

1

SUZAKU Pattern Programming Framework Specification

1 - Structure and Low-Level Patterns

B. Wilkinson, March 17, 2016.

Suzaku is a pattern parallel programming framework developed at UNC-Charlotte that enables programmers to
create pattern-based MPI programs without writing MPI message passing code implicit in the patterns. The
purpose of this framework is to simplify message passing programming and create better structured and scalable
programs based upon established parallel design patterns. Suzaku is implemented in C and provides both low
level message passing patterns such as point-to point message passing and higher level patterns such as workpool.
Suzaku is still under development. Several unique patterns and features are being provided including a
generalized graph pattern that enables any pattern that can be described by a directed graph to be implemented
and a dynamic workpool for solving application such as the shortest path problem. To use Suzaku, you must have
an implementation of MPI installed. OpenMPI is recommended. This document describes the application program
structure, the low level message passing routines, and the workpool pattern.

Basic Structure and Low Level Routines

1.1 Program structure

The computational model is similar to OpenMP but using processes instead of threads. With the process-based
model, there is no shared memory. The structure of a Suzaku program is shown below. The computation begins
with a single master process (after declaring variables that are duplicated in all processes and the initialization of
the environment). One or more parallel sections can be created that will use all the processes including the master
process. Outside parallel sections the computation is only executed by the master process.

int main (int argc, char **argv) {
 int P, ... // variables declaration and initialization

 SZ_Init(P); // initialize message-passing environment

 // sets P to number of processes
 ...

 SZ_Parallel_begin // start of parallel section

 …

 SZ_Parallel_end // end of parallel section

 ...

 SZ_Finalize();

 return(0);
}

All the variables declared here are duplicated in each process.

All initializations here will apply to all copies of the variables.

After call to SZ_Init() only master process executes code, until a parallel section.

Only master process executed code here.

After SZ_Parallel_begin, all processes execute

code, until a SZ_Parallel_end

No Suzaku routines here.

2

 Suzaku program structure

1.2 Program Structure Routines

Initialization

SZ_Init(int P);

Purpose: To be used to initialize the message passing environment and declare variables used by Suzaku
internally. No Suzaku routines must be placed before SZ_Init(P). SZ_Init(P) is required and sets P to be
the number of processes in each process. After SZ_Init(P), all code is executed just by the master
process, just as in OpenMP, a single thread executes the code by default. All processes have a process
ID, an integer from 0 to P - 1. The master ID is 0.

Parameter:

P Name of integer variable used to store number of processes. Must be declared by the
programmer for each process before SZ_Init().

Assumptions and limitations: argc and argv must be declared in main(). The number of processes is set
on the command line when executing the program using the MPI command mpiexec and read from the
command line. As a message-passing model, there are no shared variables. All variables are local to a
process, and generally should be declared before SZ_Init(P). p is an output parameter but does not need
the & address operator because implementation as a macro (inline substitution).

Finalize

SZ_Finalize();

Purpose: To be used at the end of the program to close MPI. SZ_Finalize() is required. No Suzaku
routines must be placed after SZ_Finalize().

Assumptions and Limitations: All processes still exist after SZ_Finalize() and any code placed after
SZ_Finalize() will be executed by all processes. Typically one does not want to do this so do not place
any call after SZ_Finalize(). Do not call any Suzaku routines after SZ_Finalize(). Any MPI-based code
such as Suzaku routines will not execute and will cause an error condition. (). This is the same as with
MPI_Finalize().

Parallel Section

SZ_Parallel_begin
...

SZ_Parallel_end;

Purpose: Used to indicate code executed by all processes. SZ_Parallel_begin corresponds to the
parallel directive in OpenMP and after it all code is executed by all the processes.

3

SZ_Parallel_end is required to mark the end of the parallel, and includes a global barrier to match a
parallel section in OpenMP without a no-wait clause. After that, the code is again just executed by the
master process.

