
The Suzaku Pattern Programming Framework

Barry Wilkinson
University of North Carolina, Charlotte

9201 University City Blvd.
Charlotte, NC 28223, USA

abw@uncc.edu

Clayton Ferner
University of North Carolina, Wilmington

601 S. College Rd.
Wilmington, NC 28403, USA

cferner@uncw.edu

Abstract— Suzaku is a pattern programming framework that
enables programmers to create pattern-based parallel MPI
programs without writing the MPI message-passing code
implicit in the patterns. The purpose of this framework is to
simplify message-passing programming and create better
structured programs based upon established parallel design
patterns. The focus for developing Suzaku is on teaching
parallel programming. This paper covers the main features of
Suzaku and describes our experiences using it in parallel
programming classes.

Keywords-pattern programming; parallel programming;
distributed computing; MPI; OpenMP

I. INTRODUCTION

Parallel programming, i.e. writing programs that use
multiple computers and processors collectively to solve
problems at greater speed, has a very long history but still
can be very challenging. The idea of using multiple
computers for increased speed is obvious in this age of
ubiquitous low cost computers, but getting multiple
simultaneously executing programs to collaborative is a very
difficult venture. Writing a single program is already a
challenge with the complexities we ask of it. Now having
multiple collaborating programs, the challenge is far greater.
Programs can deadlock while waiting for other programs.
The overall behavior may not be deterministic. When
programs are executed together one cannot say whether one
statement in one program executed before or after a
statement in another program in the general case.

Although parallel programming is known to be very
challenging, the usual way of programming is still to use
low-level message-passing libraries such as MPI in which
the programmer explicitly specifies the message passing, and
low-level thread libraries such as Pthreads or slightly higher
level OpenMP. There have been attempts to raise the level of
abstraction over the years, for example using parallelizing
compilers that recognize parallelism in sequential programs.
That approach was less than successful because how we
might write an efficient parallel program is not necessarily
the same as how we write an efficient sequential program.
For example, there are parallel algorithms that can be
employed. There have also been attempts at creating parallel
languages and parallel extensions to sequential languages
and again these attempts have not found universal appeal
with most programmers falling back on using low-level
libraries. It now appears better not to abstract the parallelism
away from the programmer completely. The programmer

needs some control on how a parallel program is constructed,
but still needs a way to write potentially large parallel
programs with some degree of certainty that they are correct,
scalable, and maintainable.

In this paper, we draw upon the concept of design
patterns in software engineering that establishes good
programming practices [1] [2]. In software engineering, a
design pattern is a reusable solution to commonly occurring
problems [3]. Design patterns provide a guide to best
practices but not a final implementation. They provide
scalable design structures and one can reason more easily
about the resulting programs. Also, in the bigger picture of
teams of programmers and interacting programs, design
patterns help programmers that did not write the code
understand how the program was written. Design patterns
historically were associated with object-oriented
programming although this is not necessary. Design patterns
have been applied to specific application areas such as games
[4] and .NET programming [5].

Design patterns can be applied to parallel programming.
Parallel programming design patterns describe multiple
communicating processes or threads executing at the same
time. Here we will focus on communicating message-passing
processes and describe them in that fashion although the
patterns are applicable to communicating threads. The
programmer begins constructing his program by selecting an
established pattern that provides a known structure. Patterns
are particularly useful for the complexities of parallel and
distributed computing. As we will show, the design pattern
approach, when applied to parallel programming, can lead to
an automatic conversion into executable code avoiding low-
level programming altogether. We will use the phrase
pattern programming to describe writing pattern-based
parallel programs with tools that hide the low-level code.
Our work focuses on developing pattern programming tools
specifically to teach parallel programming at the
undergraduate level. Although parallel programming has
been taught in undergraduate computer science programs for
many years, it has recently become an imperative for all
computer science programs to introduce parallel
programming at the lower levels with the publication of the
2013 IEEE/ACM “Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science” [6], which specifies
parallel and distributed computing as a new required
knowledge area.

The paper is organized as follows. Previous work is
briefly reviewed in Section II. The structure of our pattern

6th NSF/TCPP Workshop on Parallel and Distributed Computing Education (EduPar-16),
30th IEEE International Parallel and Distributed Processing Symposium, Chicago, IL, May 23, 2016.

programming framework Suzaku is introduced in Section III.
Low-level Suzaku patterns and routines are described.
Higher-level Suzaku patterns are described in Section IV
(workpool), Section V (iteration synchronous patterns),
Section VI (pipeline), and Section VII (generalized patterns).
In Section VIII, we describe our classroom experiences, with
brief comments about the relationship of the materials with
the NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing in Section IX. Section X provides
conclusions.

II. PREVIOUS WORK

Applying design patterns to parallel programming has
been explored in several university and industrial research
projects including [7][8] and is the subject of books [9][10].
Villalobos explored its use in Grid computing and developed
a Java-based pattern programming framework called Seeds
[11] from which we draw a great deal of inspiration. He
created a framework that enabled programmers to construct
fully distributed programs without any low-level message-
passing code. We have used the Seeds framework in
undergraduate parallel programming courses [12]
introducing the advantages of pattern programming to
students. The particular advantage of Seeds is that it is Java
based. Most students already know Java, resulting in a low
learning curve. Seeds also self-deploys on any single
computer or distributed platform. Objects are used to contain
the data exchanged between processes and a very elegant
programming interface exists with three principal methods,
diffuse, compute, and gather. We will use a similar elegant
interface but with the C programming language, which leads
to a direct path to the lower-level MPI. Although objects are
not used, as we shall describe, we can simulate their use with
routines that are similar in effect to the get and put methods
in Seeds.

