
1

SUZAKU Pattern Programming Framework Specification

3 - Workpool Version 2

B. Wilkinson April 5, 2016

A version of the Suzaku workpool has been implemented that mirrors the interface in Seeds by
using “put” routines to pack data into tasks and results and “get” routines to retrieve the data.
Now the data can be constructed to be of multiple items of different types and sizes. To
differentiate between the versions, the initial version of the workpool is called version 1 and the
workpool with put and get routines is called version 2. Version 2 may incur a greater overhead
that version 1 but is more powerful and more elegant to use. It is basis of the dynamic workpool
described in Section 4.

3.1 Workpool routines

Put Routine

The put routine is used by the programmer to insert data into a task and is called in the compute
routine, once for each data item inserted into the task. The signature is:

SZ_Put(char[8] key, void *x)

Purpose: Places data into the send buffer and associates a user-defined name to it.

Parameters:

key String or string constant
*x Pointer to data being stored in the message buffer and mapped to key

Limitations: The data pointed to by *x can be an individual character variable, integer variable,
double variable or 1-dimensional array of characters, integers, or doubles, or a multi-dimensional
array of doubles. The type does not have to be specified. Multi-dimensional arrays of other types
are not currently supported. The address of an individual variable specified by prefixing the
argument the & address operator. key is a programmer selected string to identify the data, up to
eight characters and there is a maximum of 10 keys (i.e. 10 puts into the same message buffer).
These size limitations could be increased if needed but the mapping is attached to the message
and so incurs an overhead.

Get Routine

The get routine is used by the programmer to extract data from a task and is called in the diffuse
routine, once for each data item extracted from the task. The signature is:

SZ_Get(char[8] key, void *x)

2

Purpose: Extract data from the received message that is associated with a user-defined name.

Parameters:

key String or string constant
*x Pointer to data being retrieved from the message buffer mapped to key

Limitations: The data pointed to by *x can be an individual character variable, integer variable,
double variable, or 1-dimensional array of characters, integers, or doubles, or a multi-
dimensional array of doubles. The type does not have to be specified. Multi-dimensional arrays
of other types are not currently supported. The address of an individual variable specified by
prefixing the argument the & address operator. key is a string up to eight characters and there is
a maximum of 10 keys (i.e. 10 puts to the same message buffer). These size limitations could be
increased if needed but the mapping is attached to the message and so incurs an overhead.

The workpool routines init(), diffuse(), compute(), and gather() now have different and
simplified signatures:

init()

The init() routine now only has to set the number of tasks, T. D, the number of data items in
each task and R, the number of data items in result of each task are not now used as they are
determined with the put routines, i.e., the signature of init() is:

 void init(int *T)

Parameter:

int *T Input parameter for the number of tasks (pointers to an integer)

diffuse()

The diffuse() only needs the input parameter from the framework to provide the taskID. The
output parameter output[] is not needed, i.e., the signature of diffuse() is:

void diffuse(int taskID)

Parameter:

int taskID Input parameter for the task ID for the associated task. , provided by the
framework (from zero onwards incremented each diffuse is called).

3

compute()

The compute() only needs the input parameter from the framework to provide the taskID. The
input parameter input[] and output parameter output[] are not needed, i.e., the signature of
diffuse() is:

void compute(int taskID)

Parameter:

int taskID Input parameter for the task ID for the associated task, provided by the
framework.

gather()

The gather() only needs the input parameter from the framework to provide the taskID. The
input parameter input[] is not needed, i.e., the signature of gather() is:

void gather(int taskID)

Parameter:

int taskID Input parameter for the task ID for the associated task, provided by the
framework.

3.2 Signature of Suzaku Workpool Routine

The workpool routine is now called SZ_workpool2 and has the signature:

void SZ_Workpool2 (void (*init)(int *T),
 void (*diffuse)(int *taskID),
 void (*compute)(int taskID),
 void (*gather)(int taskID))

Parameters:

 *init Function pointer to init function
 *diffuse Function pointer to diffuse function
 *compute Function pointer to compute function
 *compute Function pointer to gather function

3.3 Implementation Details

The put and get operations are achieved by using the MPI pack mechanism that enables a
message to be constructed with multiple data items of any type and the MPI unpack mechanism
that enables the data to be extracted from the packed message. To provide the greatest flexibility

4

a lookup table is created that associates the key with the position in the buffer where the variable
is packed, and this look-up table is attached to the complete message before the message is sent.
Then SZ_Get() can be called in any order and also SZ_Put() can be called in any order. Also
each message could have the same or different named data if required. This implementation does
not need the input and output buffers to be declared by the programmer and are not parameters in
diffuse, compute, and gather. The only parameter needed is the taskID. The size of the x is not
needed, but x must be declared statically such that sizeof() can be used. Both SZ_Put and
SZ_Get are macros in suzaku.h that find the size using sizeof and then each call a routine
(SZ_pack_data() and SZ_unpack_data() respectively) in the workpool program in suzaku.c.
These routines then call a routine to map the data to a key or unmap the data given a key before
packing or unpacking. SZ_Put and SZ_Get do not return error values but routines they call can
create error messages, notably if the allocated memory space is exhausted when mapping or
packing, or the name cannot be found in the map in “unmapping.”