Limitations: Multiple parallel sections are allowed. However a master process cannot nest a parallel
section. When the parallel section begins, the “master section” automatically ends. Hence the scope of
any variable declared after SZ_Init() and before a parallel section ends at the SZ_Parallel_begin. If
you want a variable to have the scope of all master sections, declare it before SZ_Init(). Similarly one
cannot have a loop or structured block in the master section that includes a parallel section.

 1.3 Runtime Environment

Process ID

SZ_Get_process_num();

Purpose: Returns the process ID and mirrors the omp_get_thread_num() routine in OpenMP, which
gives the thread ID. Processes are numbered from 0 to P - 1 where there are P processes, with the
master process having number zero.

1.4 Low-Level Patterns

Patterns are created within a parallel section. The following low-level patterns implemented so far:

 Point-to-point pattern
 Broadcast (master to all slaves)
 All-to-All Broadcast (all slaves to all slaves)
 Scatter (from master to slaves)
 Gather (from slaves to master)
 Master-slave pattern

Point-To-Point Pattern

SZ_Point_to_point(p1, p2, a, b);

Purpose: Sends data from one process to another process.

Parameters:

p1 Source process ID
p2 Destination process ID
a Pointer to the source array
b Pointer to destination array

Limitation: The source and destination can be individual character variables, integer variables, double
variables, or 1-dimensional arrays of characters, integers, or doubles, or multi-dimensional arrays of
doubles. The type does not have to be specified. Multi-dimensional arrays of other types are not
currently supported. The address of an individual variable specified by prefixing the argument the &
address operator.

4

Broadcast Pattern

SZ_Broadcast(double a);

Purpose: To broadcast an array from the master to all processes.

Parameter:

a Pointer to the source array in the master and the destination array in all processes (source
and destination)

Limitation: The source and destination can be individual character variables, integer variables, double
variables, or 1-dimensional arrays of characters, integers, or doubles, or multi-dimensional arrays of
doubles. The type does not have to be specified. Multi-dimensional arrays of other types are not
currently supported. The address of an individual variable specified by prefixing the argument the &
address operator. This feature has been added as sometimes it is necessary to send a single value, but it
is inefficient and should be avoided if possible.

All-to-All Broadcast Pattern

SZ_AllBroadcast(double a)

Purpose: To broadcast the ith row of a 2-D array from the ith process to every other process, for all i.1

Parameters:

a Pointer to array (source and destination)

Limitation: The array must be a two-dimensional array of doubles. Assumes there are P rows in the
array.

Scatter Pattern

SZ_Scatter(double a, double b);

Purpose: To scatter an array from the master to all processes, that is, to send consecutive blocks of data
in an array to consecutive destinations. The size of the block sent to each process is determined by the
size of the destination array, b. Typically used with 2-D arrays sending one or more rows to each
process.

Parameters:

a Source pointer to an array to scatter in the master.
b Destination pointer to where data is placed in each process.

1 This is not the same as an MPI_Allgather(). In MPI_Allgather(), the block of data sent from the ith process is received by
every process and placed in the ith block of the receive buffer.

5

Limitation: The source and destination arrays must be arrays of doubles in the current implementation.
The source and destination can be the same if the underlying MPI implementation allows that (as in
OpenMPI but not MPICH).

Gather Pattern

SZ_Gather(double a, double b);

Purpose: To gather an array from all processes to the master process, that is, to collect a block of data
from all processes to the master placing the blocks in the destination in the same order as the source
process IDs. This operation is the reverse of scatter. The size of the block sent from each process is
determined by the size of the source array, b. Typically used with 2-D arrays receiving one or more rows
from each process.

Parameters:

a Source pointer to an array being gathered from all processes to the master.
b Destination pointer in master where elements are gathered.

Limitation: The source and destination arrays must be arrays of doubles in the current implementation.
The source and destination can be the same if the underlying MPI implementation allows that (as in
OpenMPI but not MPICH).