III. SUZAKU STRUCTURE AND LOW-LEVEL PATTERNS

Suzaku provides routines that enable programmers to
create pattern-based parallel programs without low-level
MPI code. After compilation, the program is executed as an
MPI program. However all the complexities of MPI routines
and their parameters are avoided and well-structured parallel
programs can be created. The overall programming structure
of a Suzaku program is shown in Fig. 1 and is purposely
similar to OpenMP but using processes instead of threads.
We draw upon the OpenMP programming structure as it is
usually taught in parallel programming classes and OpenMP
is simple and very easy to learn. However, it is not necessary
to know OpenMP first. With the process-based MPI model,
there is no shared memory. As shown in Fig. 1, the program
begins by declaring variables that are duplicated in each
process. The purpose of SZ_Init(p) is to initialize the
message-passing environment. SZ_Init(p) is required and
sets p to be the number of processes. (As a macro, the
parameter, p, does not require an address operator, see later.)
After SZ_Init(p), all code is only executed by the master
process, just as in OpenMP where a single thread executes
the code initially. One or more parallel sections can be
created with the SZ_Parallel_begin and SZ_Parallel_end

constructs. All the processes will execute the code within a
parallel section, including the master process. Outside
parallel sections, the computation is only executed by the
master process. The purpose of SZ_Finalize() is to close the
message-passing environment and it is required. No Suzaku
routines must be placed after SZ_Finalize(). All processes
still exist and any code placed after SZ_Finalize() will be
executed by all processes. Typically one does not want to do
that. This is the same as MPI_Finalize() in MPI.

The routines available in Suzaku are divided into low-
level routines that implement basic functions or low-level
message-passing patterns and routines that implement high-
level patterns. The low-level routines are given in Table 1.
The low-level routines in Table 1 are implemented with
macros to enable the type and size of arguments to be
unspecified and determined within the macros. The basic
data type is a double and for those routines that indicate
double argument(s), that is the only type allowed although
the size does not need to be specified. The pointer arguments
can be for variables (using the & address operator) or arrays.
Arrays need to be declared either statically or as variable
length arrays (i.e. not dynamically allocated) to be able to
establish the size without specification. All message-passing
routines are made synchronous for ease of use, which means
all the processes involved do not return until the whole
operation has been completed. This is not the same as MPI
collective routines. Two routines in Table 1,
SZ_Point_to_point() and SZ_Broadcast(), allow data to be
sent with a wide range of data types for added flexibility—
characters, integers, doubles, one-dimensional arrays of

int main (int argc, char * argv[]) {
 int p;
 ...
 SZ_Init(p);
 ...
 SZ_Parallel_begin
 …
 SZ_Parallel_end;
 ...
 SZ_Finalize();
 return(0);
}

After SZ_Init() only master process
executes code, until a parallel section.

After SZ_Parallel_begin, all processes
execute code, until a SZ_Parallel_end

Only master process executes code here

Figure 1. Suzaku program structure.

Variables declared here duplicated in each
process. Initializations apply to all copies.

TABLE 1. LOW-LEVEL SUZAKU ROUTINES

SZ_AllBroadcast(double *a)

SZ_Barrier()

SZ_Broadcast(void *a)

SZ_Finalize()

SZ_Gather(double *a, double *b)

SZ_Get_process_num()

SZ_Init(int p)

SZ_Master <structured block>

SZ_Parallel_begin … SZ_Parallel_end;

SZ_Point_to_point(int p1, int p2, void *a, void *b)

SZ_Process(int ID) <structured block>

SZ_Scatter(double *a, double *b)

SZ_Wtime()

characters, integers, and doubles, and multi-dimensional
arrays of doubles. The type and size of the data does not
have to be specified. Fig. 2 shows a program that illustrates
various types and sizes being used without specification with
SZ_Point_to_point().

A basic parallel pattern is the master-slave pattern. In this
pattern, the computation is divided into parts, which are then
distributed to slaves for each slave to perform one part and
return their result. The master-slave pattern can often be
implemented with the low-level broadcast, scatter, and
gather routines. The function that the slaves execute is placed
after the scatter and broadcast and before the gather. For
efficient mapping to collective MPI routines, the master also
acts as one of the slaves. Matrix multiplication using the
master-slave pattern is shown in Fig. 3. SZ_Scatter()
determines the size of each transfer by the size of the
destination and SZ_Gather() determines the size of each
transfer by the size of the source.

The matrix multiplication algorithm in Fig. 3 is given to
illustrate the use of the broadcast, scatter, and gather
routines. It is not necessarily the best way to do matrix
multiplication in parallel because we are copying the entire B
array to each process rather than distributing parts of the B
array to processes. Fig. 3 is very easy to explain to students
and easy to implement given that broadcast, scatter, and
gather routines are available. We use the algorithm to give an
example of the master-slave pattern using these routines and
to start the discussion on partitioning a problem. Scatter and
gather can confuse students as they rely on understanding
how arrays are stored in memory in row-major order and this
example helps clarify the routines. Performing more efficient
matrix multiplication in parallel with large array sizes
requires a deeper understanding of computer architecture,
including the effects of cache memory and memory size. We
do explore this later in our parallel programming course.

