
Pattern Programming Approach for Teaching Parallel
and Distributed Computing

Barry Wilkinson
University of North Carolina

Charlotte
9201 University City Blvd.
Charlotte, NC 28223 USA

abw@uncc.edu

Jeremy Villalobos
Formerly of

University of North Carolina
Charlotte

9201 University City Blvd.
Charlotte, NC 28223 USA

jeremyvillalobos@gmail.com

Clayton Ferner
University of North Carolina

Wilmington
601 S. College Rd.

Wilmington, NC 28409 USA
cferner@uncw.edu

ABSTRACT
In this paper, we describe an approach for teaching parallel and
distributed computing at the undergraduate level using
computational patterns. The goal is to promote higher-level
structured design for parallel programming and make parallel
programming easier and more scalable. A pattern programming
framework has been developed to create a distributed application
that avoids the need to write code in low level message–passing
APIs such as MPI. Several patterns have been implemented
including workpool, pipeline, synchronous and iterative all-to-all,
and stencil. We have redesigned a regular senior undergraduate
parallel programming course to begin with a pattern strategy using
our framework and provide a detailed syllabus around patterns.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
distributed programming, parallel programming.

General Terms
Design, Languages.

Keywords
Pattern Programming; Undergraduate Education.

1. INTRODUCTION
With the widespread introduction of processors with multiple
cores, multicore processors have mostly replaced single core
designs. Present processors typically have four execution cores.
We can expect an increasing number of cores in the future. Intel’s
first commercial product in its recent Many Integrated Core
(MIC) architecture has 32 Intel cores in one package [7]. Systems
with a small number of cores such as present 4-core designs have
a so-called shared-memory architecture where the cores share
common main memory. As the number of cores increases, it
becomes necessary to use distributed-memory and hierarchical-
memory models. Programming shared-memory and distributed-
memory systems is taught in senior undergraduate and first year
graduate courses typically called parallel programming. Parallel
programming has a very long history as a specialty area for those
interested in high performance computing. However, with advent
of multicore systems, all computer science students should now be

trained in dealing with these systems. A typical parallel
programming course focuses on using low-level libraries – MPI
for message passing distributed memory systems, OpenMP and
other thread tools for shared memory systems, and
CUDA/OpenCL for high performance GPU computing. A course
typically uses these tools to solve simple problems such as matrix
multiplication and sorting. Unfortunately, this approach does not
give the student programmer the skills to tackle larger problems
nor skills in computational thinking for parallel applications. In
addition, programmers have to deal with issues such as deadlock
and mutual exclusion. A programming approach is needed that
raises the level of abstraction to make parallel programming easier
and also more scalable.

To address the above problems, we have developed a new
software environment that creates a higher level of abstraction for
parallel and distributed programming based upon a pattern
programming approach. In this approach, the programmer first
identifies an appropriate parallel computational pattern or patterns
to solve the problem rather than immediately starting with a low-
level API such as MPI or OpenMP. We focus on higher level
computational patterns such as workpool, pipeline, stencil, divide
and conquer, and synchronous all-to-all rather than lower level
constructs such as fork-join and loop. Our pattern programming
framework was developed as part of a PhD project exploring
distributed computing by Jeremy Villalobos [13]. The framework
will automatically distribute tasks across distributed computers
and processors, once the programmer has selected the pattern,
specified the data to be sent to and from the processors/processes,
and specified the computation to be performed by the
processors/processes. The framework has built-in patterns
including workpool, pipeline, stencil, and synchronous all-to-all.
Other patterns can be implemented by the programmer using more
advanced knowledge of the framework. The framework will self-
deploy on distributed computers, clusters, and multicore
processors, or a combination of distributed- and shared-memory
computers. More details of the framework will be given later, but
the key aspects are the programmer does not program using low
level message passing APIs such as MPI or OpenMP. Instead, the
patterns are implemented automatically, relieving the programmer
of concerns for message-passing deadlock. The programmer has a
very simple programing interface avoiding the complexities of
putting message-passing statements in the actual code.