Master Process

SZ_Master
<Structured block>

Purpose: To be used to indicate code only executed only by the master process (within a parallel
section). Must be followed by the code to be executed by master as a single statement or a structured
block, e.g.:

SZ_Master {

... // code executed by master only

}

The opening parenthesis can be on the same line or the next line.2

Specific Process

SZ_Process(PID)
<Structured block>

2 OpenMP directives require the opening parenthesis to be on the next line.

6

Purpose: To be used to indicate code only executed only by a specific process (within a parallel
section). Must be followed by the code to be executed by master as a single statement or a structured
block, e.g.:

SZ_ Process(PID) {

... // code executed by specific process only

}

The opening parenthesis can be on the same line or the next line.

Parameter:

PID ID of process that is to execute structured bock, as obtained from
SZ_Get_process_num();

Note: SZ_Process(0) is the same as SZ_Master. SZ_Process() might be useful for testing and
debugging but in general it is recommended that one should avoid using SZ_Process() as it does not
conform to the concept of using the pattern approach and leads to unstructured programming.

Master-Slave Pattern

The master-slave pattern can be implemented in Suzaku using broadcast, scatter, and gather patterns.
For efficient mapping to collective MPI routines, the master also acts as one of the slaves. The function
that the slaves execute is placed after the scatter and broadcast and before the gather. For example,
matrix multiplication might look like:

SZ_Parallel_begin

 SZ_Scatter(a,c); // Scatter A array
 SZ_Broadcast(b); // broadcast B array

 … // compute function, block matrix multiplication. Programmer implements routine

 SZ_Gather(b,a); // gather results

SZ_Parallel_end;

Complete sample programs are given later.

Synchronization and Timing

The following routine can be used within a parallel section:

Barrier

SZ_Barrier();

7

Purpose: Waits until all processes reach this point and then returns. Process synchronization is implicit
in message-passing routines, but occasionally one wants to create a synchronization point.

Timing

SZ_Wtime();

Purpose: To provide time stamp. Returns the number of seconds since some time in the past (a floating-
point number representing wallclock). Simply substitutes MPI_Wtime(). It is expected that this routine
would be called only by the master process outside a parallel section

Sample usage:

double start, end;

start = SZ_Wtime();
SZ_Parallel_begin

... // to be timed
 SZ_Parallel_end;

end = SZ_Wtime();

printf("Elapsed time = %f seconds\n", end - start);

1.5 Implementation Limitations of Low-Level Routines

1. Use of macros. Macros are currently used to implement the low level routines described so far to
avoid needing to specify the data type and size. Macros perform in-line text substitution and
substitute the formal parameter with the provided arguments without regard to type or any implied
meaning before compilation. Great care is needed with macros as there are situations in which in-
line substitution will not work. Most of the message passing macros have been written to allow them
to be placed anywhere a single statement could be placed but none of macros must be used in the
body of if, if-else or other control constructs if it is possible not all the processes execute the code. In
general, it is best to avoid placing any Suzaku macros or routines inside control constructs.
Interestingly the MPI standard allows implementers to implement a few specific MPI routines as
macros.

2. Variables names: Programmer cannot use a variable name starting with __sz (two underscores sz)

because the macros perform in-line substitution of code and use these variable names. The higher-
level compiled routines described later do not have this limitation.

3. Macro Arguments

Mostly arguments are specified as pointers. For an array that would simply be the name of the array.
Single variables can be specified by prefixing the variable name with the & address operator, or a
one-element array could be used. Sending a single data item would be inefficient but is sometimes
necessary, and is allowed with a single variable prefixed with the & address operator or with the use
of a one-element array. To send multiple variables, it is recommended to pack individual values into
an array for transmission to another process.

4. Size of Arrays:

8

The macros use sizeof() to determine the size of array arguments. All arrays being sent between
processes must be declared in such a way that the size of the array can be obtained using sizeof().
Hence the arrays cannot be created dynamically using malloc. Generally declare arrays statically
where their size is known at compile time, e.g. double A[N]; where N is a defined constant. C
allows “variable length arrays” to be declared where the size is specified as a variable, for example
double A[x]; where x is previously declared and assigned values. The size of variable length arrays
can be returned with sizeof() but variable length arrays have limitations. For example the maximum
size is more limited as the arrays are stored on the stack and static storage allocation using the static
keyword is not allowed and variable length arrays are not allowed at file scope. However sometimes
variable length arrays will be necessary. An example using variable length arrays is given the matrix
multiplication code given later.

