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Abstract— Suzaku is a pattern programming framework that 
enables programmers to create pattern-based parallel MPI 
programs without writing the MPI message-passing code 
implicit in the patterns. The purpose of this framework is to 
simplify message-passing programming and create better 
structured programs based upon established parallel design 
patterns. The focus for developing Suzaku is on teaching 
parallel programming. This paper covers the main features of 
Suzaku and describes our experiences using it in parallel 
programming classes. 
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I.  INTRODUCTION 

Parallel programming, i.e. writing programs that use 
multiple computers and processors collectively to solve 
problems at greater speed, has a very long history but still 
can be very challenging. The idea of using multiple 
computers for increased speed is obvious in this age of 
ubiquitous low cost computers, but getting multiple 
simultaneously executing programs to collaborative is a very 
difficult venture. Writing a single program is already a 
challenge with the complexities we ask of it. Now having 
multiple collaborating programs, the challenge is far greater. 
Programs can deadlock while waiting for other programs. 
The overall behavior may not be deterministic. When 
programs are executed together one cannot say whether one 
statement in one program executed before or after a 
statement in another program in the general case. 

Although parallel programming is known to be very 
challenging, the usual way of programming is still to use 
low-level message-passing libraries such as MPI in which 
the programmer explicitly specifies the message passing, and 
low-level thread libraries such as Pthreads or slightly higher 
level OpenMP. There have been attempts to raise the level of 
abstraction over the years, for example using parallelizing 
compilers that recognize parallelism in sequential programs. 
That approach was less than successful because how we 
might write an efficient parallel program is not necessarily 
the same as how we write an efficient sequential program. 
For example, there are parallel algorithms that can be 
employed. There have also been attempts at creating parallel 
languages and parallel extensions to sequential languages 
and again these attempts have not found universal appeal 
with most programmers falling back on using low-level 
libraries. It now appears better not to abstract the parallelism 
away from the programmer completely. The programmer 

needs some control on how a parallel program is constructed, 
but still needs a way to write potentially large parallel 
programs with some degree of certainty that they are correct, 
scalable, and maintainable. 

In this paper, we draw upon the concept of design 
patterns in software engineering that establishes good 
programming practices [1] [2]. In software engineering, a 
design pattern is a reusable solution to commonly occurring 
problems [3]. Design patterns provide a guide to best 
practices but not a final implementation. They provide 
scalable design structures and one can reason more easily 
about the resulting programs. Also, in the bigger picture of 
teams of programmers and interacting programs, design 
patterns help programmers that did not write the code 
understand how the program was written. Design patterns 
historically were associated with object-oriented 
programming although this is not necessary. Design patterns 
have been applied to specific application areas such as games 
[4] and .NET programming [5]. 

Design patterns can be applied to parallel programming. 
Parallel programming design patterns describe multiple 
communicating processes or threads executing at the same 
time. Here we will focus on communicating message-passing 
processes and describe them in that fashion although the 
patterns are applicable to communicating threads. The 
programmer begins constructing his program by selecting an 
established pattern that provides a known structure. Patterns 
are particularly useful for the complexities of parallel and 
distributed computing. As we will show, the design pattern 
approach, when applied to parallel programming, can lead to 
an automatic conversion into executable code avoiding low-
level programming altogether. We will use the phrase 
pattern programming to describe writing pattern-based 
parallel programs with tools that hide the low-level code. 
Our work focuses on developing pattern programming tools 
specifically to teach parallel programming at the 
undergraduate level. Although parallel programming has 
been taught in undergraduate computer science programs for 
many years, it has recently become an imperative for all 
computer science programs to introduce parallel 
programming at the lower levels with the publication of the 
2013 IEEE/ACM “Curriculum Guidelines for Undergraduate 
Degree Programs in Computer Science” [6], which specifies 
parallel and distributed computing as a new required 
knowledge area. 

The paper is organized as follows. Previous work is 
briefly reviewed in Section II. The structure of our pattern 
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programming framework Suzaku is introduced in Section III. 
Low-level Suzaku patterns and routines are described. 
Higher-level Suzaku patterns are described in Section IV 
(workpool), Section V (iteration synchronous patterns), 
Section VI (pipeline), and Section VII (generalized patterns). 
In Section VIII, we describe our classroom experiences, with 
brief comments about the relationship of the materials with 
the NSF/IEEE-TCPP Curriculum Initiative on Parallel and 
Distributed Computing in Section IX. Section X provides 
conclusions. 

II. PREVIOUS WORK 

Applying design patterns to parallel programming has 
been explored in several university and industrial research 
projects including [7][8] and is the subject of books [9][10]. 
Villalobos explored its use in Grid computing and developed 
a Java-based pattern programming framework called Seeds 
[11] from which we draw a great deal of inspiration. He 
created a framework that enabled programmers to construct 
fully distributed programs without any low-level message-
passing code. We have used the Seeds framework in 
undergraduate parallel programming courses [12] 
introducing the advantages of pattern programming to 
students. The particular advantage of Seeds is that it is Java 
based. Most students already know Java, resulting in a low 
learning curve. Seeds also self-deploys on any single 
computer or distributed platform. Objects are used to contain 
the data exchanged between processes and a very elegant 
programming interface exists with three principal methods, 
diffuse, compute, and gather. We will use a similar elegant 
interface but with the C programming language, which leads 
to a direct path to the lower-level MPI. Although objects are 
not used, as we shall describe, we can simulate their use with 
routines that are similar in effect to the get and put methods 
in Seeds.  