The rest of this paper is organized as follows. Existing work is
briefly reviewed in Section 2. Various patterns and the
programmer interface for our framework are described in Section
3. In Section 4, we describe how our parallel programming course
has been re-structured to start with patterns and Section 5 provides
conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE ‘13, March 6–9, 2013, Denver, Colorado, USA.
Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

SIGCSE 2013 - The 44th ACM Technical Symposium on Computer Science Education
March 6-9, 2013, Denver, USA

2. EXISTING WORK ON PATTERN
PROGRAMMING
Design patterns, that is, “reusable solutions to commonly
occurring problems” [12], have been part of software engineering
for many years and are well-established [1], [5]. Design patterns
provide a guide to “best practices” but not a final implementation.
They provide scalable design structures allowing one to focus,
understand, and reason more easily about the parallel algorithms.
With the widespread introduction of multicore and many core
systems, there has been some effort to make parallel and
distributed programming easier and useable by using design
patterns. Mattson, Sanders, and Massingill wrote an influential
book promoting patterns for parallel programs in 2004 [8]. A
pattern programming language called OPL (Our Pattern
Language) was co-developed at the Universal Parallel Computing
Research Centers (UPCRC) at University of Illinois at Urbana-
Champaign and University of California, Berkeley with
significant funding support from Microsoft and Intel. OPL is
described by Keutzer and Mattson [6]. Twelve computational
patterns are used: Finite State Machines, Circuits, Graph
Algorithms, Structured Grid, Dense Matrix, Sparse Matrix,
Spectral (FFT), Dynamic Programming, Particle Methods,
Backtrack, Graphical Models, and Unstructured Grid, in seven
general application areas. UPCRC promotes patterns in
workshops on parallel programming patterns, ParaPLoP 2009,
2010, and 2011, and the Pattern Languages for Programs
conference PloP’2009.

Intel has developed somewhat competing tools that use patterns;
Thread Building blocks (TBB), Cilk Plus, and Array Building
Blocks (ArBB). They embody low-level patterns such as fork-
join. McCool, Reinders, and Robison wrote a recent book on
using patterns in parallel programming, focusing on the Intel tools
[9]. Microsoft describes using patterns in the .NET/C#
environment [10] but again with low level patterns such as
parallel for loops.

The closest to our work is Fastflow [4] from the University of
Torino, Italy/Università di Pisa but uses C++ and focuses on
shared-memory platforms.

Much of the quoted work tends to concentrate upon lower-level
constructs such as fork-join and parallel loops – we concentrate
upon a few higher-level and widely applicable computational
patterns such as workpool and synchronous all-to-all. We also
provide an automatic and seamless conversion into executable
code for parallel and distributed platforms. All the related work
mentioned in this section concentrates upon professional or
research environments. We are interested in training students in a
better way and introducing the pattern programming strategy in an
undergraduate parallel programming course with automated
pattern programming tools.

Note on terminology. Sometimes term “skeleton” is used to
describe a “pattern”, especially a directed acyclic graph with a
source, a computation, and a sink. We do not make that distinction
and use the term “pattern” whether a directed or undirected graph
and whether acyclic or cyclic.

3. PATTERN PROGRAMMING
FRAMEWORK
3.1 Patterns
Figure 1 shows perhaps the most useful pattern, the workpool
pattern. In this pattern, the master process sends tasks to worker or
slave processes for them to perform. Our framework implements
this pattern with a task queue within the master that hands out
tasks to waiting worker processes. When a worker process
completes a task and returns results to the master, the master gives
it a new task to do, which provides automatic load balancing for
the programmer. A tutorial has been written to use this pattern in
our framework, complete with sample code [15].

Figure 1 Workpool pattern.