The low-level routines can be used to parallelize many
sequential programs easily. As we will discuss in Section
VIII, we ask our students to write a sequential program for
the astronomical N-body problem and then ask them to

parallel it with the master-slave pattern. It turns out to be
easy to do just by adding a few Suzaku routines and
removing one sequential loop. The master-slave
implementation has a significant disadvantage that the
number of bodies must be the same as the number of
processes. One process calculates the position and velocity
of one body at each time interval. However, master-slave
pattern leads us onto more powerful patterns, which we
discuss next starting with the workpool pattern.

IV. WORKPOOL PATTERN

The workpool pattern is a very widely applicable pattern.
It is similar to the master-slave pattern but has a task queue
as shown in Fig. 4. A task from the task queue is given to
each slave by the master process. When a slave finishes a
task and returns the result, it is given another task from the
task queue until the task queue is empty. At that point, the
master waits until all outstanding results are returned. The
termination condition is when the task queue is empty and all
outstanding results are collected. The number of slaves does
not need to be the same as the number of tasks. Indeed one
typically would limit the number of slaves to the number of
the physical cores available (or double that number with
hyperthreading). The number of tasks could be much greater
and would be for many applications.

A very important feature of the workpool is its load
balancing quality. Slaves are kept busy with tasks
irrespective of the speed of the slaves. Faster slaves will
return quicker but are given more work. It is up to the
master to determine how much work a slave receives. The
tasks do not need to be all of the same computational effort
although in our basic implementation the tasks are not
differentiated.

int main(int argc, char *argv[]) {

 char m[20], n[20];

 int p, x, y, xx[5], yy[5];

 double a, b, aa[10], bb[10], aaa[2][3], bbb[2][3];

 ...

 SZ_Init(p); // initialize environment,

 SZ_Parallel_begin // parallel section - from process 0 to process 1:

 SZ_Point_to_point(0, 1, m, n); // send a string

 SZ_Point_to_point(0, 1, &x, &y); // send an int

 SZ_Point_to_point(0, 1, &a, &b); // send a double

 SZ_Point_to_point(0, 1, xx, yy); // send 1-D array of ints

 SZ_Point_to_point(0, 1, aa, bb); // send 1-D array of doubles

 SZ_Point_to_point(0, 1, aaa, bbb); // send 2-D array of doubles

 SZ_Parallel_end; // end of parallel section

 ...

 SZ_Finalize();

 return 0;

}
Figure 2. Point-to-point pattern with various data types.

#define N 256
int main (int argc, char *argv[]) {
 int i, j, k, p, blksz;
 double A[N][N], B[N][N], C[N][N], sum;
 ...
 SZ_Init(p);
 ...
 SZ_Parallel_begin
 blksz = N/p; // assumes N is a multiple of p
 double A1[blksz][N]; // for slaves to hold scattered A
 double C1[blksz][N]; // for slaves to hold their result
 SZ_Scatter(A,A1); // scatter blksz rows of A array
 SZ_Broadcast(B); // broadcast B array
 for (i = 0 ; i < blksz; i++) { // matrix multiplication.
 for (j = 0 ; j < N ; j++) {
 sum = 0;
 for (k = 0 ; k < N ; k++) {
 sum += A1[i][k] * B[k][j];
 }
 C1[i][j] = sum;
 }
 }
 SZ_Gather(C1,C); // gather results, blksz rows of C1
 SZ_Parallel_end;
 ...
 SZ_Finalize();
 return 0;
}

Figure 3. Matrix multiplication using master-slave pattern.

The programmer’s interface for the Suzaku workpool is
modeled on the Seeds framework. The programmer must
implement four routines:

 init() Sets up initial values. Called once by all

processes at the beginning of the
computation.

 diffuse() Generates the next task when called by
the master.

 compute() Executed by a slave, takes a task
generated by diffuse and generates the
corresponding result.

 gather() Accepts a slave’s result and develops the
final answer. Called by the master.

The framework generates a task ID for each task from

zero onwards. The task ID is an input parameter for diffuse(),
compute(), and gather(). It is available to the programmer but
might or might not be used depending upon the application.
The number of tasks and actual tasks are determined by the
programmer, which provide great flexibility on how best to
divide the problem taking into account the task computation
and the communication overhead. The number of tasks is
established in init(). The programmer determines what data
will be sent in each task in diffuse() and what is returned in
compute(). OpenMP provides so-called static, dynamic, and
guided scheduling algorithms with their parallel for directive
to divide for loops into parallel parts. The scheduling
algorithms attempt to share the work in an equable way. The
expectation is that all processors are similar in capability,
which would typically be the case in a shared-memory
system. In contrast, the Suzaku workpool provides automatic
load balancing with its task queue that takes into account that
each slave may perform at different speeds but does require
the programmer to determine the tasks performed by each
slave.