III. SUZAKU STRUCTURE AND LOW-LEVEL PATTERNS 

Suzaku provides routines that enable programmers to 
create pattern-based parallel programs without low-level 
MPI code. After compilation, the program is executed as an 
MPI program. However all the complexities of MPI routines 
and their parameters are avoided and well-structured parallel 
programs can be created. The overall programming structure 
of a Suzaku program is shown in Fig. 1 and is purposely 
similar to OpenMP but using processes instead of threads. 
We draw upon the OpenMP programming structure as it is 
usually taught in parallel programming classes and OpenMP 
is simple and very easy to learn. However, it is not necessary 
to know OpenMP first. With the process-based MPI model, 
there is no shared memory. As shown in Fig. 1, the program 
begins by declaring variables that are duplicated in each 
process. The purpose of SZ_Init(p) is to initialize the 
message-passing environment. SZ_Init(p) is required and 
sets p to be the number of processes. (As a macro, the 
parameter, p, does not require an address operator, see later.) 
After SZ_Init(p), all code is only executed by the master 
process, just as in OpenMP where a single thread executes 
the code initially. One or more parallel sections can be 
created with the SZ_Parallel_begin and SZ_Parallel_end 

constructs. All the processes will execute the code within a 
parallel section, including the master process. Outside 
parallel sections, the computation is only executed by the 
master process. The purpose of SZ_Finalize() is to close the 
message-passing environment and it is required. No Suzaku 
routines must be placed after SZ_Finalize(). All processes 
still exist and any code placed after SZ_Finalize() will be 
executed by all processes. Typically one does not want to do 
that. This is the same as MPI_Finalize() in MPI.  

The routines available in Suzaku are divided into low-
level routines that implement basic functions or low-level 
message-passing patterns and routines that implement high-
level patterns. The low-level routines are given in Table 1. 
The low-level routines in Table 1 are implemented with 
macros to enable the type and size of arguments to be 
unspecified and determined within the macros. The basic 
data type is a double and for those routines that indicate 
double argument(s), that is the only type allowed although 
the size does not need to be specified. The pointer arguments 
can be for variables (using the & address operator) or arrays. 
Arrays need to be declared either statically or as variable 
length arrays (i.e. not dynamically allocated) to be able to 
establish the size without specification. All message-passing 
routines are made synchronous for ease of use, which means 
all the processes involved do not return until the whole 
operation has been completed. This is not the same as MPI 
collective routines. Two routines in Table 1, 
SZ_Point_to_point() and SZ_Broadcast(), allow data to be 
sent with a wide range of data types for added flexibility—
characters, integers, doubles, one-dimensional arrays of 

int main (int argc, char * argv[])  { 
 int p; 
   ...  
 SZ_Init(p);    
 ...    
 SZ_Parallel_begin  
  …  
 SZ_Parallel_end; 
  ...   
 SZ_Finalize(); 
 return(0); 
} 

After SZ_Init() only master process 
executes code, until a parallel section. 

After SZ_Parallel_begin, all processes 
execute code, until a SZ_Parallel_end 

Only master process executes code here 

Figure 1. Suzaku program structure.

Variables declared here duplicated in each 
process. Initializations apply to all copies. 

TABLE 1. LOW-LEVEL SUZAKU ROUTINES 
 

SZ_AllBroadcast(double *a) 

SZ_Barrier() 

SZ_Broadcast(void *a)                                       

SZ_Finalize() 

SZ_Gather(double *a, double *b) 

SZ_Get_process_num() 

SZ_Init(int p) 

SZ_Master <structured block> 

SZ_Parallel_begin … SZ_Parallel_end; 

SZ_Point_to_point(int p1, int p2, void *a, void *b)  

SZ_Process(int ID) <structured block> 

SZ_Scatter(double *a, double *b) 

SZ_Wtime() 



characters, integers, and doubles, and multi-dimensional 
arrays of doubles. The type and size of the data does not 
have to be specified. Fig. 2 shows a program that illustrates 
various types and sizes being used without specification with 
SZ_Point_to_point(). 

A basic parallel pattern is the master-slave pattern. In this 
pattern, the computation is divided into parts, which are then 
distributed to slaves for each slave to perform one part and 
return their result. The master-slave pattern can often be 
implemented with the low-level broadcast, scatter, and 
gather routines. The function that the slaves execute is placed 
after the scatter and broadcast and before the gather. For 
efficient mapping to collective MPI routines, the master also 
acts as one of the slaves. Matrix multiplication using the 
master-slave pattern is shown in Fig. 3. SZ_Scatter() 
determines the size of each transfer by the size of the 
destination and SZ_Gather() determines the size of each 
transfer by the size of the source.  