Figure 2 shows another pattern implemented in our framework,
the pipeline pattern. The master process sends a task to the first
worker, which does some computation and passes the result onto
the next worker and so on. In some ways, a pipeline models a
normal sequential program, which has statements executed one
after the other and could be introduced to students that way, but
the pattern would particularly suit a situation in which data is fed
from one process to the next. Bubble sort can map onto a pipeline
as well as digital filtering. A tutorial has been written to use this
pattern in our framework, complete with sample code [16].

Figure 2 Pipeline pattern.

Figure 3 show the divide and conquer pattern, which has not yet
been fully implemented in the framework, but the programmer
can create it using more advanced tools in the framework. In the
(binary) divide and conquer pattern, a problem is divided into two
parts and then these parts are divided into two parts and so on
until the problems has been divided into sufficiently small sub-
problems. These are then computed and a reverse process is used
to create the final result. Several well-known algorithms use
divide and conquer such as Quicksort and Mergesort.

 Workers

Master

Two-way
connection

Compute node

Source/sink

One-way
connection

Stage 1 Stage 3 Stage 2

 Workers

Master Two-way
connection

Compute node

Source/sink

Figure 3 Divide and conquer pattern.

Figure 4 shows the synchronous stencil pattern, which is
implemented in our framework. This pattern performs a number
of iterations to converge on a solution, for example for solving
Laplace’s/heat equation by iteration. A tutorial has been written to
use this pattern in our framework, complete with sample code
[17].

Figure 4 Stencil pattern.

Figure 5 shows the all-to-all pattern. In this pattern, each slave
process can communicate with any of the other slave processes,
which provides the most general of communication pattern. This
is also the worst case scenario for message passing but certain
problems may require it. An example of this pattern is the
gravitational N-body problem using the brute force O(N2)
algorithm that computes the force on each body due to all the
other bodies. Solving a dense system of linear equations with n
equations and n unknowns may also use an all-to-all pattern.

Figure 5 All-to-all pattern.

Both the N-body problem and iterative problems that converge on
a solution such as solving linear equations by iteration require the
all-to-all pattern to be repeated a number of times with the results
of one iteration passed to all the nodes before the next iteration.
Our framework implements the all-to-all pattern that includes this
synchronous iteration feature. We call the pattern the
CompleteSyncGraph pattern. At the end of each iteration, workers
synchronize and update their data and proceed to new
computations. The master node and framework will not gain
control of the data flow until all the iterations have finished. A
tutorial has been written to use this pattern in our framework,
complete with sample code [20].

Our CompleteSyncGraph pattern is really two patterns, an all-to-
all pattern and a loop iteration. We do have a pattern operator that
can combine patterns. An example is shown in Figure 6. Here, the
synchronous all-to-all pattern is added to a stencil pattern.

Figure 6 Pattern operator adding the stencil and synchronous

all-to-all pattern.

An example use of the pattern in Figure 6 would be solving the
Heat equation (which calculates static heat distribution). The
stencil pattern is repeated until global termination conditions are
met. Since the programmer does not have direct control over the
repeating pattern, it is difficult to check for termination based
upon computed values without stopping the computation
completely. The added all-to-all pattern enables termination to be
checked at each node. More information on using our pattern
operator in this fashion can be found at [18].

3.2 User Interface
The framework is constructed in three layers, the “basic” layer,
the “advanced” layer, and the “expert” layer. The basic layer
provides standard well-established patterns, and the programmer
need only implement a few simple Java interface methods. The
advanced layer exposes some of the internal routines to enable
new patterns to be created or existing patterns to be optimized.
The expert layer exposes the deployment and security services for
the programmer who wants to increase the performance. We use
the basic layer in our undergraduate parallel programming class.

To create and execute parallel programs, the basic layer
programmer selects an existing pattern and implements three
principal Java methods:

• Diffuse method – to distribute pieces of data.
• Compute method – the actual computation
• Gather method – to gather the results

The programmer also completes a “bootstrap” class to deploy and
start the framework with the selected pattern. The framework self-
deploys on a single multicore computer, a local cluster, or a
geographically distributed platform and executes the pattern with
the programmer’s computation.

