
1

SUZAKU Pattern Programming Framework Specification

5 - Pipeline Pattern Version 1

B. Wilkinson, March 17, 2016

5.1 Iterative synchronous pipeline pattern

The iterative synchronous pipeline pattern has been implemented as shown below:

In the pipeline pattern, the computation is divided into a series of tasks that have to be performed
one after the other, with the result of one task passed on to the next task, like an assembly
manufacturing line. One computational unit, a slave here, performs each task. In the iterative
synchronous pipeline pattern, the pipeline is within an iteration loop, to achieve increased
performance as in an assembly line. At each iteration, tasks pass from one process to the
adjacent process in the pipeline.

5.2 Suzaku Pipeline Routines

The programmer’s interface is purposely similar to other patterns. The slaves execute the
compute routine and the master executes the diffuse and gather routines:

Repeat
Stop

Task	N

Task	1 Task	3 Task	2

Result

Slaves

Master

Pipeline pattern

Check termination
condition

Iterative synchronous pipeline pattern

2

Master

Slaves

compute()

diffuse() gather()

compute() compute()

Suzaku pipeline routines

This approach is the same as the pipeline pattern in Seeds. The basic version uses 1-D arrays as
in the workpool version 1 as this is the most likely data structure and most efficient
implementation although there is no technical reason why version 2 put and get mechanism
could not be incorporated.

The programmer must implement:

 void init() To initialize the number of tasks, T, and the size of each task, D at

beginning of computation. Executed by all processes. Other initializations
can be done

 void diffuse () Generates next task when called by master. Sent to the first slave
 void compute() Executed by the slaves. Takes task received and generates corresponding

result
 void gather() Accepts result from final slave and develops final result. Called by Master.

The signatures art the same as for the workpool version 1:

void diffuse (int taskID, double output[N])
void compute (int taskID, double input[N], double output[N])
void gather (int taskID, double input[N])

5.3 Pipeline Pattern Signature

The pattern is implemented by SZ_Pipeline() with the signature:

SZ_Pipeline(void (*init)(int *T, int *D, int *R),
 void (*diffuse)(int *taskID,double output[]),
 void (*compute)(int taskID, double input[], double output[]),
 void (*gather)(int taskID, double input[]))

3

5.4 Termination

The pipeline will terminate naturally after T * (P - 1) steps where are T tasks and P processes. A
routine is provided to be able to terminate the pattern earlier when a termination condition exists:

void SZ_Terminate()

This routine would be called by the gather routine.

5.5 Debugging

A routine is provided that will cause debug messages to be displayed during the pipeline
operation:

void SZ_Debug()

This routine would be placed immediately before SZ_Pipeline() with parallel section and sets a
flag in SZ_Pipeline to enable debug print statements. With pre-implemented patterns it is really
important to be able to understand and watch the execution steps as the programmer does not
have access to the underlying implementation.

Using above approach could be used in other patterns rather than provide two separate routines
as in the workpool version 1 although this is not implemented yet and would not be as efficient.

5.6 Program structure

The program structure is similar to a workpool and shown below, consisting of the four
programmer routines and the Suzaku routines.

#include <stdio.h>
#include <string.h>
#include "suzaku.h"

void init(int *T, int *D, int *R) {
 ...
 return;
}
void diffuse(int *taskID,double output[D]) {
 ...
 return;
}

void compute(int taskID, double input[D], double output[R]) {
 ...
 return;
}

void gather(int taskID, double input[R]) {
 ...
 return;

4

}

int main(int argc, char *argv[]) {

 int P; // number of processes
 SZ_Init(P); // initialize MPI message-passing environment

 SZ_Parallel_begin

 SZ_Debug();

 SZ_Pipeline(init, diffuse, compute, gather);

 SZ_Parallel_end;

 printf("Pipeline results\n ... ",); // print out results
 ...

 SZ_Finalize();

 return 0;
}

Pipeline program structure

5.7 Compilation and Execution

SZ_Pipeline() and associated routines are held in suzaku.c. Compilation and execution is the
same as for other Suzaku patterns.

5

Sample programs
pipeline_sort.c

A pipeline to implement insert sort:

The basic algorithm for process Pi is:

Receive x from Pi-1
if (stored_number < x) {

 send stored_number to Pi
 x = stored_number;

} else send x to Pi

pipeline_sort.c implements this pipeline pattern:

// Suzaku pipeline sorting using a pipeline B. Wilkinson Dec 3rd, 2015
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros

#define N 1 // Size of data being sent
#define P 4 // Number of processes and number of numbers, each process only handles one number

void init(int *T,int *D,int *R) { // initialization. R not used
 *T = 4;
 *D = 1;
 //*R = 1; // not used
 srand(999);

return;
}

void diffuse (int taskID,double output[N]) {
 if (taskID < P) output[0] = rand()% 100; // P numbers, a number between 0 and 99
 else output[0] = 999; // otherwise terminator

return;
}

void compute(int taskID, double input[N], double output[N]) { // Only input[0] used in this application
 static double largest = 0;
 if (input[0] > largest) {

Compare

x
min

P
1

Compare

Smallest number

P
2

Compare

P
3

Next smallest number

Series of number
to sort

x
n-1

, … x
1
, x

0

Larger numbers

6

 output[0] = largest; // copy current largest into send array
 largest = input[0]; // replace largest with received number
 } else {
 output[0] = input[0]; // copy received number into send array
 }

return;
}

void gather(int taskID,double input[N]) {
 if (input[0] == 999) SZ_terminate();

return;
}

int main(int argc, char *argv[]) {
 int p; // p is actual number of processes when executing program
 SZ_Init(p); // initialize MPI message-passing environment
 if (p != P) // number of processes hardcoded
 printf("ERROR number of processes must be %d\n",P);

 SZ_Parallel_begin // parallel section, all processes do this

 SZ_Debug();
 SZ_Pipeline(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Sample output:

7

