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Abstract— A downlink single-input single-output non-
orthogonal multiple access system is considered in which a
base station (BS) is communicating with two legitimate users in
the presence of an external eavesdropper. A group of trusted
cooperative half-duplex relay nodes, powered by the BS, is
employed to assist the BS’s transmission. The goal is to design
relaying schemes such that the legitimate users’ secrecy rate
region is maximized subject to a total power constraint on
the BS and the relays’ transmissions. Three relaying schemes
are investigated: cooperative jamming, decode-and-forward,
and amplify-and-forward. Depending on the scheme, secure
beamforming signals are carefully designed for the relay nodes
that either diminish the eavesdropper’s rate without affecting
that of the legitimate users, or increase the legitimate users’
rates without increasing that of the eavesdropper. The results
show that there is no relaying scheme that fits all conditions; the
best relaying scheme depends on the system parameters, namely,
the relays’ and eavesdropper’s distances from the BS, and the
number of relays. They also show that the relatively simple
cooperative jamming scheme outperforms other schemes when
the relays are far from the BS and/or close to the eavesdropper.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) systems are lead-
ing candidates for future mobile communications, as they pro-
vide an efficient means of utilizing resources serving multiple
users simultaneously compared to orthogonal multiple access
schemes [1]. With the inherent broadcast nature of wireless
communications, securing transmitted data is critical in the
presence of potential eavesdroppers in the medium. Physi-
cal layer security is a powerful, and provably unbreakable,
technique to deliver secure data as opposed to conventional
security techniques implemented in higher layers of the com-
munication protocol stack; see, e.g., [2] and the references
therein. In this work, we focus on enhancing physical layer
security of single-input single-output (SISO) NOMA systems
by using cooperative relays.

There have been a number of recent works that study
physical layer security for NOMA systems [3]–[11]. Secrecy
sum rate maximization of SISO NOMA systems is studied in
[3]. Using tools from stochastic geometry, references [4] and
[5] study security measures for large scale NOMA systems
in the downlink and uplink, respectively. NOMA assisted
multicast-unicast streaming is studied in [6], where secure
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Fig. 1. Downlink NOMA system model, with cooperative relays, and an
external eavesdropper.

rates for unicast transmission using NOMA is shown to
outperform conventional orthogonal schemes. Reference [7]
considers a multiple-input multiple-output (MIMO) two-user
NOMA setting with an external eavesdropper and designs
beamforming signals that maximize the secrecy sum rate.
This approach is also considered in [8] and [9] for multiple-
input single output and MIMO scenarios, respectively, with
the assumption that one user is entrusted and the other is the
potential eavesdropper. The impact of transmit antenna selec-
tion strategies on the secrecy outage probability is investigated
in [10]. Transmit power minimization and minimum secrecy
rate maximization subject to a secrecy outage constraint is
considered in [11].

Our work is most closely related to [12], where relays
are used to enhance the secrecy rate of a single-receiver
wiretap channel. In this paper, we extend the ideas in [12]
to work in the context of a two-user downlink SISO NOMA
system with an external eavesdropper. We employ multiple
trusted cooperative half-duplex relays to enhance the achiev-
able secrecy rate region through various relaying schemes:
cooperative jamming, decode-and-forward, and amplify-and-
forward. For each scheme, we design secure beamforming
signals at the relays that benefit the users and/or hurt the
eavesdropper. Under a total system power constraint, which
is divided between the base station (BS) and the relays, an
achievable secrecy rate region for each relaying scheme is
derived and analyzed. In general, the results show that the best
relaying scheme highly depends on the system parameters, in
particular the distances between nodes, and that the relatively
simple cooperative jamming scheme performs better than the
other schemes when the relays are close to the eavesdropper.



II. SYSTEM MODEL

We consider a two-user downlink SISO NOMA system in
which the BS uses superposition coding to send messages to
the two users simultaneously. User channels are fixed during
the communication session and are known at the BS. The user
with a relatively worse channel condition (weak user) decodes
its message by treating the other user’s interfering signal as
noise, while the user with a relatively better channel condition
(strong user) first decodes the weak user’s message, by treating
its own signal as noise, and then uses successive interference
cancellation to decode its own message1.

We denote the channel between the BS and the strong user
(resp. weak user) by h1 (resp. h2), with2 |h1|2 > |h2|2. The
received signals at the strong and weak users are given by

y1 = h1x+ n1 (1)
y2 = h2x+ n2 (2)

where the noise terms n1 and n2 are independent and iden-
tically distributed (i.i.d.) circularly-symmetric complex Gaus-
sian random variables with zero means and unit variances,
CN (0, 1), and the transmitted signal x is given by

x =
√
αPs1 +

√
ᾱPs2 (3)

where s1 and s2 are i.i.d. ∼ CN (0, 1) information carrying
signals for the strong and the weak user, respectively, P is
the BS’s transmit power budget, α ∈ [0, 1] is the fraction of
power allocated to the strong user, and ᾱ , 1 − α. Using
superposition coding and successive interference cancellation
decoding, one achieves the following rates of this (degraded)
Gaussian broadcast channel [13]:

r1 = log
(
1 + |h1|2αP

)
(4)

r2 = log

(
1 +

|h2|2ᾱP
1 + |h2|2αP

)
. (5)

An external eavesdropper is monitoring the communication
between the BS and the users. We denote the channel between
the BS and the eavesdropper by he. Thus, the received signal
at the eavesdropper is given by

ye = hex+ ne (6)

where the noise term ne ∼ CN (0, 1). For a given 0 ≤ α ≤ 1,
the secrecy capacities of the two users of this multi receiver
wiretap channel is given by [14, Theorem 5]

rs,1 =
[
log
(
1 + |h1|2αP

)
− log

(
1 + |he|2αP

)]+
(7)

rs,2 =

[
log

(
1+

|h2|2ᾱP
1+|h2|2αP

)
−log

(
1+

|he|2ᾱP
1+|he|2αP

)]+

(8)

where the subscript s, here and throughout the paper, is to
denote secrecy rates, and [x]+ , max{x, 0}.

