
1

SUZAKU Pattern Programming Framework Specification

6 – Generalized Patterns

B. Wilkinson March 17, 2016

6.1 Suzaku Generalized Pattern Concept

Message passing patterns connect sources and destinations together in various ways. Rather than
implement every pattern in a unique way, in the Suzaku generalized pattern, a directed graph
called here a connection graph is defined that specifies the pattern. Then this graph is used
subsequently with a generalized send routine that will send data to all processes connected
according to the connection graph. Any connection pattern can be created this way. Of course
one has to avoid messaging deadlock in the pattern implementation and it may be the
implementation is not as efficient as specific implementations for specific patterns.

Most patterns are repeated as iterative synchronous patterns terminating when a termination
condition occurs, usually either a fixed number of iterations or when the computed values
converge sufficiently (i.e. do not change by more than a given value). The Suzaku generalized
pattern is an iterative synchronous pattern with a master-slave structure as illustrated in Figure 1.
The master sends initial data to all slaves and collects results from all slaves at the end of the
computation. The slaves compute and send values to those slaves that are interconnected,
repeatedly until the termination condition exists. The master also acts as one slave as in the
master-slave pattern. For greatest flexibility, the programmer implements the iteration loop.
Suzaku routines are provided so that the programmer to construct the pattern and to send data to

Figure 1 Generalized iterative synchronous pattern

Repeat

Stop

Slaves

Connection
pattern

Broadcast/scatter
and gather

Master

Check
termination
condition

2

connected processes. Broadcast/scatter/gather between the master and the slave processes rely on
using existing low-level Suzaku routines.

6.2 Connection Graph

To be able to use the generalized pattern routines, one needs to appreciate the connection graph.
The connection graph specifies which slaves are interconnected and the location in the
destination for the incoming data. It is a directed graph so it would be possible for the connection
to be in one direction although that would be unusual. The graph is a P x P adjacency matrix,
connection_graph[P][P], where there are P processes (slaves, as the master acts as one slave)
and illustrated below for eight slaves:

 Destination process
 0 1 2 3 4 5 6 7 8
 0
 1 x
 2
Source 3
process 4
 5
 6
 7
 8

The source data being transferred is a 1-D array of doubles, output[N]. The destination array is a
2-D array, input[P][N]. The graph entry at connection_graph[i][j] indicates:

 -1 No connection
 x A connection process i to process j, and the value, x, indicates the row in the destination

array where the data is to be placed, i.e. input[x][N].

This would allow a fully connected graph with each value received held in a separate location. In
a partially connected graph, not all rows in input[][] would be used. The graph can be set up to
create any pattern including all-to-all, pipeline, stencil, binary tree etc. The all-to-all, pipeline,
and stencil patterns have been created so far. Once the pattern is created, a generalized send
routine uses the connection graph and send output[] to all connected processes, storing the data
in the designated row of input[][].

The basic version sends 1-D arrays as in the workpool version 1 as this is the most likely data
structure and most efficient implementation although there is no technical reason why version 2
put and get mechanism could not be used. The arrays hold doubles.

Master acts as slave 0

Slaves

Slaves

3

Sample connection graph patterns

1. "all‐to‐all"

 Destination process
 0 1 2 3 4 5 6 7 8
 0 -1 0 0 0 0 0 0 0 0
 1 1 -1 1 1 1 1 1 1 1
 2 2 2 -1 2 2 2 2 2 2
 3 3 3 3 -1 3 3 3 3 3
Source 4 4 4 4 4 -1 4 4 4 4
process 5 5 5 5 5 5 -1 5 5 5
 6 6 6 6 6 6 6 -1 6 6
 7 7 7 7 7 7 7 7 -1 7
 8 8 8 8 8 8 8 8 8 -1

i.e. the array output[N] from slave i will be sent to the ith row of input (input[i][N]) and all
locations of input will be used.

2. " pipeline" (note: a ring)

 Destination process
 0 1 2 3 4 5 6 7 8
 0 -1 0 -1 -1 -1 -1 -1 -1 -1
 1 -1 -1 0 -1 -1 -1 -1 -1 -1
 2 -1 -1 -1 0 -1 -1 -1 -1 -1
 3 -1 -1 -1 -1 0 -1 -1 -1 -1
Source 4 -1 -1 -1 -1 -1 0 -1 -1 -1
process 5 -1 -1 -1 -1 -1 -1 0 -1 -1
 6 -1 -1 -1 -1 -1 -1 -1 0 -1
 7 -1 -1 -1 -1 -1 -1 -1 -1 0
 8 0 -1 -1 -1 -1 -1 -1 -1 -1

i.e. the array output[N] from slave i will be sent to the first row of input (input[0][N]) and
input[1][N] … input[N-1][N] will not be used.