The map is implemented as two 1-D arrays, one array holding the keys as character strings and
the other holding the positions in the message buffer as integers. The map can be attached at the
front or the end of the message. Both have been tried. At the front requires a fixed sized map for
all messages so that the start of the data is known before mapping. At the end requires a pointer
to it at the front and potentially the map could be a different size for each message although that
was not implemented.

If the programmer uses SZ_Put() or SZ_Get() within control statements such as if statements, it
is safest to include braces, e.g.

if (task_no == 0) { SZ_Put("mydata",data1); } else {SZ_Put("mydata",data2);}

because macros do in-line substitution and consist of multiple statements. (Internally they are
wrapped around do { … } while(0); statements but that is not always sufficient.)

Also in the example given, all messages sent will have data called “mydata.” If one sends
messages with different named data, one would need to recognize that at the destination. Using
SZ_Get() with a name that does not exist in the message will result in an error message (“name
not found”).

3.4 Compilation and Execution

SZ_Workpool2() and associated routines are held in suzaku.c. Compilation and execution is the
same as for workpool version 1 except for naming the workpool as SZ_Workpool2() in the
application code.

Suggestion when debugging Suzaku code. One can get strange error messages that appear to
relate to suzaku.c when compiling faulty application code. The errors are not in suzaku.c. They
are often caused by missing parentheses and errors in the application code that then cause the
code on suzaku.c to compile wrongly. It is suggested in these cases to comment out the Suzaku
routines in the application code to see what exactly is erroneous in the application code.

5

Sample programs

1. Test program with different data types

A sample program test_workpool2.c shown below demonstrates different data types that can be
used with put and get:

// Suzaku Workpool version 2 with put and get test program
// B. Wilkinson Nov 16, 2015

#include <stdio.h>
#include "suzaku.h"

#define T 4 // number of tasks, max = INT_MAX - 1

// workpool functions to be provided by programmer:

void init(int *tasks) { // sets number of tasks
 *tasks = T;
 return;
}

void diffuse(int taskID) {
 int j;
 char w[] = "Hello World";
 static int x = 1234; // only initialized first time function called
 static double y = 5678;
 double z[2][3];
 z[0][0] = 357;
 z[1][1] = 246;

 SZ_Put("w",w);
 SZ_Put("x",&x);
 SZ_Put("y",&y);
 SZ_Put("z",z);

 printf("Diffuse Task sent: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] =
%8.2f\n",taskID, w, x, y,z[0][0],z[1][1]);

 x++;
 y++;

 return;
}

void compute(int taskID) { // simply passing data multiplied by 10 in a different order
 char w[12] = "-----------";
 int x = 0;
 double y = 0;
 double z[2][3];
 z[0][0] = 0;
 z[1][1] = 0;

 SZ_Get("z",z);
 SZ_Get("x",&x);
 SZ_Get("w",w);
 SZ_Get("y",&y);

 printf("Compute Task received: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] =
%8.2f\n",taskID, w, x, y,z[0][0],z[1][1]);

6

 x = x * 10;
 y = y * 10;
 z[0][0] = z[0][0] * 10;
 z[1][1] = z[1][1] * 10;
 printf("Compute Result: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] =
%8.2f\n",taskID, w, x, y,z[0][0],z[1][1]);

 SZ_Put("xx",&x); // use different names for test, could have been same names
 SZ_Put("yy",&y);
 SZ_Put("zz",z);
 SZ_Put("ww",w)

 return;
}

void gather(int taskID) { // function done by master collecting slave results. Final results computed by
master
 char w[12] = "-----------";
 int x = 0;
 double y = 0;
 double z[2][3];
 z[0][0] = 0;
 z[1][1] = 0;

 SZ_Get("ww",w);
 SZ_Get("zz",z);
 SZ_Get("xx",&x);
 SZ_Get("yy",&y);

 printf("Gather Task received: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] =
%8.2f\n",taskID, w, x, y,z[0][0],z[1][1]);

 return;
}

int main(int argc, char *argv[]) {
 int i; // All variables declared here are in every process
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes

 printf("number of tasks = %d\n",T);

 SZ_Parallel_begin

 SZ_Workpool2(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

test_workpool2.c

Note how the order of put and get are not the same although they could be the same. Also the
names used to identify the variables are chosen by the programmer. (They are limited to eight
characters in the current implementation for simplicity.)