The matrix multiplication algorithm in Fig. 3 is given to 
illustrate the use of the broadcast, scatter, and gather 
routines. It is not necessarily the best way to do matrix 
multiplication in parallel because we are copying the entire B 
array to each process rather than distributing parts of the B 
array to processes. Fig. 3 is very easy to explain to students 
and easy to implement given that broadcast, scatter, and 
gather routines are available. We use the algorithm to give an 
example of the master-slave pattern using these routines and 
to start the discussion on partitioning a problem. Scatter and 
gather can confuse students as they rely on understanding 
how arrays are stored in memory in row-major order and this 
example helps clarify the routines. Performing more efficient 
matrix multiplication in parallel with large array sizes 
requires a deeper understanding of computer architecture, 
including the effects of cache memory and memory size. We 
do explore this later in our parallel programming course.  

The low-level routines can be used to parallelize many 
sequential programs easily. As we will discuss in Section 
VIII, we ask our students to write a sequential program for 
the astronomical N-body problem and then ask them to 

parallel it with the master-slave pattern. It turns out to be 
easy to do just by adding a few Suzaku routines and 
removing one sequential loop. The master-slave 
implementation has a significant disadvantage that the 
number of bodies must be the same as the number of 
processes. One process calculates the position and velocity 
of one body at each time interval. However, master-slave 
pattern leads us onto more powerful patterns, which we 
discuss next starting with the workpool pattern. 

IV. WORKPOOL PATTERN 

The workpool pattern is a very widely applicable pattern. 
It is similar to the master-slave pattern but has a task queue 
as shown in Fig. 4. A task from the task queue is given to 
each  slave by the master process. When a slave finishes a 
task and returns the result, it is given another task from the 
task queue until the task queue is empty. At that point, the 
master waits until all outstanding results are returned. The 
termination condition is when the task queue is empty and all 
outstanding results are collected. The number of slaves does 
not need to be the same as the number of tasks. Indeed one 
typically would limit the number of slaves to the number of 
the physical cores available (or double that number with 
hyperthreading). The number of tasks could be much greater 
and would be for many applications. 

A very important feature of the workpool is its load 
balancing quality. Slaves are kept busy with tasks 
irrespective of the speed of the slaves.  Faster slaves will 
return quicker but are given more work.  It is up to the 
master to determine how much work a slave receives. The 
tasks do not need to be all of the same computational effort 
although in our basic implementation the tasks are not 
differentiated.  

int main(int argc, char *argv[]) { 

 char m[20], n[20]; 

 int p, x, y, xx[5], yy[5];          

 double a, b, aa[10], bb[10], aaa[2][3], bbb[2][3]; 

 ... 

 SZ_Init(p);    // initialize environment,      

 SZ_Parallel_begin  // parallel section - from process 0 to process 1: 

  SZ_Point_to_point(0, 1, m, n);    // send a string 

  SZ_Point_to_point(0, 1, &x, &y);  // send an int 

  SZ_Point_to_point(0, 1, &a, &b);   // send a double 

  SZ_Point_to_point(0, 1, xx, yy);   // send 1-D array of ints 

  SZ_Point_to_point(0, 1, aa, bb);    // send 1-D array of doubles 

  SZ_Point_to_point(0, 1, aaa, bbb);  // send 2-D array of doubles 

 SZ_Parallel_end; // end of parallel section 

 ... 

 SZ_Finalize();  

 return 0; 

} 
Figure 2. Point-to-point pattern with various data types. 

#define N 256 
int main (int argc, char *argv[] ) { 
 int i, j, k, p, blksz; 
 double A[N][N], B[N][N], C[N][N], sum; 
   ...  
 SZ_Init(p); 
 ...  
 SZ_Parallel_begin 
  blksz = N/p;       // assumes N is a multiple of p 
  double A1[blksz][N];    // for slaves to hold scattered A 
  double C1[blksz][N];    // for slaves to hold their result 
  SZ_Scatter(A,A1);     // scatter blksz rows of A array 
  SZ_Broadcast(B);     // broadcast B array 
  for (i = 0 ; i < blksz; i++) { // matrix multiplication. 
    for (j = 0 ; j < N ; j++) { 
   sum = 0; 
   for (k = 0 ; k < N ; k++) { 
    sum += A1[i][k] * B[k][j]; 
   } 
   C1[i][j] = sum; 
    } 
  }      
  SZ_Gather(C1,C);    // gather results, blksz rows of C1 
 SZ_Parallel_end; 
  ...   
 SZ_Finalize(); 
 return 0; 
} 

Figure 3. Matrix multiplication using master-slave pattern. 



The programmer’s interface for the Suzaku workpool is 
modeled on the Seeds framework. The programmer must 
implement four routines: 
 
 init()  Sets up initial values. Called once by all 

processes at the beginning of the 
computation. 

 diffuse()  Generates the next task when called by 
the master. 

 compute()  Executed by a slave, takes a task 
generated by diffuse and generates the 
corresponding result. 

 gather()  Accepts a slave’s result and develops the 
final answer. Called by the master. 