As an illustration, consider deploying a workpool pattern to
compute using the well-known Monte Carlo method [15]. The

Two-way
connection

Compute node

Source/sink

Two-way
connection

Compute

Source/sink

On each iteration,
each node
communicates
with neighbors to
get computed values

Divide

Two-way
connection

Compute node

Source/sink

Merge

basis of Monte Carlo calculations is the use of random selections.
To compute , a circle is formed within and touching a 2 x 2
square so that the radius of the circle is 1. Points are chosen
randomly within the square. The fraction of points that fall within
the circle will converge on /4 as the number of points increases
because (area of circle)/(area of the square) = r2/(2 x 2). The
code implementing the required framework interface is shown
below. Points are chosen in one quadrant in the code.

package edu.uncc.grid.example.workpool;
... // import statements
public class MonteCarloPiModule extends Workpool {

private static final long serialVersionUID = 1L;
private static final int DoubleDataSize = 1000;
double total;
int random_samples;
Random R;
public MonteCarloPiModule() {
 R = new Random();
}
public void initializeModule(String[] args) {
 total = 0;
 random_samples = 3000; // random samples
}
public Data Compute (Data data) {
 DataMap<String,Object>
 input= (DataMap<String,Object>)data;
 DataMap<String, Object>
 output = new DataMap<String, Object>();
 Long seed = (Long) input.get("seed");

 Random r = new Random();
 r.setSeed(seed);
 Long inside = 0L;

 for (int i = 0; i < DoubleDataSize ; i++) {
 double x = r.nextDouble();
 double y = r.nextDouble();
 double dist = x * x + y * y;
 if (dist <= 1.0) ++inside;
}
output.put("inside", inside);
return output;

 }
 public Data DiffuseData (int segment) {
 DataMap<String, Object>

 d =new DataMap<String, Object>();
 d.put("seed", R.nextLong());
 return d; // returns a random seed for each job unit
 }
 public void GatherData (int segment, Data dat) {
 DataMap<String,Object>
 out = (DataMap<String,Object>) dat;
 Long inside = (Long) out.get("inside");
 total += inside; // aggregate answer from all the worker nodes.
 }
 public double getPi() {
 double pi = (total /(random_samples*DoubleDataSize)) * 4;

 return pi;
 }
 public int getDataCount() {
 return random_samples;
 }
 }
The bootstrap class to start the framework and deploy the code is
given below.

 package edu.uncc.grid.example.workpool;
 … //import statements
 public class RunMonteCarloPiModule {
 public static void main(String[] args) {
 try {
 MonteCarloPiModule pi = new MonteCarloPiModule();
 Seeds.start("/path-to-seeds-folder" , false);
 PipeID id = Seeds.startPattern(new Operand((String[])null,
 new Anchor("hostname" ,
 Types.DataFlowRoll.SINK_SOURCE), pi));
 System.out.println(id.toString());
 Seeds.waitOnPattern(id);
 System.out.println("The result is: " + pi.getPi()) ;
 Seeds.stop();
 } catch
 … // exceptions

 }
}

The code is given to show the simplicity of the approach. Note
that the programmer does not have to write any message passing
code. Other patterns are very similar in their requirements, and
template code is given on the framework home page [14] together
with sample code that can be run on a single PC or a distributed
platform. In our class, we ask students to use their own PCs.
Tutorials are provided describing code development, compilation
and execution using a command line and through the Eclipse IDE
[19], [21]. Our students generally use Eclipse because syntax
errors and missing classes/methods are quickly highlighted.