7

Sample output is given below:

8

2. Matrix Multiplication

A simple (but very inefficient way) to do matrix multiplication as a workpool is to send one row
of A and one column of B as one task to a slave to compute one element of the result as shown
below:

A program implementing matrix multiplication in the same way as the Seeds sample matrix
multiplication program called matrixmult_workpool2.c is given below:

#include <stdio.h>
#include "suzaku.h"

#define N 4 // size of matrices
#define T N * N // required Suzaku constant, number of tasks, max = INT_MAX - 1

double A[N][N], B[N][N], C[N][N], D[N][N];

void init(int *tasks) {
 *tasks = T;
 return;
}

void diffuse(int taskID) { // uses same approach as Seeds sample but inefficient copying arrays

Matrix multiplication
workpool

9

 int i;
 int a, b;
 double rowA[N],colB[N];

 a = taskID / N; // row
 b = taskID % N; // column
 for (i = 0; i < N; i++) {
 rowA[i] = A[a][i]; // copy row of A.
 // Strictly do not need to do this as can specify one row in SZ_Put("rowA",A[a]);
 colB[i] = B[i][b]; // copy one column of B into output
 }

 SZ_Put("rowA",rowA);
 SZ_Put("colB",colB);
 return;
}

void compute(int taskID) {
 int i;
 double out;
 double rowA[N],colB[N];

 SZ_Get("rowA",rowA);
 SZ_Get("colB",colB);

 out = 0;
 for (i = 0; i < N; i++) {
 out += rowA[i] * colB[i];
 }

 SZ_Put("out",&out);
 return;
}

void gather(int taskID) {
 int a,b;
 double out;

 SZ_Get("out",&out);
 a = taskID / N;
 b = taskID % N;
 C[a][b]= out;

 return;
}

// additional routine

void print_array(double array[N][N]) { // print out an array
 int i,j;
 for (i = 0; i < N; i++){
 printf("\n");
 for(j = 0; j < N; j++) {
 printf("%5.2f ", array[i][j]);
 }
 }
 printf("\n");
 return;
}

int main(int argc, char *argv[]) {
 int i,j,k; // All variables declared here are in every process

10

 int p; // number of processes, set by SZ_Init()
 double sum;
 double time1, time2; // for timing in master

 SZ_Init(p); // initialize MPI environment, sets P to number of processes

 for (i = 0; i < N; i++) { // set some initial values for A and B
 for (j = 0; j < N; j++) {
 A[i][j] = i + j*N;
 B[i][j] = j + i*N;
 }
 }

 // sequential matrix multiplication, answer in D
 time1 = SZ_Wtime(); //start time measurement
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 sum = 0;
 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 D[i][j] = sum;
 }
 }
 time2 = SZ_Wtime(); //end time measurement

 printf("Time of sequential computation: %f seconds\n", time2-time1);

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin // start of parallel section

 SZ_Workpool2(init,diffuse,compute,gather); // workpool matrix multiplication,answer in C

 SZ_Parallel_end; // end of parallel
 time2 = SZ_Wtime(); // record time stamp

 printf("Time of parallel computation: %f seconds\n", time2-time1);

 printf("Array A");
 print_array(A);
 printf("Array B");
 print_array(B);
 printf("Array C");
 print_array(C);

 // check sequential and parallel versions give same answers
 int error = 0;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if (C[i][j] != D[i][j]) error = -1;
 }
 }
 if (error == -1) printf("ERROR, sequential and parallel versions give different answers\n");
 else printf("Sequential and parallel versions give same answers\n");

 SZ_Finalize();

 return 0;
}

11

Sample output:

Notice parallel version is significantly slower than the sequential version with such small 4 x 4
arrays.

12

3. Block Matrix Multiplication

A better matrix multiplication method than the previous method is to use block matrix
multiplication algorithm as shown below:

Block matrix multiplication

Each slave is given s rows and s columns. Pairs of s x s submatrices are multiplied and the results
added together to produce an s x s submatrix answer.

This is set as a student assignment to implement and not posted here. It is quite easy to modify
matrixmult_workpool2.c

s x s submatrix

s

s