 
The framework generates a task ID for each task from 

zero onwards. The task ID is an input parameter for diffuse(), 
compute(), and gather(). It is available to the programmer but 
might or might not be used depending upon the application. 
The number of tasks and actual tasks are determined by the 
programmer, which provide great flexibility on how best to 
divide the problem taking into account the task computation 
and the communication overhead. The number of tasks is 
established in init(). The programmer determines what data 
will be sent in each task in diffuse() and what is returned in 
compute(). OpenMP provides so-called static, dynamic, and 
guided scheduling algorithms with their parallel for directive 
to divide for loops into parallel parts. The scheduling 
algorithms attempt to share the work in an equable way. The 
expectation is that all processors are similar in capability, 
which would typically be the case in a shared-memory 
system. In contrast, the Suzaku workpool provides automatic 
load balancing with its task queue that takes into account that 
each slave may perform at different speeds but does require 
the programmer to determine the tasks performed by each 
slave.  

Three versions of the workpool have been implemented, 
of increasing sophistication. The basic version (version 1) 
limits task data to be held in a one-dimensional array of 
doubles, which is sufficient for simple applications and is the 
most efficient. However, the Seeds workpool is much more 
powerful. In Seeds, multiple data items of different types can 
be held in a task object using a Java hashmap that associates 
a key (a string) with each data item. The programmer refers 

to the data by the key and uses the put method to add data to 
the task in diffuse() and get method to extract the data in 
compute(). This concept has been modeled in the Suzaku 
workpool version 2 using C but without objects. Fig. 5 
shows sample code. The workpool is implemented in 
SZ_Workpool2() and the four required routines from the 
programmer are specified as function parameters. As such, 
they can be renamed to accommodate multiple workpools 
and other patterns in a single program. This feature is not 
available in Seeds.  

Two routines are provided to the programmer, SZ_put() 
to pack the data into the task and SZ_get() to retrieve the 

  

Master 

Task from 
task queue 

Another task 
if task queue 

not empty 

Master 
aggregates 
results

Slaves/Workers 

Result 

Task queue 

Figure 4. Workpool pattern.  
void init(int *tasks) {  // sets number of tasks 
 *tasks = 4;     
 return;  
} 
void diffuse(int taskID) { 
 char w[] = "Hello World"; 
 int x;    
 double y = 5678, z[2][3]; 
 … 
 SZ_Put("w",w); 
 SZ_Put("x",&x); 
 SZ_Put("y",&y); 
 SZ_Put("z",z); 
 return; 
} 
void compute(int taskID) {   
 char w[12] = "-----------";  
 int x = 0; 
 double y = 0, z[2][3]; 
 … 
 SZ_Get("z",z); 
 SZ_Get("x",&x); 
 SZ_Get("w",w); 
 SZ_Get("y",&y); 
 … // compute 
 SZ_Put("xx",&x); 
 SZ_Put("yy",&y); 
 SZ_Put("zz",z); 
 SZ_Put("ww",w); 
 return; 
} 
void gather(int taskID) {  
 char w[12] = "-----------"; 
 int x = 0; 
 double y = 0, z[2][3]; 
 … 
 SZ_Get("ww",w); 
 SZ_Get("zz",z); 
 SZ_Get("xx",&x); 
 SZ_Get("yy",&y); 
 return; 
} 
int main(int argc, char *argv[]) { 
 int p;   
 SZ_Init(p); 
   
 SZ_Parallel_begin 
  SZ_Workpool2(init,diffuse,compute,gather); 
 SZ_Parallel_end; 
   
 SZ_Finalize();  
 return 0; 
} 

Figure 5. Program using Suzaku workpool version 2. 



data from the task. These routines can accept characters, 
integers, doubles, one-dimensional arrays of characters, 
integers, or doubles, and multi-dimensional arrays of 
doubles. The type and size do not have to be specified. The 
first parameter in SZ_put() and SZ_get() is a programmer-
defined string to identify the data. The second parameter is 
the associated data. SZ_put() and SZ_get() are macros to 
enable arguments without type and size. Once the type and 
size have been determined, they call internal routines. MPI 
pack and unpack routines are then used. Each message sent 
includes information that maps the data to their names so that 
each message is self-contained with all the information the 
destination needs to extract the data. It is possible for each 
task to have completely different named data items although 
the application code would need to differentiate between the 
names when the task is received. 

Version 3 of the workpool extends version 2 
considerably. This version of the workpool implements what 
we call a dynamic workpool in which new tasks can be added 
to the task queue during the computation as might be needed 
for search problems such as the shortest path problem. To 
differentiate, we use the term static workpool when the 
queue holds a fixed number of tasks. Version 3 has been 
implemented in several ways including with multiple threads 
and multiple processes for the master. Fig. 6 shows our 
dynamic workpool algorithm using a single process for the 
master, which turns out to be very reliable and without the 
need for critical sections to handle contention for the task 
queue. Initially the task queue is loaded with at least one task 
by the routine init(). Then a task is retrieved from the task 
queue, diffuse() is executed, and the complete task with any 
addition information added by diffuse() is sent to a free slave 
if there is one. When there are no more free slaves or no 
more tasks, the master process waits for one slave to return a 
result. Slaves accept tasks, execute compute(), and return 
results, which could include new tasks. The master picks up 

the results of one slave, and executes the gather() routine. 
The gather routine might find new tasks to add to the task 
queue. The master then repeats the complete sequence taking 
tasks from the task queue and sending tasks to free slaves, 
etc. A slave is considered free when it has returned its result 
for a task it was given and the result has been collected by 
the master. The sequence stops when there are no new tasks 
and all slaves are free. Then all slaves are terminated with 
termination messages from the master and the master 
terminates. 