4. TEACHING WITH PATTERNS
We propose a new way of teaching parallel programming using
the framework described above and have tried this approach at the
two universities: UNC-Charlotte and UNC-Wilmington.
Classroom teaching at UNC-Charlotte and UNC-Wilmington is
based upon a 15-week semester. The regular parallel
programming course at UNC-Charlotte is the senior
undergraduate course/first year graduate course ITCS 4145/5145,
which has been taught for many years. Previously, the course
followed the traditional approach of teaching low-level parallel
programming tools - MPI message passing programming,
OpenMP and thread-based shared memory programming, and
since 2010, high performance computing GPU programming
using CUDA. Parallel algorithms (numerical algorithms, sorting,
searching, and other applications) are covered after the
programming tools but over the years fewer algorithms as the
focus has been on learning the tools. Similarly, theoretical aspects
have been given less prominence. Some of this is driven by the
desire to provide students with programming skills using MPI,
OpenMP, and CUDA. The applications that students tackle are
quite limited – such as matrix multiplication, sorting, and the
gravitational N-body problem. Students use a cluster of servers
dedicated to teaching parallel and distributed computing. The
course is very popular and typically closes very quickly at its
maximum of 50 students. A similar class has been taught at
UNC-Wilmington for many years.

For the Fall 2012 class, we substantially revised the course to start
with the pattern approach. In addition, the course was co-taught
between UNC-Charlotte and UNC-Wilmington on the North
Carolina Research and Education Network (NCREN), a televideo
network that connects most North Carolina universities and
colleges. The course now focuses on higher-level computational

strategies and not only uses the pattern programming approach
described here but also introduces a C/C++ based compiler
directive approach described elsewhere [2], [3]. We still cover
MPI, OpenMP, and CUDA but after computation strategies and
using patterns with our framework. Students will still need to
understand how to program at a lower level but now with a design
philosophy that is applicable to larger applications. Table 1 shows
the outline of the re-designed course.

Table 1. Course topics

Parallel Computing

Demand for computational speed,
grand challenge problems, potential
speed-up using multiple processors,
speed-up factor, max speed-up,
Amdahl's law, Gustafson's law.

Parallel Computers

Types of parallel computers, shared
memory systems, multicore,
distributed memory systems,
networked computers clusters, GPU
systems.

Pattern
Programming

Parallel patterns for structured
parallel programming, workpool,
pipeline, divide and conquer, stencil,
all-to-all patterns, advantages of
patterns, Seeds framework, user
interface, programming examples

Assignment 1
Using the Seeds Pattern Programming
Framework: 1 - Workpool

Lower-level
message-passing
computing - MPI

Message-passing programming, MPI,
point-to-point message passing,
message tags, MPI communicator,
blocking send/recv, compiling and
executing MPI programs,
instrumenting code for execution
time, Eclipse IDE Parallel Tools
Platform. MPI collective routines,
broadcast, scatter, gather, reduce,
barrier, synchronous message
passing, asynchronous (non-blocking)
message passing, changing to
synchronous message passing.

Assignment 2
Compiling and executing MPI
programs. Comparison with pattern
framework

Synchronous All-
To-All pattern

Synchronous All-To-All pattern,
gravitational N-body problem,
Barnes-Hut algorithm, Seeds
CompleteSynchGraph pattern, pattern
framework code for N-body problem.

Divide and conquer
pattern

Recursive divide and conquer pattern,
example: numerical integration with
adaptive quadrature.

Pipeline pattern

Pipeline pattern, examples unfolding
loops, insertion sort, prime numbers,
upper triangular linear equations.
Seeds pipeline pattern, sorting code.

Iterative
synchronous All-
To-All pattern

Iterative synchronous All-To-All
pattern, solving system of linear
equations by iteration, Seeds
CompleteSynchGraph pattern, Jacobi
iteration, convergence rate.

Stencil pattern
Stencil pattern, applications, heat
distribution problem, Seeds code,

cellular automata, game of life,
partially synchronous method.

Compiler directive
approach

Introduction to Paraguin compiler,
parallel region, forall, broadcast,
gather, examples

Assignment 3
Using Paraguin to create MPI
programs using the workpool pattern.

