
1

SUZAKU Pattern Programming Framework Specification

4 - Workpool Version 3

B. Wilkinson March 17, 2016

This version of the workpool implements a workpool where new tasks can be added to the task
queue during the computation as might be needed for problems such as the shortest path
problem. We call this a dynamic workpool and fro differentiation use the term static workpool
where the number of tasks in the task queue is fixed.

4.1 Workpool Routines

The routines SZ_Put() and SZ_Get() are available from version 2 to add data to task and results.
In addition one new routine, SZ_Insert_task(), is available for use by the programmer to add
tasks to the task queue:

SZ_Insert_task

The signature of this routine is:

int SZ_Insert_task(int taskID)

Purpose: This routine adds a task to the task queue.

Parameter:

int taskID Input parameter for the task ID for the associated task, provided by the
framwork

Return value: An integer giving the number of tasks in the task queue afterwards or -1 if the
tasks queue is already full and a task cannot be added.

Limitations: The task queue is maintained by the master process and not accessible by the slaves.
Hence the routine can only be called by the master process, either within init(), diffuse(), or
gather(), i.e. it cannot be used by the slaves in compute().

Note: The programmer is not expected to remove tasks for the task queue as this will be done by
the framework.

4.2 Signtaure of Suzaku Workpool Routine

Version 3 is based upon version 2 and purposely uses the same signature as version 2 (except the
workpool routine name, SZ_Workpool3()):

2

 void SZ_Workpool3 (void (*init)(int *T),
 void (*diffuse)(int *taskID),
 void (*compute)(int taskID),
 void (*gather)(int taskID))

Parameters:

 *init Function pointer to init function
 *diffuse Function pointer to diffuse function
 *compute Function pointer to compute function
 *compute Function pointer to gather function

init() now needs to initialize the task queue using SZ_Insert_task() instead of specify the
number of tasks but for compatibility with version 2, the input parameter *T (no of tasks) is
retained. If the number of tasks is set to a number greater than 0, version 3 will implement the
static workpool by automatically initializing the task queue for one task (taskID = 0) and
inserting a consecutive task when a task is taken from the queue, up to T tasks. This allows
version 2 application code to execute with SZ_workpool3() without any change to the
application code.

4.3 Compilation and Execution

SZ_Workpool3() and associated routines are held in suzaku.c. Compilation and execution is the
same as for workpool version 2 except for naming the workpool as SZ_Workpool3() in the
application code.

4.4 Implementation Details

The workpool algorithm implemented for Version 3 is shown overleaf: The task queue is a first-
in first-out queue. Tasks are identified by an integer taskID, which could be duplicated and are
not necessarily unique consecutive numbers as in version 2. (If a particular instance of a task
needs to be differentiated further, that information can be added by the programmer, see later.) It
is also necessary to maintain information about the slaves. Whenever a message is sent to a
slave, slave set as busy and number of busy slaves incremented by 1. Whenever a result is
received back slave set as free and number slaves decremented by 1. A slave has to be chosen
from those free and a round-robin algorithm is used.

Initially the task queue is initialized with at least one task in the workpool routine init(). Then a
task is retrieved from the task queue, diffuse() is executed and the complete task with any
addition information added by diffuse is sent to a free slave if there is one. When there are no
more free slaves or no more tasks, the master process waits for one slave to return a result.
Slaves accept tasks, execute compute(), and return results, which could include new tasks
packed into an integer array. The master picks up the results of one slave, and executes a
gather() routine provided with the task ID. The gather routine might find new tasks to add to the
task queue. The master then repeats the complete sequence taking tasks from the task queue and
sending tasks to free slaves, etc. The sequence stops when there are no new tasks and all slaves
are free. Then all slaves are terminated with termination messages from the master and the

3

master terminates. This algorithm avoids needing to use concurrent processes or threads for
diffuse and gather, which were tried but is complicated by the need for shared memory, critical
sections, and an MPI implementation that is thread-safe for the thread-based solution.

Get task

Task queue

Master

Init() Put initial
tasks into tasks
queue

diffuse()

Send task

Slaves

Receive task

If terminate
message

Terminate process

compute()

Send result

Receive

gather()

Send terminator to all slaves

All slaves free
and no tasks

Terminate master

Programmer adds task(s) in init() and optionally in gather()

Sends from
slaves will wait
until they can be
picked up by the

master

Choose a
free slave

At least one
slave busy

While a
task and
a free
slave

Dynamic workpool algorithm

4

Sample programs

1. test1_workpool3.c

Program to test task queue and messaging:

// Suzaku Dynamic Workpool3 -- Queue test
// B. Wilkinson Nov 23, 2015

#include <stdio.h>
#include <string.h>
#include "suzaku.h"