A sample program is given in Fig. 7 to solve the shortest 

Get task 
diffuse() 
Choose a 
free slave 
Send task 

Task queue 

Master 

Init() Put initial tasks into 
task queue 

 

Slaves 

Receive task 

If terminate message, 
terminate  process 

compute() 

Send result 

  
Receive 
gather() 

Send terminator 
to all slaves 

  

All slaves free 
and no tasks 

Terminate  

Adds task(s) 

At least one 
slave busy 

While a 
task and a 
free slave 

 

Sends from slaves 
will wait until 
picked up by the 
master 

Figure 6. Dynamic workpool algorithm. 

#define N 6  // number of nodes 
int w[N][N], dist[N], newdist_j;  // Adjacency matrix, dist. 
void init(int *T) {  
 …          // initialize dist[], w[][] 
 SZ_Master { 
  SZ_Insert_task(0);   // insert first node 0 into queue 
 } 
 return;  
} 
void diffuse(int taskID) {    // diffuse attaches current distances 
 SZ_Put("dist",dist);   // from global array dist[] in master 
 return; 
} 
void compute(int taskID) { 
 int i, j, new_tasks[N];    // max of N new tasks 
 SZ_Get("dist",dist);    // update array dist[] in slave 
 for (i = 0; i < N; i++) new_tasks[i] = 0; 
 i = 0; 
 for (j = 0; j < N; j++)    // Moore’s algorithm  
  if (w[taskID][j] != -1) {   
   newdist_j = dist[taskID] + w[taskID][j];    
      if (newdist_j < dist[j]) {     
    dist[j] = newdist_j; 
    if (j < N-1) {   // do not add last vertex (destination) 
        new_tasks[i] = j;  
     i++; 
    } 
   } 
     }   
 SZ_Put("result",new_tasks); 
 SZ_Put("dist",dist);  
 return; 
} 
void gather(int taskID) { 
 int i,dist_recv[N],new_tasks[N];  // max of N new tasks 
 SZ_Get("result",new_tasks);    // get the first added task 
 SZ_Get("dist",dist_recv); 
 for (i = 0; i < N; i++)  
  if (dist_recv[i] < dist[i]) dist[i] = dist_recv[i];     
 for (i = 0; i < N; i++) 
  if (new_tasks[i] != 0) SZ_Insert_task(new_tasks[i]); 
 return; 
} 
int main(int argc, char *argv[]) { 
 int p;      
 SZ_Init(p); 
 … 
 SZ_Parallel_begin 
  SZ_Workpool3(init,diffuse,compute,gather); 
 SZ_Parallel_end;    
 …            // print final results in dist[] 
 SZ_Finalize();  
 return 0; 
} 
 

Figure 7. Shortest path problem using a dynamic workpool. 



path problem using Moore’s algorithm. This problem comes 
from [13]. The routines SZ_Put() and SZ_Get() are available 
from workpool version 2 to add data to a task and extract the 
data. In addition one new routine, SZ_Insert_task(), is 
provided to add a task to the task queue.  

V. ITERATIVE SYNCHRONOUS PATTERNS 

When forming a complete program, often a pattern is 
repeated until a termination condition occurs. At the end of 
each iteration, there is a synchronization point where all 
processes need to wait for each other before continuing. The 
termination condition typically is when all the computed 
values have converged sufficiently on the solution or a 
specific number of iterations have occurred. We call these 
patterns iterative synchronous patterns. An example is the 
iterative synchronous workpool pattern shown in Fig. 8, 
which we ask students to use to solve the N-body problem. 
Each iteration is one time interval of the simulation. Note 
iterative synchronous patterns consist of two patterns merged 
together sequentially if we call iteration a pattern. Merging 
patterns can be more general using a pattern operator to 
combine patterns [14].  

VI. PIPELINE PATTERN 

In the pipeline pattern, the computation is divided into a 
series of tasks that have to be performed one after the other, 
with the result of one task passed on to the next task. The 
pipeline pattern can be compared to an assembly line in 
manufacturing and as in an assembly line, a pipeline 
generally makes sense to use if we have multiple 
computations each of which can be divided into a series of 
sequential tasks. Hence the pipeline is usually an iterative 
synchronous pattern in which the pipeline is within an 
iteration loop as illustrated in Fig. 9. The pipeline is 
implemented in Suzaku. The programmer’s interface is 
purposely similar to other patterns. The master executes the 
diffuse and gather routines and slaves execute the compute 
routine. Task data is held in a one-dimensional array as in the 
workpool version 1 as this is the most likely data structure 
and most efficient although there is no technical reason why 
the version 2 put and get mechanism could not be 
incorporated. The Suzaku pipeline will terminate naturally 

after T × (P  1) steps when there are T tasks and P 
processes. A routine, SZ_Terminate(), is provided to be able 
to terminate the pattern earlier when a specific termination 
condition exists. This routine would be called by the gather 
routine. 