Three versions of the workpool have been implemented,
of increasing sophistication. The basic version (version 1)
limits task data to be held in a one-dimensional array of
doubles, which is sufficient for simple applications and is the
most efficient. However, the Seeds workpool is much more
powerful. In Seeds, multiple data items of different types can
be held in a task object using a Java hashmap that associates
a key (a string) with each data item. The programmer refers

to the data by the key and uses the put method to add data to
the task in diffuse() and get method to extract the data in
compute(). This concept has been modeled in the Suzaku
workpool version 2 using C but without objects. Fig. 5
shows sample code. The workpool is implemented in
SZ_Workpool2() and the four required routines from the
programmer are specified as function parameters. As such,
they can be renamed to accommodate multiple workpools
and other patterns in a single program. This feature is not
available in Seeds.

Two routines are provided to the programmer, SZ_put()
to pack the data into the task and SZ_get() to retrieve the

Master

Task from
task queue

Another task
if task queue

not empty

Master
aggregates
results

Slaves/Workers

Result

Task queue

Figure 4. Workpool pattern.
void init(int *tasks) { // sets number of tasks
 *tasks = 4;
 return;
}
void diffuse(int taskID) {
 char w[] = "Hello World";
 int x;
 double y = 5678, z[2][3];
 …
 SZ_Put("w",w);
 SZ_Put("x",&x);
 SZ_Put("y",&y);
 SZ_Put("z",z);
 return;
}
void compute(int taskID) {
 char w[12] = "-----------";
 int x = 0;
 double y = 0, z[2][3];
 …
 SZ_Get("z",z);
 SZ_Get("x",&x);
 SZ_Get("w",w);
 SZ_Get("y",&y);
 … // compute
 SZ_Put("xx",&x);
 SZ_Put("yy",&y);
 SZ_Put("zz",z);
 SZ_Put("ww",w);
 return;
}
void gather(int taskID) {
 char w[12] = "-----------";
 int x = 0;
 double y = 0, z[2][3];
 …
 SZ_Get("ww",w);
 SZ_Get("zz",z);
 SZ_Get("xx",&x);
 SZ_Get("yy",&y);
 return;
}
int main(int argc, char *argv[]) {
 int p;
 SZ_Init(p);

 SZ_Parallel_begin
 SZ_Workpool2(init,diffuse,compute,gather);
 SZ_Parallel_end;

 SZ_Finalize();
 return 0;
}

Figure 5. Program using Suzaku workpool version 2.

data from the task. These routines can accept characters,
integers, doubles, one-dimensional arrays of characters,
integers, or doubles, and multi-dimensional arrays of
doubles. The type and size do not have to be specified. The
first parameter in SZ_put() and SZ_get() is a programmer-
defined string to identify the data. The second parameter is
the associated data. SZ_put() and SZ_get() are macros to
enable arguments without type and size. Once the type and
size have been determined, they call internal routines. MPI
pack and unpack routines are then used. Each message sent
includes information that maps the data to their names so that
each message is self-contained with all the information the
destination needs to extract the data. It is possible for each
task to have completely different named data items although
the application code would need to differentiate between the
names when the task is received.

Version 3 of the workpool extends version 2
considerably. This version of the workpool implements what
we call a dynamic workpool in which new tasks can be added
to the task queue during the computation as might be needed
for search problems such as the shortest path problem. To
differentiate, we use the term static workpool when the
queue holds a fixed number of tasks. Version 3 has been
implemented in several ways including with multiple threads
and multiple processes for the master. Fig. 6 shows our
dynamic workpool algorithm using a single process for the
master, which turns out to be very reliable and without the
need for critical sections to handle contention for the task
queue. Initially the task queue is loaded with at least one task
by the routine init(). Then a task is retrieved from the task
queue, diffuse() is executed, and the complete task with any
addition information added by diffuse() is sent to a free slave
if there is one. When there are no more free slaves or no
more tasks, the master process waits for one slave to return a
result. Slaves accept tasks, execute compute(), and return
results, which could include new tasks. The master picks up

the results of one slave, and executes the gather() routine.
The gather routine might find new tasks to add to the task
queue. The master then repeats the complete sequence taking
tasks from the task queue and sending tasks to free slaves,
etc. A slave is considered free when it has returned its result
for a task it was given and the result has been collected by
the master. The sequence stops when there are no new tasks
and all slaves are free. Then all slaves are terminated with
termination messages from the master and the master
terminates.

A sample program is given in Fig. 7 to solve the shortest

Get task
diffuse()
Choose a
free slave
Send task

Task queue

Master

Init() Put initial tasks into
task queue

Slaves

Receive task

If terminate message,
terminate process

compute()

Send result

Receive
gather()

Send terminator
to all slaves

All slaves free
and no tasks

Terminate

Adds task(s)

At least one
slave busy

While a
task and a
free slave

Sends from slaves
will wait until
picked up by the
master

Figure 6. Dynamic workpool algorithm.