5. Data Types:

To make the implementation simple, in many cases the data being sent between processes must be
doubles (variables or arrays of any dimension). SZ_Point_to_point() and SZ_Broadcast()) also
allow a wide range of other types for added flexibility and the likelihood that other types may be
needed - characters, integers, doubles, 1-dimensional arrays of characters, 1-dimensional arrays of
integers, 1-dimensional arrays of doubles, and multi-dimensional arrays of doubles. The type and
size does not have to be specified. Multi-dimensional arrays of other types are not currently
supported. Floats are not supported at all.

6. Synchronization:

The implementation of all Suzaku low-level message passing routines now have been made
synchronous for ease of use, that is, all the processes involved do not return until the whole
operation has been completed. This is not the same as the MPI. There is some confusion in the
literature on this matter as the MPI standard does not define its implementation and it is possible that
a particular implementation is more constraining than the standard. The basic MPI point-to-point and
collective routines do not necessarily synchronize processes. Each process will return when their
local actions have completed (“locally blocking”). This means that the point-to-point routine will
return in the source when the message has left the source process but the message may not have
reached the destination. It does allow the programmer to alter the values of the variables used as
augments in the source process though. The destination process returns when the message has been
received and similarly the programmer to alter the values of the variables used as augments in the
destination process. MPI does offer synchronous versions of point-to-point message passing that are
used here, and in fact even when MPI programmers use the local blocking routines, there must allow
for the possibility that they will operate in synchronous fashion. The MPI collective routines also are
non-blocking. Each process will return when it has completed its local actions. In Suzaku, a barrier
is added to force all the processes to wait to each other as MPI does not offer synchronous collective
routines.

7. Software needed. To use Suzaku, you must have an MPI environment installed. We use OpenMPI.

8. Printing

Printing output generated by different processes can be a challenge. Although standard output is
redirected to the master process, when the output would appear is indeterministic generally and the

9

output individual processes might appear if different orders. A single printf output any one process
will not be disturbed once it starts, that is the individual characters of the printf buffer will not be
interleaved with those of another printf of another process, but the complete lines might be
interleaved. One solution to make sure the printout of an array is keep together and ensuring the
output is in process order is shown below:

 1.6 Compilation and Execution of Low-Level Routines

To use Suzaku, you must have an MPI installed. We use and recommend OpenMPI. Currently the low-
level message passing patterns described in this document are implemented with macros placed in
suzaku.h. The programmer must include the suzaku.h file to use the Suzaku macros, i.e.:

#include "suzaku.h" // Suzaku macros
 ...

int main (int argc, char **argv) {
 ...

return(0);
}

Here, the suzaku.h file must be in the same directory as the main source program. argc and argv must
be provided as main parameters for MPI. To compile a program prog1 containing suzaku macros,
simply compile as an MPI program, i.e., execute the command:

 mpicc -o prog1 prog1.c

mpicc uses gcc to links libraries and create the executable, and all the usual features of gcc can be used.

To execute prog1, issue the command:

 mpiexec -n <no_of processes> ./prog1

where <no_of processes> is the number of processes you wish to use.

PID = SZ_Get_process_num(); // get process ID
for (i = 0; i < P; i++) {
 if (i == PID) {
 printf("Received by process %d \n",PID);
 for (j = 0; j < 10; j++)
 printf("%5.2f ",A[j]); // print it out at destination
 }
 SZ_Barrier();
}

10

Sample Programs with Suzaku routines

1 Point-to-Point Pattern

A sample program called SZ_pt-to-pt.c is given below that demonstrates the point-point pattern:

// B. Wilkinson Nov 14, 2015 Testing SZ_Point_to_point with different types
#include <stdio.h>
#include <string.h>
#include "suzaku.h" // Suzaku macros
int main(int argc, char *argv[]) {
 int i,j, P, PID;
 int x = 88,y=99;
 double a[10] = {0,1,2,3,4,5,6,7,8,9};
 double b[10] = {0,0,0,0,0,0,0,0,0,0};
 char a_message[20], b_message[20];
 strcpy(a_message, "Hello world");
 strcpy(b_message, "------------");
 double p=123, q=0;
 double xx[2][3] = {{0,1,2},{3,4,5}},yy[2][3] = {{0,1,2},{3,4,5}};// multidimensional can only be doubles
 SZ_Init(P); // initialize MPI message-passing environment,

 SZ_Parallel_begin // parallel section, all processes do this
 PID = SZ_Get_process_num(); // get process ID

 SZ_Point_to_point(0, 1, a_message, b_message); // send a message from one process to another
 if (PID == 1) printf("Received by process %d = %s\n",PID,b_message); // print it out at destination
 SZ_Point_to_point(0, 1, &x, &y); // send an int from one process to another
 if (PID == 1) printf("Received by process %d = %d\n",PID,y); // print it out at destination
 SZ_Point_to_point(0, 1, a, b); // send an array of doubles from one process to another
 if (PID == 1) { // print it out at destination
 printf("Received by process %d = ",PID);
 for (i = 0; i < 10; i++)
 printf("%2.2f ",b[i]);
 printf("\n");
 }

 SZ_Point_to_point(0, 1, &p, &q); // send a double from one process to another
 if (PID == 1) printf("Received by process %d = %f\n",PID,q); // print it out at destination

 SZ_Point_to_point(0, 1, xx, yy); // send an 2-D array of doubles from one process to another
 if (PID == 1) { // print it out at destination
 printf("Received by process %d\n",PID);
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++)
 printf("%2.2f ",yy[i][j]);
 printf("\n");
 }
 }
 SZ_Parallel_end; // end of parallel

 SZ_Finalize();
 return 0;
}

Suzaku SZ_pt-to-pt.c program

Note: All the variables

declared here are

duplicated in each

process. All initializations

here will apply to all

copies of the variables.

After call to SZ_Init() only master process executes code, until a parallel section.

Only master process executed code here.

11

Sample output:

12

2. Broadcast

A sample program called SZ_collective.c is given below that demonstrates the Suzaku broadcast macro
with various data types. Note the data type and the size need not be specified in the code.

// B. Wilkinson Dec 28, 2015 Testing SZ_Broadcast with different types
#include <stdio.h>
#include <string.h>
#include "suzaku.h" // Suzaku macros

int main(int argc, char *argv[]) {
 char message[20];
 int i,j,k, P, PID; //All variables declared here are in every process
 int x = 0;
 int Y[10] = {0,0,0,0,0,0,0,0,0,0};
 double p=123;
 double A[10] = {0,0,0,0,0,0,0,0,0,0};
 double B[2][3] = {{0,0,0},{0,0,0}}; // multidimensional can only be doubles
 strcpy(message, "------------");

 SZ_Init(P); // initialize MPI message-passing environment,
 // Initialize, only master does this until parallel section
 strcpy(message, "Hello world");
 x = 88;
 for (i = 0; i < 10; i++) {
 Y[i] = i;
 A[i] = 9 - i;
 }
 p=123;
 k = 0;
 for (i = 0; i < 2; i++)
 for (j = 0; j < 3; j++)
 B[i][j] = k++;

 SZ_Parallel_begin // parallel section, all processes do this
 PID = SZ_Get_process_num(); // get process ID

 SZ_Broadcast(message); // broadcast a message
 if (PID == 1) printf("String, message\nReceived by process %d = %s\n",PID,message); // print at dest.

 SZ_Broadcast(&x); // broadcast an int
 if (PID == 1) printf("Single integer, &x\nReceived by process %d = %d\n",PID,x); // print at dest.

