Gawor, "CoG kits," Proceedings of
the ACM 2000 conference on Java Grande - JAVA ’00, San Francisco,
California, United States: 2000, pp. 97-106.

[17] "jxta: JXTATM Community Projects," https://jxta.dev.java.net/, Mar.
2010.

[18] "UPNPLib," http://www.sbbi.net/site/upnp/index.html, Mar. 2010.