#define N 6 // number of nodes
int w[N][N], dist[N], newdist_j; // Adjacency matrix, dist.
void init(int *T) {
 … // initialize dist[], w[][]
 SZ_Master {
 SZ_Insert_task(0); // insert first node 0 into queue
 }
 return;
}
void diffuse(int taskID) { // diffuse attaches current distances
 SZ_Put("dist",dist); // from global array dist[] in master
 return;
}
void compute(int taskID) {
 int i, j, new_tasks[N]; // max of N new tasks
 SZ_Get("dist",dist); // update array dist[] in slave
 for (i = 0; i < N; i++) new_tasks[i] = 0;
 i = 0;
 for (j = 0; j < N; j++) // Moore’s algorithm
 if (w[taskID][j] != -1) {
 newdist_j = dist[taskID] + w[taskID][j];
 if (newdist_j < dist[j]) {
 dist[j] = newdist_j;
 if (j < N-1) { // do not add last vertex (destination)
 new_tasks[i] = j;
 i++;
 }
 }
 }
 SZ_Put("result",new_tasks);
 SZ_Put("dist",dist);
 return;
}
void gather(int taskID) {
 int i,dist_recv[N],new_tasks[N]; // max of N new tasks
 SZ_Get("result",new_tasks); // get the first added task
 SZ_Get("dist",dist_recv);
 for (i = 0; i < N; i++)
 if (dist_recv[i] < dist[i]) dist[i] = dist_recv[i];
 for (i = 0; i < N; i++)
 if (new_tasks[i] != 0) SZ_Insert_task(new_tasks[i]);
 return;
}
int main(int argc, char *argv[]) {
 int p;
 SZ_Init(p);
 …
 SZ_Parallel_begin
 SZ_Workpool3(init,diffuse,compute,gather);
 SZ_Parallel_end;
 … // print final results in dist[]
 SZ_Finalize();
 return 0;
}

Figure 7. Shortest path problem using a dynamic workpool.

path problem using Moore’s algorithm. This problem comes
from [13]. The routines SZ_Put() and SZ_Get() are available
from workpool version 2 to add data to a task and extract the
data. In addition one new routine, SZ_Insert_task(), is
provided to add a task to the task queue.

V. ITERATIVE SYNCHRONOUS PATTERNS

When forming a complete program, often a pattern is
repeated until a termination condition occurs. At the end of
each iteration, there is a synchronization point where all
processes need to wait for each other before continuing. The
termination condition typically is when all the computed
values have converged sufficiently on the solution or a
specific number of iterations have occurred. We call these
patterns iterative synchronous patterns. An example is the
iterative synchronous workpool pattern shown in Fig. 8,
which we ask students to use to solve the N-body problem.
Each iteration is one time interval of the simulation. Note
iterative synchronous patterns consist of two patterns merged
together sequentially if we call iteration a pattern. Merging
patterns can be more general using a pattern operator to
combine patterns [14].

VI. PIPELINE PATTERN

In the pipeline pattern, the computation is divided into a
series of tasks that have to be performed one after the other,
with the result of one task passed on to the next task. The
pipeline pattern can be compared to an assembly line in
manufacturing and as in an assembly line, a pipeline
generally makes sense to use if we have multiple
computations each of which can be divided into a series of
sequential tasks. Hence the pipeline is usually an iterative
synchronous pattern in which the pipeline is within an
iteration loop as illustrated in Fig. 9. The pipeline is
implemented in Suzaku. The programmer’s interface is
purposely similar to other patterns. The master executes the
diffuse and gather routines and slaves execute the compute
routine. Task data is held in a one-dimensional array as in the
workpool version 1 as this is the most likely data structure
and most efficient although there is no technical reason why
the version 2 put and get mechanism could not be
incorporated. The Suzaku pipeline will terminate naturally

after T × (P 1) steps when there are T tasks and P
processes. A routine, SZ_Terminate(), is provided to be able
to terminate the pattern earlier when a specific termination
condition exists. This routine would be called by the gather
routine.

Fig. 10 shows pipeline code to sort numbers using the
pipeline version of insertion sort. Numbers to sort are fed
into the beginning of the pipeline. Each slave keeps the
largest number it receives passing on smaller numbers. (In

Repeat

Stop

Result

Slaves

Master
Pipeline pattern

Check termination
condition

Figure 9. Iterative synchronous pipeline pattern.

Repeat
Stop

Check termination
condition

Master

Task from task
queue

Aggregate
results

Slaves/Workers

Result

Task
queue

Figure 8. Iterative synchronous workpool pattern.

Workpool
pattern

#define N 1 // Size of data being sent
#define P 4 // Number of processes and number of numbers
void init(int *T, int *D) {
 *T = 4; // number of tasks
 *D = 1; // number of doubles in each task
 srand(999);
 return;
}
void diffuse (int taskID, double output[N]) {
 if (taskID < P) output[0] = rand()% 100;
 else output[0] = 999; // otherwise terminator
return;
}
void compute(int taskID, double input[N], double output[N]){
 static double largest = 0;
 if (input[0] > largest) {
 output[0] = largest; // copy current largest into send array
 largest = input[0]; // replace largest with rec. number
 } else {
 output[0] = input[0]; // copy recv into send array
 }
return;
}
void gather(int taskID, double input[N]) {
 if (input[0] == 999) SZ_terminate();
return;
}
int main(int argc, char *argv[]) {
 int p;
 SZ_Init(p);
 …
 SZ_Parallel_begin
 SZ_Debug();
 SZ_Pipeline(init,diffuse,compute,gather);
 SZ_Parallel_end;
 …
 SZ_Finalize();
 return 0;
}

Figure 10. Insertion sort using the Suzaku pipeline.

class, we also discuss partitioning the problem so that groups
of numbers are sent to adjacent slaves.) SZ_Debug() is
optional and causes debug messages to be displayed during
execution and is placed before start of the pattern. With pre-
implemented patterns it is really important to be able to
watch the execution steps as the programmer does not have
access to the underlying implementation. SZ_Debug() sets a
flag inside Suzaku and can be applied to other patterns.