Fig. 10 shows pipeline code to sort numbers using the 
pipeline version of insertion sort. Numbers to sort are fed 
into the beginning of the pipeline. Each slave keeps the 
largest number it receives passing on smaller numbers. (In 
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#define N 1 // Size of data being sent 
#define P 4 // Number of processes and number of numbers 
void init(int *T, int *D) {  
 *T = 4;     // number of tasks 
 *D = 1;     // number of doubles in each task 
 srand(999); 
 return; 
} 
void diffuse (int taskID, double output[N]) {  
 if (taskID < P) output[0] = rand()% 100;  
    else output[0] = 999;   // otherwise terminator 
return;   
} 
void compute(int taskID, double input[N], double output[N]){   
 static double largest = 0; 
 if (input[0] > largest) {  
  output[0] = largest;  // copy current largest into send array 
  largest = input[0];  // replace largest with rec. number 
 } else { 
  output[0] = input[0];  // copy recv into send array 
 }  
return; 
} 
void gather(int taskID, double input[N]) {  
 if (input[0] == 999) SZ_terminate(); 
return; 
} 
int main(int argc, char *argv[]) { 
 int p;     
 SZ_Init(p); 
 …  
 SZ_Parallel_begin   
  SZ_Debug(); 
  SZ_Pipeline(init,diffuse,compute,gather);  
 SZ_Parallel_end;  
 … 
 SZ_Finalize();  
 return 0; 
} 

Figure 10. Insertion sort using the Suzaku pipeline.  



class, we also discuss partitioning the problem so that groups 
of numbers are sent to adjacent slaves.) SZ_Debug() is 
optional and causes debug messages to be displayed during 
execution and is placed before start of the pattern. With pre-
implemented patterns it is really important to be able to 
watch the execution steps as the programmer does not have 
access to the underlying implementation. SZ_Debug() sets a 
flag inside Suzaku and can be applied to other patterns. 

VII. GENERALIZED PATTERNS 

Message-passing patterns connect sources and 
destinations together in various ways. For a particular 
application, a specific interconnection pattern might offer 
advantages. The pipeline pattern is one such specialized 
pattern. Other patterns include the stencil pattern in which 
slaves are arranged in a two or three dimensional mesh and 
each slave connects to its neighbors in the mesh. The stencil 
pattern can be generalized into what we call overlapping 
connectivity patterns in which each slave (in this context) 
connects to a group of other slaves in the proximity and the 
groups overlap [15]. The extreme case is when each slave 
connects to all the other slaves in an all-to-all pattern. The 
other extreme is when each slave connects to only one other 
slave, such as the pipeline pattern, which connects each slave 
to the next slave in a linear fashion. There are many other 
possible connection patterns for example binary tree, 
hypercube, and arbitrary connection patterns for specific 
problems. Rather than implement every pattern in a unique 
way, the approach taken in Suzaku is to implement a pattern 
based upon a directed graph called here a connection graph. 
Any connection pattern can be created this way. We call the 
approach a generalized pattern. Of course, one has to avoid 
messaging deadlock in the pattern implementation. We use 
MPI message passing with explicit buffers. It may be the 
implementation is not as efficient as a specific 
implementation for a specific pattern. The motive of the 
Suzaku development is not for ultimate code execution speed 
and efficiency but as a tool that can be used with students to 
teach good programming practices, possibly at lower levels 
of the curriculum. If one wants the best possible execution 
speed, one could first choose the pattern and get the program 
to work with the Suzaku framework, and then re-engineer it 
in MPI. This is one advantage of Suzaku. There is a close 
relationship to MPI.  

The Suzaku generalized pattern is an iterative 
synchronous pattern with a master-slave structure as 
illustrated in Fig. 11. The master sends initial data to all 
slaves at the beginning of the computation and collects 
results from all slaves at the end of the computation. The 
slaves compute and send values to those slaves that are 
interconnected, repeatedly until the termination condition 
exists. The master also acts as one slave as in the master-
slave pattern. For greatest flexibility, the programmer 
implements the iteration loop and low-level Suzaku routines 
are used for broadcast, scatter, and gather in Fig. 11. 

The overall program structure is shown in Fig. 12. 
SZ_Pattern_init() initializes the connection graph for a 
standard pattern (all-to-all, pipeline, stencil). The routine 
compute() in Fig. 12  is executed by each slave. The actual 

computation depends upon the application. 
SZ_Pattern_send() sends data from each slave to all 
connected slaves according to the connection graph. The 
source data being transferred is a one-dimensional array of 
doubles, output[N] where N is the number of doubles in a 
task. The destination array is a two-dimensional array, 
input[P][N] where there are P processes. The graph entry at 
connection_graph[i][j] indicates whether is a connection 
between process i and process j (–1 for no connection) and if 
so the row in the destination array where the data is to be 
placed, i.e. if connection_graph[i][j] = x, the location is 
input[x][N]. This allows slaves to receive data from every 
other slave and place the data in different rows. The 3 × 3 
stencil pattern has the connection graph shown in Fig. 13. 
Processes are numbered in natural order (row major order). 
Apart from slaves at the edges, each slave connects to the 
four neighbors to the left, right, up, and down. 