Programming with
Shared Memory

Processes, threads, issues, interleaved
statements, thread safe routines, re-
ordering code, compiler/processor
optimizations, accessing shared data,
critical sections, locks, condition
variables, deadlock, semaphores,
monitors, Pthreads program example,
dependency analysis (Bernstein's
conditions), serializing code, cache
false sharing, sequential consistency.

OpenMP

OpenMP directives/constructs,
parallel, shared and local variables,
work-sharing, sections, for, loop
scheduling, for reduction, single
master, critical, barrier, atomic, flush.

Assignment 4
Using Paraguin to create MPI
programs, Sobel edge detection, and
hybrid MPI/OpenMP

Data parallel pattern

Data parallel pattern, examples, data
parallel prefix sum algorithm, matrix
multiplication, introduction to HPC
GPU systems and CUDA

Assignment 5 CUDA programs using GPU server,
vector addition and heat distribution
problem, with graphics.

Parallel algorithms
(in various places
throughout course)

Parallelizing matrix multiplication,
block multiplication, recursive
algorithm, mesh algorithms, Cannon's
algorithm, systolic array, solving
system of linear equations, direct and
iterative methods, red-black,
multigrid, potential speedup of
sorting in parallel, compare and
exchange, bubble sort, odd-even
transposition sort, mergesort,
quicksort, odd-even mergesort,
bitonic mergesort, shearsort, rank
sort, counting sort, radix sort.

As with the pre-pattern programming version of the parallel
programming course, we have programming assignments (one
every 2-3 weeks) to support the concepts presented in the lectures.
The first programming assignment asks students to use our
framework with the workpool pattern on their own PC (or a lab
computer). From our previous experiences in large distributed
computing courses [11], we find it much better to have students
use their own computers rather than log onto centralized servers to
do assignments, especially for code development, when possible
to avoid servers being overloaded with a large number of
concurrent processes. For Assignment 1, students have to install
our framework (and Java and Eclipse if they do not have these).
The basic Monte Carlo code is given but students also have to
develop code to perform matrix multiplication. The next
assignment asks students to implement the same problems with
the workpool pattern but using MPI. Students compare using the
pattern framework with lower-level MPI coding approach.

Subsequent assignments explore more patterns and also OpenMP
with MPI. Compiler directives are also explored as a higher-level
approach. Finally, we cover GPUs and CUDA as in previous
course offerings but only after introducing the data parallel pattern
that is the basis of GPUs and CUDA.

5. CONCLUSIONS
This paper describes an approach for teaching parallel
programming by first starting with higher-level computational
patterns. We have developed a new software framework that
enables parallel and distributed programs to be implemented and
executed on a parallel or distributed platform without needing to
write low-level message passing code. Advantages of patterns
include:

 Reduces programmer errors
 Abstracts/hides underlying computing environment
 Reduces source code size (lines of code)
 Leads to an automated conversion into parallel programs

without using low level message-passing routines.
 Hierarchical designs can be created with patterns embedded

into patterns, and pattern operators to combine patterns.

Disadvantages of patterns include:

 New approach to learn
 Takes away some of the freedom from programmer
 Performance is reduced slightly

We strongly believe that our approach builds a foundation for
students to tackle larger professional applications by thinking
about established higher-level patterns first.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under the collaborative grant
#1141005/1141006. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

7. REFERENCES
[1] Astrachan, O. 1998. Design Patterns: An Essential

Component of CS Curricula, SIGCSE Bulletin and
Proceedings. 30, 1, 153-160.

[2] Ferner, C.S. 2006. Revisiting communication code
generation algorithms for message-passing systems,
International Journal of Parallel, Emergent and Distributed
Systems (JPEDS) 21(5), 323-344.