VII. GENERALIZED PATTERNS

Message-passing patterns connect sources and
destinations together in various ways. For a particular
application, a specific interconnection pattern might offer
advantages. The pipeline pattern is one such specialized
pattern. Other patterns include the stencil pattern in which
slaves are arranged in a two or three dimensional mesh and
each slave connects to its neighbors in the mesh. The stencil
pattern can be generalized into what we call overlapping
connectivity patterns in which each slave (in this context)
connects to a group of other slaves in the proximity and the
groups overlap [15]. The extreme case is when each slave
connects to all the other slaves in an all-to-all pattern. The
other extreme is when each slave connects to only one other
slave, such as the pipeline pattern, which connects each slave
to the next slave in a linear fashion. There are many other
possible connection patterns for example binary tree,
hypercube, and arbitrary connection patterns for specific
problems. Rather than implement every pattern in a unique
way, the approach taken in Suzaku is to implement a pattern
based upon a directed graph called here a connection graph.
Any connection pattern can be created this way. We call the
approach a generalized pattern. Of course, one has to avoid
messaging deadlock in the pattern implementation. We use
MPI message passing with explicit buffers. It may be the
implementation is not as efficient as a specific
implementation for a specific pattern. The motive of the
Suzaku development is not for ultimate code execution speed
and efficiency but as a tool that can be used with students to
teach good programming practices, possibly at lower levels
of the curriculum. If one wants the best possible execution
speed, one could first choose the pattern and get the program
to work with the Suzaku framework, and then re-engineer it
in MPI. This is one advantage of Suzaku. There is a close
relationship to MPI.

The Suzaku generalized pattern is an iterative
synchronous pattern with a master-slave structure as
illustrated in Fig. 11. The master sends initial data to all
slaves at the beginning of the computation and collects
results from all slaves at the end of the computation. The
slaves compute and send values to those slaves that are
interconnected, repeatedly until the termination condition
exists. The master also acts as one slave as in the master-
slave pattern. For greatest flexibility, the programmer
implements the iteration loop and low-level Suzaku routines
are used for broadcast, scatter, and gather in Fig. 11.

The overall program structure is shown in Fig. 12.
SZ_Pattern_init() initializes the connection graph for a
standard pattern (all-to-all, pipeline, stencil). The routine
compute() in Fig. 12 is executed by each slave. The actual

computation depends upon the application.
SZ_Pattern_send() sends data from each slave to all
connected slaves according to the connection graph. The
source data being transferred is a one-dimensional array of
doubles, output[N] where N is the number of doubles in a
task. The destination array is a two-dimensional array,
input[P][N] where there are P processes. The graph entry at
connection_graph[i][j] indicates whether is a connection
between process i and process j (–1 for no connection) and if
so the row in the destination array where the data is to be
placed, i.e. if connection_graph[i][j] = x, the location is
input[x][N]. This allows slaves to receive data from every
other slave and place the data in different rows. The 3 × 3
stencil pattern has the connection graph shown in Fig. 13.
Processes are numbered in natural order (row major order).
Apart from slaves at the edges, each slave connects to the
four neighbors to the left, right, up, and down.

 Destination

 0 1 2 3 4 5 6 7 8

 0 -1 0 -1 2 -1 -1 -1 -1 -1

 1 1 -1 0 -1 2 -1 -1 -1 -1

 2 -1 1 -1 -1 -1 2 -1 -1 -1

 3 3 -1 -1 -1 0 -1 2 -1 -1

 Source 4 -1 3 -1 1 -1 0 -1 2 -1

 5 -1 -1 3 -1 1 -1 -1 -1 2

 6 -1 -1 -1 3 -1 -1 -1 0 -1

 7 -1 -1 -1 -1 3 -1 1 -1 0

 8 -1 -1 -1 -1 -1 3 -1 1 -1

Figure 13. Connection graph for the stencil pattern.

Repeat

Stop

Slaves

Connection pattern

Broadcast, scatter,
and gather

Master

Check
termination
condition

Figure 11. Generalized Suzaku pattern.

SZ_Parallel_begin // parallel section, all processes do this
 SZ_Pattern_init(“pattern_name",size_of_data); // set up pattern
 SZ_Broadcast(input); // broadcast initial data to all slaves
 for (s = 0; s < steps; s++) { // in this case a fixed # iterations
 compute(s,input,output); // master and slaves execute compute
 SZ_Pattern_send(output,input); // sent results to connected procs
 }
 SZ_Gather(input,result); // collect results from slaves
SZ_Parallel_end; // end of parallel

Figure 12. Suzaku program structure for generalized pattern.

A sample program segment is given in Fig. 14 for solving
the two-dimensional heat distribution problem (static heat
equation). For simplicity here, only 16 points are shown and
one process for each point. In a more realistic situation each
slave would handle a block of points. The best partitioning
can be explored in the class. Note as with all Suzaku code,
the code is much simpler than if it had been written in MPI,
but it creates MPI code.

Two additional generalized pattern routines are available
to the programmer, SZ_Set_conn_graph(int *graph) and
SZ_Print_conn_graph(). SZ_Set_conn_graph() enables the
programmer to create any personalized pattern in the
connection graph by supplying a two-dimensional array with
the connections specified. SZ_Set_conn_graph() replaces
SZ_Pattern_init(). SZ_Print_conn_graph() prints out the
current connection graph.