3. 2‐D "stencil"

Slaves are arranged in a square 2-D mesh. The number of slaves must have an integer squareroot.
Nine slaves gives a 3 x 3 stencil. Processes are numbered in natural order:

 0 1 2
 3 4 5
 6 7 8

x = 0

x = source process ID

4

Apart from slaves at the edges, each slave connects to the four neighbors on left, right, up and
down, e.g. process 4 connect to 1, 3, 5 and 7. The edges only connect to those slaves that exist,
e.g. process 1 connects to 0, 2, and 4. In most stencil computations, a constant boundary value
is used by the process in the computation where it does not have neighboring process.

Processes will receive up to four output[] arrays, one from each neighbor loaded into input[0][],
input[1][], input[2][], and input[3][]. Values for x:

 From the process to the left x = 0
 From the process to the right x = 1
 From the process above it x = 2
 From the process below it x = 3

to all each to be placed in different location.

Below is shown for a 3 x 3 stencil (9 x 9 connection graph):

 Destination process
 0 1 2 3 4 5 6 7 8
 0 -1 0 -1 2 -1 -1 -1 -1 -1
 1 1 -1 0 -1 2 -1 -1 -1 -1
 2 -1 1 -1 -1 -1 2 -1 -1 -1
 3 3 -1 -1 -1 0 -1 2 -1 -1
Source 4 -1 3 -1 1 -1 0 -1 2 -1
process 5 -1 -1 3 -1 1 -1 -1 -1 2
 6 -1 -1 -1 3 -1 -1 -1 0 -1
 7 -1 -1 -1 -1 3 -1 1 -1 0
 8 -1 -1 -1 -1 -1 3 -1 1 -1

6.3 Generalized Pattern Routines

(a) Setting up pattern

(i) For setting up a standard pattern:

 void SZ_Pattern_init(const char* pattern, int N)

Purpose: To initialize the connection graph , connection_graph[P][P] to one of various
selectable patterns and create message buffer space for the generalized send routines. This
routine provides a copy of the connection graph and message buffer space to all processes and is
called within a parallel section before using the pattern with SZ_Generalized_send().

Parameters:

5

pattern Name of the pattern as a string constant (input parameter). So far:
 "all-to-all"
 "pipeline" or “ring”
 "stencil

N Number of data items, i.e. size of output[] (input parameter).

Limitation: connection_graph[P][P] is statically declared as 20 x 20 elements, setting the
maximum number of slaves (processes) to be 20. It is not expected that P would be very large in
most applications, but it can be altered in suzaku.c. The actual size of P being used is established
with SZ_Init(). The size N is not so limited as the message buffer is declared dynamically in
suzaku.c. SZ_Pattern_init() must only be called within a parallel section.

(ii) For setting up a user-defined pattern:

void SZ_Set_conn_graph(int *g)

Purpose: To set the connection_graph[P][P]to the values given by the user-supplied input
array, g[][]. SZ_Pattern_init() must be called first (with any standard pattern) to set N and
create the message buffers. Then SZ_Set_conn_graph() will overwrite the connection graph.

Parameter:

 *g Pointer to the array g[P][P] holding the pattern where P is the number of

processes

Limitation: It is assumed the size of the provided array g is a P x P integer array. Each process
needs a copy of this array as in this routine, each process will set up its own connection graph
locally.

(b) Generalized send routine

void SZ_Generalized_send(double *output, double *input)

Purpose: To send the array output[N] to all connected processes as specified in the connection
graph. The destination process stores the array in row of input[P][N] given by the connection
graph.

Parameters:

 *output Pointer to the array output[N] in source process
 *input Pointer to the array input[P][N] in destination

6

Limitation: It is assumed that N is the value set in SZ_Pattern_init() and P is the value set in
SZ_Init() for indexing into the array output[][]. This routine must only be called within a
parallel section.