 
                           Destination 

  0 1 2 3 4 5 6 7 8 

 0 -1 0 -1 2 -1 -1 -1 -1 -1 

 1 1 -1 0 -1 2 -1 -1 -1 -1 

 2 -1 1 -1 -1 -1 2 -1 -1 -1 

 3 3 -1 -1 -1 0 -1 2 -1 -1 

  Source 4 -1 3 -1 1 -1 0 -1 2 -1 

 5 -1 -1 3 -1 1 -1 -1 -1 2 

 6 -1 -1 -1 3 -1 -1 -1 0 -1 

 7 -1 -1 -1 -1 3 -1 1 -1 0 

 8 -1 -1 -1 -1 -1 3 -1 1 -1 

 
Figure 13. Connection graph for the stencil pattern. 
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Figure 11. Generalized Suzaku pattern.

SZ_Parallel_begin     // parallel section, all processes do this   
 SZ_Pattern_init(“pattern_name",size_of_data); // set up pattern  
 SZ_Broadcast(input);     // broadcast initial data to all slaves 
 for (s = 0; s < steps; s++) {  // in this case a fixed # iterations 
  compute(s,input,output);  // master and slaves execute compute 
  SZ_Pattern_send(output,input); // sent results to connected procs 
  } 
  SZ_Gather(input,result);    // collect results from slaves 
SZ_Parallel_end;       // end of parallel 
 

Figure 12. Suzaku program structure for generalized pattern. 



A sample program segment is given in Fig. 14 for solving 
the two-dimensional heat distribution problem (static heat 
equation). For simplicity here, only 16 points are shown and 
one process for each point. In a more realistic situation each 
slave would handle a block of points. The best partitioning 
can be explored in the class. Note as with all Suzaku code, 
the code is much simpler than if it had been written in MPI, 
but it creates MPI code.  

Two additional generalized pattern routines are available 
to the programmer, SZ_Set_conn_graph(int *graph) and 
SZ_Print_conn_graph(). SZ_Set_conn_graph() enables the 
programmer to create any personalized pattern in the 
connection graph by supplying a two-dimensional array with 
the connections specified. SZ_Set_conn_graph() replaces 
SZ_Pattern_init(). SZ_Print_conn_graph() prints out the 
current connection graph. 

VIII. CLASSROOM EXPERIENCES 

Suzaku creates MPI message-passing programs but hides 
all the complexities of MPI. As such, one can start with 
patterns and Suzaku and study MPI later (or not even learn 
MPI at all) in a top-down approach or consider MPI first and 
patterns and Suzaku afterwards in a bottom-up approach. In 
our senior parallel programming class at UNC-Charlotte, we 
start with OpenMP, then MPI, and then patterns with 
Suzaku. This appears to be the best way for a full course on 
parallel programming. It is an open question whether to use a 
bottom-up approach or a top-down approach for a course in 
which pattern parallel programming is introduced as a small 
part of a lower-level programming course. Apart from 
instilling good software engineering principles, a top-down 
approach using Suzaku first has the advantage that the lower-
level OpenMP and MPI do not need to be covered at all. 
That can be left to a later course. 

Suzaku was introduced in the parallel programming class 
at UNC-Charlotte in Spring 2015 and Fall 2015, and we will 
report on students’ responses for these two offerings. Both 
were taught as online courses. Students were provided with a 
VirtualBox virtual machine with all the software pre-
installed for their own computer, as well as access to a 
departmental cluster for final testing. In Spring 2015, there 
were 65 students registered in the class (35 undergraduate 
students and 30 graduate students). In Fall 2015, there were 
62 students registered in the class (27 undergraduate students 
and 35 graduate students). In both cases, there were seven 2-

week programming assignments. For each assignment, 
students submit a report with their code and results. The 
Suzaku assignment was the fifth assignment after two 
OpenMP assignments and two MPI assignments. 

In Spring 2015, the Suzaku assignment was divided into 
four parts. Part 1 was a tutorial where sample Suzaku code 
was given. In Part 2, students had to write a sequential 
program to solve the astronomical N-body problem given 
skeleton code. Part 3 asked students to convert the sequential 
program into a Suzaku program having a master-slave 
pattern. Part 4 was on MPI/OpenMP hybrid programs. 
Students were asked to convert an MPI/OpenMP hybrid 
program into a Suzaku/OpenMP hybrid program, and 
graduate students were also asked to convert the N-Body 
program into a hybrid Suzaku/OpenMP program. 

After completing Part 3, students were asked to give a 
brief evaluation of using the low-level Suzaku routines, 
comparing and contrasting using Suzaku with MPI. They 
were also asked to describe their experiences and opinions, 
and give any suggestions for improvement. There were 28 
responses, all but one highly positive (96.4% positive) with 
quite extensive evaluations. The most common comments 
were along the lines of “easier to use”, “user friendly”, “less 
time to write code”, “more concise.” The disadvantage most 
notably mentioned was that the message data type had to be 
a double. (We had yet to develop the typeless feature of 
Suzaku in Spring 2015.) Students were also asked to make 
conclusions on using Suzaku in Part 4 after using Suzaku for 
the hybrid program. There were 28 responses, again highly 
positive with one negative response (96.4% positive). 
Comments included “using Suzaku was a lot of fun.” It is 
good to know we can make hybrid parallel programing fun. 