VIII. CLASSROOM EXPERIENCES

Suzaku creates MPI message-passing programs but hides
all the complexities of MPI. As such, one can start with
patterns and Suzaku and study MPI later (or not even learn
MPI at all) in a top-down approach or consider MPI first and
patterns and Suzaku afterwards in a bottom-up approach. In
our senior parallel programming class at UNC-Charlotte, we
start with OpenMP, then MPI, and then patterns with
Suzaku. This appears to be the best way for a full course on
parallel programming. It is an open question whether to use a
bottom-up approach or a top-down approach for a course in
which pattern parallel programming is introduced as a small
part of a lower-level programming course. Apart from
instilling good software engineering principles, a top-down
approach using Suzaku first has the advantage that the lower-
level OpenMP and MPI do not need to be covered at all.
That can be left to a later course.

Suzaku was introduced in the parallel programming class
at UNC-Charlotte in Spring 2015 and Fall 2015, and we will
report on students’ responses for these two offerings. Both
were taught as online courses. Students were provided with a
VirtualBox virtual machine with all the software pre-
installed for their own computer, as well as access to a
departmental cluster for final testing. In Spring 2015, there
were 65 students registered in the class (35 undergraduate
students and 30 graduate students). In Fall 2015, there were
62 students registered in the class (27 undergraduate students
and 35 graduate students). In both cases, there were seven 2-

week programming assignments. For each assignment,
students submit a report with their code and results. The
Suzaku assignment was the fifth assignment after two
OpenMP assignments and two MPI assignments.

In Spring 2015, the Suzaku assignment was divided into
four parts. Part 1 was a tutorial where sample Suzaku code
was given. In Part 2, students had to write a sequential
program to solve the astronomical N-body problem given
skeleton code. Part 3 asked students to convert the sequential
program into a Suzaku program having a master-slave
pattern. Part 4 was on MPI/OpenMP hybrid programs.
Students were asked to convert an MPI/OpenMP hybrid
program into a Suzaku/OpenMP hybrid program, and
graduate students were also asked to convert the N-Body
program into a hybrid Suzaku/OpenMP program.

After completing Part 3, students were asked to give a
brief evaluation of using the low-level Suzaku routines,
comparing and contrasting using Suzaku with MPI. They
were also asked to describe their experiences and opinions,
and give any suggestions for improvement. There were 28
responses, all but one highly positive (96.4% positive) with
quite extensive evaluations. The most common comments
were along the lines of “easier to use”, “user friendly”, “less
time to write code”, “more concise.” The disadvantage most
notably mentioned was that the message data type had to be
a double. (We had yet to develop the typeless feature of
Suzaku in Spring 2015.) Students were also asked to make
conclusions on using Suzaku in Part 4 after using Suzaku for
the hybrid program. There were 28 responses, again highly
positive with one negative response (96.4% positive).
Comments included “using Suzaku was a lot of fun.” It is
good to know we can make hybrid parallel programing fun.

Assignment 5 in Fall 2015 was similar except we
dropped the hybrid programming and added the Suzaku
workpool, which had been fully developed by then. Part 4 in
Assignment 5 asked graduate students to reformulate the N-
body program as a Suzaku workpool. This required
developing the code for the diffuse(), compute(), and gather()
routines. Again, students were asked after Part 1 (Suzaku
tutorial) to give a brief discussion on using Suzaku compared
to MPI, describing the advantages and disadvantages. There
were 47 responses, typically saying “much easier to use with
simple commands as compared to MPI”, “Suzaku is more
user friendly.” Disadvantages pointed to included not having
as much control of the code as in MPI.

Students were asked after Part 3 (parallelizing the N-
body program) to give an evaluation of using the Suzaku
comparing and contrasting with MPI, and describe their
experience and opinions, and any suggestions for
improvement. There were 42 responses, all but three
responses highly positive. Comments again focused on the
ease of use. The three negative responses (7%) pointed to
lack of documentation and lack of understanding what the
Suzaku routines did. These students had problems getting
their code to execute. There was documentation provided but
more may be needed especially in an on-line setting.
However, overwhelmingly, students appreciated the ease that
parallel programs could be constructed with established
patterns.

SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init("stencil",1); // set up slave interconnections
 SZ_Broadcast(pts); // set up initial values in each process
 … // copy initial values into B[][]
 for (t = 0; t < T; t++) { // compute values over time T
 A[0] = 0.25 * (B[0][0]+B[1][0]+B[2][0]+B[3][0]);// computation
 SZ_Generalized_send(A,B); // sent compute results in A to B
 }
 SZ_Gather(A, temp); // collect results into temp

SZ_Parallel_end; // end of parallel

Figure 14. Program segment for the two-dimensional heat
distribution problem.

