                                                           Assignment 3
Exercise 26 - Chapter 2
In Section 2.3.4, a situation with a high-priority process, H, and a low-priority process, L, was described, which led to H looping forever. Does the same problem occur if round-robin scheduling is used instead of priority scheduling? Discuss.

Exercise 55 - Chapter 2
Consider the procedure put_forks in Fig. 2-47. Suppose that the variable state[i] was set to THINKING *after* the two calls to test, rather than before. How would this change affect the solution?



[bookmark: _GoBack]
Figure 2-47. A solution to the dining philosopher’s problem.
image1.png
#define N 5

#define LEFT (i+N-1)%N
#define RIGHT (i+1)%N
#define THINKING 0

#define HUNGRY 1

#define EATING 2

typedef int semaphore;

int state[N];

semaphore mutex = 1;
semaphore s[N];

void philosopher(int i)
{
while (TRUE) {
think( );
take forks(i);
eat();
put_forks(i);

/* number of philosophers */

/* number of i’s left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i: philosopher number, from 0 to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */




image2.png
void take forks(int i)

{

down(&mutex);
state[i] = HUNGRY;
test(i);

up(&mutex);
down(&sli]);

/% i: philosopher number, from 0 to N-1 */

/* enter critical region */

/* record fact that philosopher i is hungry */
/* try to acquire 2 forks */

/* exit critical region */

/* block if forks were not acquired */




image3.png
void put_forks(i) /* i philosopher number, from 0 to N-1 #/

down(&mutex); /+ enter critical region */

state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /+ see if right neighbor can now eat */
up(&mutex); /* exit critical region */

}

void test(i) /* i: philosopher number, from 0 to N-1 */

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&sfil);