Assignment 5 in Fall 2015 was similar except we 
dropped the hybrid programming and added the Suzaku 
workpool, which had been fully developed by then. Part 4 in 
Assignment 5 asked graduate students to reformulate the N-
body program as a Suzaku workpool. This required 
developing the code for the diffuse(), compute(), and gather() 
routines. Again, students were asked after Part 1 (Suzaku 
tutorial) to give a brief discussion on using Suzaku compared 
to MPI, describing the advantages and disadvantages. There 
were 47 responses, typically saying “much easier to use with 
simple commands as compared to MPI”, “Suzaku is more 
user friendly.” Disadvantages pointed to included not having 
as much control of the code as in MPI. 

Students were asked after Part 3 (parallelizing the N-
body program) to give an evaluation of using the Suzaku 
comparing and contrasting with MPI, and describe their 
experience and opinions, and any suggestions for 
improvement. There were 42 responses, all but three 
responses highly positive. Comments again focused on the 
ease of use. The three negative responses (7%) pointed to 
lack of documentation and lack of understanding what the 
Suzaku routines did. These students had problems getting 
their code to execute. There was documentation provided but 
more may be needed especially in an on-line setting. 
However, overwhelmingly, students appreciated the ease that 
parallel programs could be constructed with established 
patterns. 

SZ_Parallel_begin     // parallel section, all processes do this 
 
 SZ_Pattern_init("stencil",1); // set up slave interconnections 
 SZ_Broadcast(pts);     // set up initial values in each process 
 …           // copy initial values into B[][] 
 for (t = 0; t < T; t++) {   // compute values over time T 
  A[0] = 0.25 * (B[0][0]+B[1][0]+B[2][0]+B[3][0]);// computation 
     SZ_Generalized_send(A,B); // sent compute results in A to B  
 } 
 SZ_Gather(A, temp);    // collect results into temp 
  
SZ_Parallel_end;      // end of parallel 
 

Figure 14. Program segment for the two-dimensional heat 
distribution problem. 



IX. NSF/IEEE-TCPP CURRICULUM INITIATIVE ON 

PARALLEL AND DISTRIBUTED COMPUTING 

The report “NSF/IEEE-TCPP Curriculum Initiative on 
Parallel and Distributed Computing - Core Topics for 
Undergraduates” describes the topics in parallel and 
distributed computing that are expected to be covered in BS 
degrees in Computer Science or Computer Engineering. [16] 
The report promotes spreading basic concepts into core CS 
courses (CS1, CS2, Systems, and Data Structure and 
Algorithms). Our pattern-based approach is not specifically 
described in the report although one can find a sprinkling of 
patterns (divide and conquer, recursion, scan, reduction, 
stencil, etc) mostly proposed for Data Structure and 
Algorithms. The report also accepts that it is sometimes 
necessary to place all the materials in one upper-level 
parallel programming elective as we currently teach parallel 
programming. We support the notation of distributing key 
concepts throughout lower-level CS core courses and would 
advocate introducing parallel programming in the lower 
levels using our design pattern approach. Our low-level 
patterns correspond to the communication patterns listed in 
the report for Data Structure and Algorithms. Suzaku 
communication patterns can be used by students without 
learning MPI. Some of our higher-level patterns also appear 
for Data Structure and Algorithms. But some are missing, 
including the workpool. The Suzaku workpool can 
reasonably be done in lower-level courses because it does 
not require students to implement the workpool code.  

X. CONCLUSIONS 

In this paper, we introduced a new pattern programming 
tool called Suzaku that makes it much easier to create MPI 
message-passing code based upon established parallel design 
patterns and to teach good parallel programming design. 
Suzaku provides low-level routines that map directly to MPI 
routines but avoiding the long list of parameters needed in 
MPI routines (including MPI communicators, tags, and 
specifying the data type and the data size), yet it leads to a 
path to or from MPI programming. The feature of Suzaku 
not needing to specify the type or size of the data in certain 
routines (with limitations), makes it effectively typeless and 
offers ease of programming. Suzaku also provides routines 
for higher-level patterns including the static workpool, 
dynamic workpool, pipeline, and through a generalized 
pattern feature many patterns including user-defined 
patterns. We chose to use a bottom-up approach in teaching, 
starting with OpenMP and MPI and introducing Suzaku 
afterwards in this study. Most students find pattern 
programming easier to learn after learning MPI, whereas 
from a software engineering perspective starting with higher-
level abstraction of patterns should be more desirable. 
Pattern programming tools certainly constrain the 
programmer and some students will definitely not like that. 
However it is our experience that students appreciate the 
power of higher-level tools. Student comments about using 
this framework are very positive. We strongly believe that 
ad-hoc parallel programming should be avoided. Students 

should be trained in methods that are conducive to good 
programming and lend themselves to program maintenance 
and large collaborative applications. 
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