IX. NSF/IEEE-TCPP CURRICULUM INITIATIVE ON

PARALLEL AND DISTRIBUTED COMPUTING

The report “NSF/IEEE-TCPP Curriculum Initiative on
Parallel and Distributed Computing - Core Topics for
Undergraduates” describes the topics in parallel and
distributed computing that are expected to be covered in BS
degrees in Computer Science or Computer Engineering. [16]
The report promotes spreading basic concepts into core CS
courses (CS1, CS2, Systems, and Data Structure and
Algorithms). Our pattern-based approach is not specifically
described in the report although one can find a sprinkling of
patterns (divide and conquer, recursion, scan, reduction,
stencil, etc) mostly proposed for Data Structure and
Algorithms. The report also accepts that it is sometimes
necessary to place all the materials in one upper-level
parallel programming elective as we currently teach parallel
programming. We support the notation of distributing key
concepts throughout lower-level CS core courses and would
advocate introducing parallel programming in the lower
levels using our design pattern approach. Our low-level
patterns correspond to the communication patterns listed in
the report for Data Structure and Algorithms. Suzaku
communication patterns can be used by students without
learning MPI. Some of our higher-level patterns also appear
for Data Structure and Algorithms. But some are missing,
including the workpool. The Suzaku workpool can
reasonably be done in lower-level courses because it does
not require students to implement the workpool code.

X. CONCLUSIONS

In this paper, we introduced a new pattern programming
tool called Suzaku that makes it much easier to create MPI
message-passing code based upon established parallel design
patterns and to teach good parallel programming design.
Suzaku provides low-level routines that map directly to MPI
routines but avoiding the long list of parameters needed in
MPI routines (including MPI communicators, tags, and
specifying the data type and the data size), yet it leads to a
path to or from MPI programming. The feature of Suzaku
not needing to specify the type or size of the data in certain
routines (with limitations), makes it effectively typeless and
offers ease of programming. Suzaku also provides routines
for higher-level patterns including the static workpool,
dynamic workpool, pipeline, and through a generalized
pattern feature many patterns including user-defined
patterns. We chose to use a bottom-up approach in teaching,
starting with OpenMP and MPI and introducing Suzaku
afterwards in this study. Most students find pattern
programming easier to learn after learning MPI, whereas
from a software engineering perspective starting with higher-
level abstraction of patterns should be more desirable.
Pattern programming tools certainly constrain the
programmer and some students will definitely not like that.
However it is our experience that students appreciate the
power of higher-level tools. Student comments about using
this framework are very positive. We strongly believe that
ad-hoc parallel programming should be avoided. Students

should be trained in methods that are conducive to good
programming and lend themselves to program maintenance
and large collaborative applications.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under the collaborative grant
#1141005/1141006. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] E. Gamma, R. Helm., R. Johnson, and V. Vlissides, Design Patterns,

New York: Addison-Wesley, 1995.

[2] O. Astrachan, “Design Patterns: An Essential Component of CS
Curricula,” SIGCSE Bulletin and Proceedings. Vol. 30, no. 1, 1998,
pp. 153-160.

[3] “Design Patterns,” Wikipedia. https://en.wikipedia.org/
wiki/Design_Patterns.

[4] R. Nystrom, Game Programming Patterns, Genever Benning
Publishers, 2014.

[5] S. Toub, “Patterns of Parallel Programming: Understanding and
Applying Parallel Patterns with the .NET Framework 4,” 2009.

http://www.microsoft.com/downloads/details.aspx?FamilyID=86b3d3
2b-ad26-4bb8-a3ae-c1637026c3ee&displaylang=en

[6] “Computer Science Curriculum 2013 Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science,” The Joint
Task Force on Computing Curriculum ACM/IEEE Computer Society,
Dec. 2013. http://www.acm.org/education/CS2013-final-report.pdf

[7] Fastflow. University of Torino, Italy /Università di Pisa.
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about

[8] K. Keutzer and T. Mattson, Our Pattern Language (OPL): A Design
Pattern Language for Engineering (Parallel) Software.
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_1.p
df

[9] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for
Parallel Programming, Addison Wesley, 2004.

[10] M. McCool, J. Reinders, and A. Robison, Structured Parallel
Programming: Patterns for Efficient Computation, Waltham MA:
Morgan Kaufmann, 2012.

[11] J. Villalobos, Running Parallel Applications on a Heterogeneous
Environment with Accessible Development Practices and Automatic
Scalability, PhD diss. University of North Carolina Charlotte, 2011.

[12] B. Wilkinson, J. Villalobos, and C. Ferner, “Pattern Programming
Approach for Teaching Parallel and Distributed Computing,”
SIGCSE 2013 Technical Symposium on Computer Science
Education. Denver, Colorado, 2013.

[13] B. Wilkinson and M. Allen, Parallel Programming: Techniques and
Application Using Networked Workstations and Parallel Computers
2nd ed., Upper Saddle River, New Jersey: Prentice Hall, 2005, p. 214.

[14] J. F. Villalobos and B. Wilkinson, “Skeleton/Pattern Programming
with an Adder Operator for Grid and Cloud Platforms,” The 2010
International Conference on Grid Computing and Applications
(GCA’10), Las Vegas, Nevada, USA, July 12-15, 2010.

[15] B. Wilkinson, “Overlapping Connectivity Interconnection Networks
for Shared Memory Multiprocessor Systems,” Journal of Parallel and
Distributed Computing, vol. 15, no. 1, May 1992, pp. 49–61.

[16] Sushil K Prasad, et al., “NSF/IEEE-TCPP Curriculum Initiative on
Parallel and Distributed Computing - Core Topics for
Undergraduates,” Version I, December 2012.
http://www.cs.gsu.edu/~tcpp/curriculum/index.php