6.4 Overall program structure

The overall program structure is shown below:

SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init(“pattern_name",T,D,R); // set up slave interconnections in each slave
 // add SZ_Set_conn_graph() if required

 … // initialize data, input and output arrays

 SZ_Broadcast(input); // broadcast initial data to all slaves, if needed

 for (i = 0; i < steps; i++) { // in this case a fixed number of iteration
 compute(i,input,output); // slaves execute compute, master acts as a slave
 SZ_Pattern_send(output,input); // sent compute results to connected slaves
 }

 SZ_Gather(input,result); // collect results from slaves

SZ_Parallel_end; // end of parallel

Note: Each slave must maintain two arrays input[][] and output[]. Input[][] holds the data sent
from connected slaves. Slaves create results in output[] to be send to connected slaves. The
connection graph specifies how the data is arranged in these arrays.

The broadcast corresponds to diffuse in the general case and could be coded inside a routine
called diffuse(). Similarly gather corresponds to gather in the general case and could be coded
inside a routine called gather().

6.5 Debugging

One routine currently available:

void SZ_Print_connection_graph(void)

Purpose: To cause the master to print the current connection graph, connection_graph[P][P],
for test purposes.

Parameters: None

6.6 Implementation

Messaging is done point to point and a barrier in present at the end to ensure all processes
complete before returning, i.e. the routine is synchronous as are low-level Suzaku message
passing routines but it is implemented as a routine and not as a macro. If all MPI_send()’s

7

precede MPI_recv()’s in a process, there is a possible deadlock if sends become synchronous
because of lack of buffer storage. To avoid possible deadlock, the implementation uses MPI
buffered sends with explicit buffer space. Beforehand calling MPI_BSend()for the first time in a
process, it is necessary to call MPI_Buffer_attach() to attach a buffer. The size of the buffer
needs to be only big enough for all pending sends in a process. Here each process just needs
space for one message. At end of all sends MPI_Buffer_detach() should be called.
SZ_Pattern_finalize() will do this if the programmer wants to use it.

6.7 Compilation and Execution

The generalized pattern routines are found in suzaku.c. Application code using them must be compiled
with the math libraries, -lm option even if suzuku.o is recompiled.

8

Sample programs

1. all-to-all pattern, pattern_test.c

This program simply tests the all-to-all pattern.

// testing generalized patterns, pattern_test.c B. Wilkinson Dec 19, 2015 Notes: master acts as one slave
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros

//Declared as constants to allow static arrays for input and output
#define D 2 // # of data items in slave data.
#define P 4 // Number of processes -- this code must be run only with this number of processes

void compute(int taskID, double B[P][D], double A[D]) { // each slave

 printf("Slave %d step %d A[0]=%5.2f, B[0][0]=%5.2f, B[1][0]=%5.2f, B[2][0]=%5.2f, B[3][0]=%5.2f\n",
SZ_Get_process_num(), taskID,A[0],B[0][0],B[1][0],B[2][0],B[3][0]);

 return;
}

int main(int argc, char *argv[]) {
 int i,j,p; // p is actual number of processes when executing program
 double A[D],B[P][D]; // A is the slave data, B holds data sent from other slaves
 int steps = 2; // number of time steps

 SZ_Init(p); // initialize MPI message-passing environment

 if (p != P) printf("ERROR Program must be run with %d processes\n",P);

 SZ_Parallel_begin // parallel section, all processes do this

 for (i = 0; i < D; i++) { // all processes
 A[i] = SZ_Get_process_num();
 for (j = 0; j < P; j++){ // initialize data
 B[j][i] = 0;
 }
 }

 SZ_Pattern_init("all-to-all",D); // set up slave interconnections

 SZ_Print_connection_graph(); // for checking

 //SZ_Broadcast(A); // broadcast initial data to all slaves

// not actually needed here as data is initialized in each process
 for (i = 0; i < steps; i++) {

 compute(i, B, A); // slaves execute compute, master acts as one slave
 SZ_Generalized_send(A, B); // sent compute results to connected slaves

 }
 SZ_Gather(A,A); // collect results from slaves, gather()

 SZ_Parallel_end; // end of parallel
 SZ_Finalize();
 return 0;
}

9

Sample output

Notice compute simply prints out the input and output arrays. The first iteration, there are at their
initialized values. The second iteration shows them updated after the messaging done by
SZ_Generalized_send(A, B).