// workpool functions to be provided by programmer:

void init(int *T) { // insert initial tasks in task queue

 SZ_Master { // only master can insert tasks
 printf("Init() inserting 0 and 1 into queue task\n");
 SZ_Insert_task(0); // add some tasks
 SZ_Insert_task(1);
 }
 return;
}

void diffuse(int task_no) { // allows programmer to add additional information to task before sending to slave
 char message[] = "Hello world";
 char abc[] = "abc";

 if (task_no == 0) { SZ_Put("message",message); } else {SZ_Put("message",abc);}
 printf("Diffuse, -- Next Task = %d\n",task_no);

 return;
}

void compute(int task_no) {

 int i;
 int tasks[4];
 int task;
 int slave;
 char message [20];

 for (i = 0; i < 4;i++) tasks[i] = -1;

 slave = SZ_Get_process_num();

 SZ_Get("message",message); // get task
 printf("Slave %d -- Task received. Task = %d, message = %s\n",slave,task_no,message);

 // some computation, add new tasks

 if (task_no == 1) { // taskID 1 generates new tasks
 tasks[0] = 6;
 tasks[1] = 7;
 }
 SZ_Put("tasks",tasks);

 return;
}

void gather(int task_no) {

 int i;
 int tasks[4];

 SZ_Get("tasks",tasks);

5

 printf("Gather -- Task = %d received. ",task_no);

 for (i = 0; i < 4;i++) {
 if (tasks[i] != -1) {
 SZ_Insert_task(tasks[i]);
 printf("New task %d added to queue. ",tasks[i]);
 }
 }
 printf("\n");

 return;
}

int main(int argc, char *argv[]) {
 int i; // All variables declared here are in every process
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes
 SZ_Parallel_begin

 SZ_Workpool3(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Sample output

6

2. Shortest path problem

From page 214, Parallel Programming Techniques and Applications, 2nd ed. by B. Wilkinson,
Prentice Hall 2005.

Sequential version, shortest_path.c:
// shortest path problem, sequential version B. Wilkinson Nov 25, 2015
#include <stdio.h>
#include <string.h>
#define N 6 // number of nodes
#define QSIZE 10 // size of queue

int w[N][N]; // Adjacency matrix for w
int dist[N]; //Current minimum distances
int newdist_j;

int queue[QSIZE]; // task queue
int queue_front; // task queue index for next task to add
int queue_rear; // task queue index for next item to remove
int q_no_tasks; // number of items in queue

void print_dist() {
 int i;
 printf("Current minimum distances = ");
 for (i = 0; i < N; i++)
 printf("%3d ", dist[i]);
 printf("\n");
 return;
}

int queue_insert(int taskID) { // insert task into task queue
 int status;
 status = 0;
 if (q_no_tasks == QSIZE) {
 status = -1; // Queue full, no task added
 } else {
 queue[queue_front] = taskID; // Task added
 q_no_tasks = q_no_tasks + 1;
 queue_front = (queue_front + 1) % QSIZE; // front points to next free space to insert
 status = q_no_tasks; // returns number of tasks in queue
 }
 return status;
}

int queue_remove(int *taskID) { // remove task from task queue
 int status;
 status = 0;
 if (q_no_tasks == 0) {
 status = -1; // Queue empty
 } else {
 *taskID = queue[queue_rear]; // Task removed
 q_no_tasks = q_no_tasks - 1;
 queue_rear = (queue_rear + 1) % QSIZE; // rear points to next item to remove
 status = q_no_tasks; // returns number of tasks in queue
 }
 return status;
}

void queue_print() { // for testing
 int i;
 printf("Contents of queue: ");
 if (q_no_tasks == 0) printf("Queue empty\n");

 for(i = 0; i < q_no_tasks; i++) {
 printf("%d ",queue[(queue_rear + i) % QSIZE]); // print queue[(rear + i) % QSIZE]
 }
 printf("\n");

7

 return;
}

void queue__init() { // initialize to zero
 int i;
 queue_front = 0; // task queue index for next task to add
 queue_rear = 0; // task queue index for next item to remove
 q_no_tasks = 0; // number of items in queue
 return;
}

int main(int argc, char *argv[]) {
 int i,j;

 for (i = 0; i < N; i++) dist[i] = 99999; // initialize to greater than the max possible distance
 dist[0] = 0; // distance from first node to itself = zero

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 w[i][j] = -1; // initialize to no connection
 w[0][1] = 10; // set specific connections
 w[1][2] = 8;
 w[1][3] = 13;
 w[1][4] = 24;
 w[1][5] = 51;
 w[2][3] = 14;
 w[3][4] = 9;
 w[4][5] = 17;

 printf("Adjacency matrix for w\n");
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++)
 printf("%3d ", w[i][j]);
 printf("\n");
 }

 queue__init();
 queue_insert(0); // insert first node 0 into queue
 queue_print();
 while (queue_remove(&i) != -1) { // vertex i from queue
 printf("Vertex %d removed ",i);
 queue_print();print_dist();
 for (j = 0; j < N; j++) { // check each dest. j from vertex i, seq. order (j = 0; j < N; j++), book order j = N-1; j >= 0; j--
 if (w[i][j] != -1) { // if destination j connected directly
 newdist_j = dist[i] + w[i][j]; // distance to j thro i using current shortest distance to i
 if (newdist_j < dist[j]) { // update shortest distance to j if shorter
 dist[j] = newdist_j;
 if (j < N-1) { // do not add last vertex (destination)
 queue_insert(j);
 printf("New shorter distance to vertex %d found. Vertex added to queue.\n",j);
 queue_print();print_dist();
 }
 }
 }
 }
 }

 return 0;