 SZ_Broadcast(Y); // broadcast an array of doubles
 if (PID == 1) { // print at dest.
 printf("1-D Array of integers, Y\nReceived by process %d = ",PID);
 for (i = 0; i < 10; i++)
 printf("%2d ",Y[i]);
 printf("\n");
 }

 SZ_Broadcast(&p); // broadcast a double
 if (PID == 1) printf("Single double, &p\nReceived by process %d = %f\n",PID,p); // print at dest.

 SZ_Broadcast(A); // broadcast an array of doubles
 if (PID == 1) { // print at dest.
 printf("1-D Array of doubles, A\nReceived by process %d = ",PID);
 for (i = 0; i < 10; i++)
 printf("%2.2f ",A[i]);
 printf("\n");
 }

 SZ_Broadcast(B); // broadcast a 2-D array of doubles

13

 if (PID == 1) { // print at dest.
 printf("2-D array of doubles, B\nReceived by process %d\n",PID);
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++)
 printf("%2.2f ",B[i][j]);
 printf("\n");
 }
 }
 SZ_Parallel_end; // end of parallel
 SZ_Finalize();
 return 0;
}

Sample output

14

3. Matrix Multiplication

A sample program called SZ_matrixmult.c is given below that demonstrates many of the Suzaku
macros and variable length arrays (A1 and C1).

#define N 256
#include <stdio.h>
#include <time.h>
#include "suzaku.h" // Suzaku routines

int main(int argc, char *argv[]) {
 int i, j, k, error = 0; // All variables declared here are in every process
 double A[N][N], B[N][N], C[N][N], D[N][N], sum;
 double time1, time2; // for timing
 int P; // P, number of processes
 int blksz; // used to define blocksize in matrix multiplication

 SZ_Init(P); // this initializes MPI environment
 // just master process after this
 if (N % P != 0) {
 error = -1;
 printf("Error -- N/P must be an integer\n");
 }

 for (i = 0; i < N; i++) { // set some initial values for A and B
 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 }
 }

 for (i = 0; i < N; i++) { // sequential matrix multiplication
 for (j = 0; j < N; j++) {
 sum = 0;
 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 D[i][j] = sum;
 }
 }

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin
 blksz = N/P;
 double A1[blksz][N]; // used in slaves to hold scattered a
 double C1[blksz][N]; // used in slaves to hold their result

 SZ_Scatter(A,A1); // Scatter A array into A1
 SZ_Broadcast(B); // broadcast B array

 for(i = 0 ; i < blksz; i++) {
 for(j = 0 ; j < N ; j++) {
 sum = 0;
 for(k = 0 ; k < N ; k++) {
 sum += A1[i][k] * B[k][j];
 }
 C1[i][j] = sum;
 }

After call

to SZ_Init()

only

master

process

executed

code, until

a parallel

section.

Parallel

section

All

processes

executing

All the variables declared

here are duplicated in

each process. All

initializations here will

apply to all copies of the

variables.

15

 }

 SZ_Gather(C1,C); // gather results

 SZ_Parallel_end; // end of parallel, back to just master, note a barrier here

 time2 = SZ_Wtime(); // record time stamp

 int error = 0; // check sequential and parallel versions same answers, within rounding
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((C[i][j] - D[i][j] > 0.001) || (D[i][j] - C[i][j] > 0.001)) error = -1;
 }
 }

 if (error == -1) printf("ERROR, sequential and parallel code give different answers.\n");
 else printf("Sequential and parallel code give same answers.\n");

 printf("elapsed_time = %f (seconds)\n", time2 - time1); // print out execution time

 SZ_Finalize();
 return 0;
}

Suzaku SZ_ matrixmult.c program

The matrices are initialized with values within the program rather than reading an input file. The
sequential and parallel results are checked against each other in the code. The matrix multiplication
algorithm implemented is the same as in a previous MPI assignment. Matrix A is scattered across
processes and matrix B is broadcast to all processes. SZ_Broadcast(), SZ_Scatter(),and SZ_Gather()
must only be called within a parallel region and correspond to the MPI routines for broadcast, scatter
and gather.

Sample output

4. Nbody Program

Set as an assignment.

After

SZ_parallel_

end, only

master

process

executed

code.