10

Master

Slaves

compute()

diffuse() gather()

compute() compute()

2. Sorting using a generalized pipeline pattern – gen_pipeline_sort.c

The basic pipeline is shown below described in terms of diffuse, compute and gather:

Here, the master does not act as one slave. It generates numbers and receives the final results.

// Sorting using a generalized pattern pipeline B. Wilkinson Dec 19, 2015.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros

#define D 1 // # of data items in slave data.
#define P 4 // Number of processes -- must be run only with this number of processes,
int main(int argc, char *argv[]) {
 int i, j, p,pid; // p is actual number of processes when executing program
 int T = 3 * P; // number of time steps
 double A[D]; // data to send (D = 1).
 double B[P][D]; // received data, from each source
 static double largest = 0;

 for (i = 0; i < D; i++) A[i] = 0; // initialize to zero
 for (i = 0; i < P; i++) // initialize receive so can see what received
 for (j = 0; j < D; j++)
 B[i][j] = -999;

 srand(1); // initialize rand()

 SZ_Init(p); // initialize MPI message-passing environment
 if (p != P) // number of processes hardcoded
 printf("ERROR number of processes must be %d\n",P);

 SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init("pipeline",D); // set up slave interconnections
 SZ_Print_connection_graph(); // for checking

 for (i = 0; i < T; i++) {

 pid = SZ_Get_process_num(); // identify process

 if (pid ==0) { // master generates next number to sort, ends with a terminator

 if (i < P) A[0] = rand()% 100; // P numbers, a number between 0 and 99

11

 else A[0] = 999; // otherwise terminator
 printf("Master sends %3.0f and receives %3.0f\n",A[0],B[0][0]);

 } else { // slaves execute compute, using B to create A.

 if (B[0][0] > largest) {
 A[0] = largest; // copy current largest into send array
 largest = B[0][0]; // replace largest with received number
 } else {
 A[0] = B[0][0]; // copy received number into send array
 }

 }

 SZ_Generalized_send(A,B); // sent results, includes master to slave, slave to master
 SZ_Barrier(); // wait for every process to complete

 }

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Notice A and B are static arrays to match the generalized send routine. The program could have been
written with specific diffuse, compute and gather routines.

Sample output:

12

3. Stencil pattern – gen_heat.c

The following solve the two-dimensional heat distribution problem. For simplicity, only 16
points are used and one of 16 processes for each point. The approach can be be extended to have
each process handle multiple points. This is left as an exercise.

// Basic heat distribution program to demostrate synchronous stencil program. gen_heat.c B. Wilkinson Dec 28, 2015
// simplistic version with each process doing one point

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "suzaku.h" // Basic Suzaku macros

#define D 1 // # of data items in slave data
#define P 16 // Number of processes -- this code must be run only with this number of processes
#define N 6 // Number of pts in each dimension, to include border 6 x 6
#define M 4 // Number of pts in each dimension, not including border 4 x 4

int main(int argc, char *argv[]) {
 int i,j,x,y,t; // loop counters
 int T = 100; // time period
 int p, pid;

 double pts[N][N]; // array of points to include fixed borders
 double A[1]; // point being computed in slave, output array
 double B[P][D]; // input array
 double temp[M][M]; // hardcoded for 4 x 4

 double pts_seq[2][N][N]; // array to do computation sequentailly.
 int current = 0;
 int next = 1;

 SZ_Init(p); // initialize MPI message-passing environment
 if (p != P) printf("ERROR Program must be run with %d processes\n",P);
 printf("Number of points in each dimension = %d\n",N);
 printf("Number of time steps = %d\n",T);

/* -------------------------- Set up inital values ---------------*/
 for(i = 0; i < N; i++) // load inital values into array
 for(j = 0; j < N; j++) // border and inner points = 20
 pts[i][j] = 20; // note C row major order, row i, col j
 for(i = 2; i < N-2; i++)
 pts[0][i] = 100.0; // top row = 100

 printf("Initial numbers"); // print numbers
 for(i = 0; i < N; i++)
 for(j = 0; j < N; j++) {
 if (j == 0) printf("\n");
 printf("%7.2f",pts[i][j]);
 }
 printf("\n");