[3] Ferner, C. F. 2002. The Paraguin compiler---Message-
passing code generation using SUIF, in Proceedings of the
IEEE SoutheastCon 2002, Columbia, SC, 1-6.

[4] Fastflow. University of Torino, Italy /Università di Pisa.
Retrieved December 5, 2012 from
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespac
e:about

[5] Gamma, E., Helm., R., Johnson, R., and Vlissides, V. 1995.
Design Patterns. Addison-Wesley, New York.

[6] Keutzer, K., and Mattson, T. n.d. Our Pattern Language
(OPL): A Design Pattern Language for Engineering
(Parallel) Software. Retrieved December 5, 2012 from

http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplo
p_g1_1.pdf.

[7] Intel. n.d. Introducing Intel Many Integrated Core
Architecture. Retrieved December 5, 2012 from
http://www.intel.com/technology/architecture-
silicon/mic/index.htm.

[8] Mattson, T. G., Sanders, B. A., and Massingill, B. L. 2004.
Patterns for Parallel Programming. Addison Wesley.

[9] McCool, M., Reinders, J., and Robison, A. 2012. Structured
Parallel Programming: Patterns for Efficient Computation.
Morgan Kaufmann.

[10] Microsoft. n.d. Patterns of Parallel Programming
Understanding and Applying Parallel Patterns with the .Net
Framework 4. Retrieved December 5, 2012 from
http://www.microsoft.com/download/en/details.aspx?displayl
ang=en&id=19222

[11] Wilkinson, B., and Ferner, C. 2008. Towards a Top-Down
Approach to Teaching an Undergraduate Grid Computing
Course. SIGCSE 2008 Technical Symposium on Computer
Science Education. Portland, Oregon.

[12] Wikipedia. n.d. Software Design Patterns. Retrieved
December 5, 2012 from
http://en.wikipedia.org/wiki/Design_pattern_(computer_scie
nce)

[13] Villalobos, J. 2011. Running Parallel Applications on a
Heterogeneous Environment with Accessible Development
Practices and Automatic Scalability. PhD diss. University of
North Carolina Charlotte.

[14] Villalobos, J. n.d. Parallel Grid Application Framework.
Retrieved December 5, 2012 from http://coit-
grid01.uncc.edu/seeds/

[15] Villalobos, J. and Adibolo, Y. K. 2012. Seeds Framework
Workpool Template Tutorial. Retrieved December 5, 2012
from
http://coitweb.uncc.edu/~abw/seeds/docs/WorkpoolTutorial.
pdf

[16] Villalobos, J. n.d. Seeds Framework Pipeline Template
Tutorial. Retrieved December 5, 2012 from http://coit-
grid01.uncc.edu/seeds/docs/pipeline_tutorial.pdf

[17] Villalobos, J. n.d. Seeds Framework Stencil Template
Tutorial. Retrieved December 5, 2012 from http://coit-
grid01.uncc.edu/seeds/docs/stencil.pdf

[18] Villalobos, J. n.d. Seeds Framework Pattern Operator
Template Tutorial. Retrieved December 5, 2012 from
http://coit-grid01.uncc.edu/seeds/docs/PatternOperator.pdf

[19] Villalobos, J. n.d. Seeds Development with Eclipse.
Retrieved December 5, 2012 from http://coit-
grid01.uncc.edu/seeds/docs/seeds_eclipse_tutorial.pdf

[20] Villalobos, J., and Adibolo, Y. K. 2012. Seeds Framework.
The CompleteSynchGraph Template Tutorial. Retrieved
December 5, 2012 from
http://coitweb.uncc.edu/~abw/seeds/docs/CompleteSynchGra
phTutorial.pdf

[21] Villalobos, J., and Adibolo, Y. K. 2012. Getting Started With
the Seeds Framework: An Introduction to the Seeds
Framework in a Shared Memory Environment. Retrieved
December 5, 2012 from
http://coitweb.uncc.edu/~abw/seeds/docs/GettingStartedSeed
s.pdf