}

8

Sample output

9

Workpool version: shortpath_workpool3.c

// Suzaku Workpool version 3 -- Shortest path B. Wilkinson Nov 25, 2015

#include <stdio.h>
#include <string.h>
#include "suzaku.h"
 // shortest path data
#define N 6 // number of nodes
int w[N][N]; // Adjacency matrix for w. Each process will have a copy of this without needing to broadcast it
int dist[N]; // Current minimum distances. Each prcess will have their own copy
int newdist_j;

// workpool functions to be provided by programmer:

void init(int *T) { // initialize w and dist (all processes) and insert initial tasks in task queue (master)

 int i,j;

 for (i = 0; i < N; i++) dist[i] = 99999; // initialize to greater than the max possible distance
 dist[0] = 0; // distance from first node to itself = zero

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 w[i][j] = -1; // initialize to no connection
 w[0][1] = 10; // set specific connections, matches values in book
 w[1][2] = 8;
 w[1][3] = 13;
 w[1][4] = 24;
 w[1][5] = 51;
 w[2][3] = 14;
 w[3][4] = 9;
 w[4][5] = 17;

 SZ_Master {
 SZ_Insert_task(0); // insert first node 0 into queue, strictly only the master needs to do this
 printf("Init() inserting 0 into task queue\n"); // only the queue in the master if used
 }
 return;
}

void diffuse(int taskID) { // diffuse attaches the current distances

 SZ_Put("dist",dist); // from global array dist[] in master

 printf("Diffuse Task %d sent with dist %3d %3d %3d %3d %3d
%3d\n",taskID,dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 return;
}

void compute(int taskID) {

 int i,j;
 int new_tasks[N]; // max of N new tasks
 int slave;

 SZ_Get("dist",dist); // update array dist[] in slave

 slave = SZ_Get_process_num();

 for (i = 0; i < N; i++) new_tasks[i] = 0;

 printf("Slave %d Task %d recvd with dist%3d %3d %3d %3d %3d
%3d\n",slave,taskID,dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 i = 0;
 for (j = 0; j < N; j++) { // check each destination j from vertex taskno, sequential order
 if (w[taskID][j] != -1) { // if destination j connected directly

10

 newdist_j = dist[taskID] + w[taskID][j]; // distance to j thro i using current shortest distance to i
 if (newdist_j < dist[j]) { // update shortest distance to j if shorter
 dist[j] = newdist_j;
 if (j < N-1) { // do not add last vertex (destination)
 new_tasks[i] = j;
 i++;
 printf("Slave %d Task %d New shorter dist. to vertex %d found. Vertex added to result\n",slave,taskID,j);
 }
 }
 }
 }

 printf("Slave %d Task %d Tasks generated %2d,%2d,%2d,%2d,%2d,%2d, current dist. %3d %3d %3d %3d %3d
%3d\n",slave,taskID,new_tasks[0],new_tasks[1],new_tasks[2],new_tasks[3],new_tasks[4],new_tasks[5],dist[0],dist[1],dist[2
],dist[3],dist[4],dist[5]);

 SZ_Put("result",new_tasks);
 SZ_Put("dist",dist);

 return;
}

void gather(int taskID) {

 int i;
 int dist_recv[N];
 int new_tasks[N]; // max of N new task

 SZ_Get("result",new_tasks); // this will only get the first added task
 SZ_Get("dist",dist_recv);

printf("Gather Task %d Tasks received %2d,%2d,%2d,%2d,%2d,%2d, dist. received %3d %3d %3d %3d %3d
%3d\n",taskID,new_tasks[0],new_tasks[1],new_tasks[2],new_tasks[3],new_tasks[4],new_tasks[5],dist_recv[0],dist_recv[1],
dist_recv[2],dist_recv[3],dist_recv[4],dist_recv[5]);

 for (i = 0; i < N; i++)
 if (dist_recv[i] < dist[i]) dist[i] = dist_recv[i]; // this will update dist in master. Possible received values on the smallest

 for (i = 0; i < N; i++) {
 if (new_tasks[i] != 0) {
 SZ_Insert_task(new_tasks[i]);
 }
 }

printf("Gather Task %d current dist. %3d %3d %3d %3d %3d %3d\n",taskID,dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 return;
}

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i,j;
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes
 SZ_Parallel_begin

 SZ_Workpool3(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 printf("\nFinal results: distances %3d %3d %3d %3d %3d %3d\n",dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 SZ_Finalize();

 return 0;
}

11

Sample output