 // compute values sequentially to check with parallel result, done using Jacobi iteration

 for(i = 0; i < N; i++) // load inital values into array
 for(j = 0; j < N; j++) {
 pts_seq[current][i][j] = pts[i][j];
 pts_seq[next][i][j] = pts[i][j];
 }
 for (t=0; t < T; t++) { // do computation sequentially, using Jacobi iteration
 for (i=1; i < N-1; i++)
 for (j=1; j < N-1; j++)
 pts_seq[next][i][j] = 0.25 * (pts_seq[current][i-1][j] + pts_seq[current][i+1][j] + pts_seq[current][i][j-1] +
pts_seq[current][i][j+1]);
 current = next;
 next = 1 - current;

13

 }

/* -------------------------Computation-----------------------------------*/

 SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init("stencil",D); // set up slave interconnections

 SZ_Broadcast(pts); // synchronous, includes a barrier
 // Set up initial values in each slave
 pid = SZ_Get_process_num();
 x = pid / M; // row, hardcoded for 16 processes 4 x 4
 y = pid % M; // column
 i = x + 1; // location in pts[][]
 j = y + 1;
 A[0] = pts[i][j]; // copy location in pts[][] into A[0]
 B[0][0] = pts[i][j-1]; // left
 B[1][0] = pts[i][j+1]; // right
 B[2][0] = pts[i-1][j]; // up
 B[3][0] = pts[i+1][j]; // down

 for (t = 0; t < T; t++) { // compute values over time T

 A[0] = 0.25 * (B[0][0] + B[1][0] + B[2][0] + B[3][0]); // slaves execute computation,

\\ master acts as one slave
 SZ_Generalized_send(A,B); // sent compute results in A to B in connected slaves
 }

 SZ_Gather(A,temp); // collect results from slaves (A), into array temp, gather()

 SZ_Parallel_end; // end of parallel

/* ------------------------- Results -----------------------------------*/

 for (x = 0; x < N; x++) { // update inside points
 for(y = 0; y < N; y++) {
 if ((x > 0) && (x < N-1) && (y > 0) && (y < N-1)) { // inside point
 i = x - 1;
 j = y - 1;
 pts[x][y] = temp[i][j];
 }
 }
 }
 printf("Final numbers"); // print numbers
 for (i = 0; i < N; i++) {
 for(j = 0; j < N; j++) {
 if (j == 0) printf("\n");
 printf("%7.2f",pts[i][j]);
 }
 }
 printf("\n");

 int error = 0; // check sequential and parallel versions give same answers
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((pts[i][j] - pts_seq[current][i][j] > 0.001) || (pts_seq[current][i][j] - pts[i][j] > 0.001))
 { error = -1; break;}
 }
 if (error == -1) break;
 }

 if (error == -1) printf("ERROR, sequential and parallel versions give different answers\n");
 else printf("Sequential and parallel versions give same answers within +-0.001\n");

 SZ_Finalize();

 return 0;
}

14

Sample output:

15

4 Printout of patterns – gen_connect_test.c

The following prints out the three standard patterns implemented and one user-defined pattern
set with SZ_Set_conn_graph().

// testing generalized graph gen_connect_test.c B. Wilkinson March 17, 2016

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros
 //Declared as constants to allow static arrays for input and output
#define D 2 // # of data items in slave data.

int main(int argc, char *argv[]) {
 int p,i,j; // p is actual number of processes when executing program

 SZ_Init(p); // initialize MPI message-passing environment

 SZ_Parallel_begin // parallel section, all processes do this
 int g[p][p];

 SZ_Pattern_init("all-to-all",D); // set up slave interconnections
 SZ_Master { printf("all-to all pattern\n"); }
 SZ_Print_conn_graph(); // for checking

 SZ_Pattern_init("pipeline",D); // set up slave interconnections
 SZ_Master { printf("pipeline pattern\n"); }
 SZ_Print_conn_graph(); // for checking

 SZ_Pattern_init("stencil",D); // set up slave interconnections
 SZ_Master { printf("stencil\n"); }
 SZ_Print_conn_graph(); // for checking

 for (i = 0; i < p; i++) // set user-defined pattern
 for (j = 0; j < p; j++)
 g[i][j] = i+j;

 SZ_Set_conn_graph(g);
 SZ_Master { printf("User-defined pattern\n"); }
 SZ_Print_conn_graph(); // for checking

 SZ_Parallel_end; // end of parallel
 SZ_Finalize();

 return 0;
}

Sample output:

16