1The two-user setting in this work is adopted in NOMA systems in which
users are divided into multiple clusters with two users each, in order to reduce
error propagation in successive interference cancellation decoding [1].

2All channel gains in this paper are complex-valued, and are drawn
independently from some continuous distribution.

It is clear from (7) and (8) that sending secure data depends
on the eavesdropper’s channel condition with respect to that
of the legitimate users. Therefore, we propose using trusted
cooperative half-duplex relay nodes, see Fig. 1, to assist the BS
via three possible schemes: cooperative jamming, decode-and-
forward, and amplify-and-forward. In all of these schemes, the
BS uses only a portion of its available power P̄ ≤ P for its
own transmission, and shares the remaining portion P−P̄ with
the relays for their transmission. We discuss these schemes in
detail in the following sections, after introducing the relays’
channels notation that we use.

Let there be K relays, and denote the channel gains from the
BS to the relays by the vector3 hr , [hr,1, . . . , hr,K ]. Let g1,
g2, and ge denote the K-length channel gain vectors from the
relays to the first user, the second user, and the eavesdropper,
respectively. The channels from the relays to the users and the
eavesdropper are known at the relays.

III. COOPERATIVE JAMMING

In this section, we discuss the cooperative jamming scheme.
Simultaneously with the BS’s transmission, the relays transmit
a cooperative jamming signal Jz, where J ∈ CK is a
beamforming vector and z ∼ CN (0, 1). The received signals
at the users and the eavesdropper are in this case given by

yj = hjx+ g†jJz + nj , j = 1, 2, e (9)

where the superscript † denotes the conjugate transpose opera-
tion. The signal power is now set to E

[
|x|2
]

= P̄ ≤ P , where
E[·] denotes expectation, and the remaining portion P − P̄

is used to power the relays, i.e., E
[
(Jz)

†
(Jz)

]
= J†J =

P − P̄ .
The design of the jamming signal is such that it has minimal

effect on the legitimate users as follows:

[g1 g2]
†
J , G†J = [0 0] . (10)

That is, we choose J in the null space of the matrix G†.
If there exist K ≥ 3 relays, then G† will always have a
nonempty null space and (10) will have a nontrivial solution.
We denote such a null space jamming signal by Jo. Since
the channel state vectors g1, g2, and ge are drawn from a
continuous distribution, they are therefore linearly independent
with probability 1 (w.p. 1). Thus, we have∣∣g†eJo∣∣ > 0, w.p. 1. (11)

Therefore, the achievable secrecy rates are now given by (7)
and (8) after replacing he with h̃e which is given by

h̃e , he

/(
1 +

∣∣g†eJo∣∣2) . (12)

We now find the optimal Jo that maximally degrades the
eavesdropper’s channel subject to not affecting the legitimate
users’ channels. Observe that both legitimate users’ rates are
decreasing in h̃e, i.e., increasing in

∣∣g†eJo∣∣2. Therefore, to

3All vectors in this paper are column vectors.



maximize their secrecy rates, we formulate the following
optimization problem for a given transmit power P̄ :

max
Jo

∣∣g†eJo∣∣2
s.t. G†Jo =

[
0 0

]
, J†oJo = P − P̄ . (13)

The above problem has a unique solution [15] (see also [12]),
which we derive next for completeness. We first rewrite the
first constraint slightly differently as follows:

Jo = P⊥(G)uJ (14)

for some vector uJ ∈ CK to be designed, and P⊥(G) is the
orthogonal projection matrix onto the null space of G†:

P⊥(G) , IK −G
(
G†G

)−1
G† (15)

where IK is the K-dimensional identity matrix. It is now
direct to see that the vector uJ should be chosen along the
same direction of P⊥(G) ge in order to maximize

∣∣g†eJo∣∣2. Fi-
nally, to satisfy the power constraint, the optimal beamforming
vector, Ĵo, is given by

Ĵo =
P⊥(G) ge
‖P⊥(G) ge‖

√
P − P̄ (16)

which, upon substituting in (12), achieves the following se-
crecy rates for a given P̄ and α:

rJs,1 =
[
log
(
1 + |h1|2αP̄

)
−log

(
1 +

|he|2αP̄
1 + g†eP⊥(G) ge

(
P − P̄

))]+

(17)

rJs,2 =

[
log

(
1 +

|h2|2ᾱP̄
1 + |h2|2αP̄

)
− log

(
1 +

|he|2ᾱP̄
1 + |he|2αP̄ + g†eP⊥(G) ge

(
P − P̄

))]+

(18)

with the superscript J denoting cooperative jamming.
In Section VI, we discuss the evaluation of the optimal

transmit power P̄ and the power fraction α that maximize
the secrecy rate region of this cooperative jamming scheme,
along with those that maximize the secrecy rate regions of the
other relaying schemes that we consider in this paper.

IV. DECODE-AND-FORWARD

In this section, we discuss the decode-and-forward scheme.
Different from the cooperative jamming scheme, communica-
tion takes place over two phases. In the first phase, the BS
broadcasts the messages to both the relays and the legitimate
users. In the second phase, the relays forward the messages
that they decoded to the legitimate users. The eavesdropper
overhears the communication during both phases.

The received signals during the first phase at the legitimate
users and the eavesdropper are given by (1)–(2) and (6),
respectively, with a total transmit power P̄ ≤ P . The received
signals at the relays during the first phase is given by

yr = hrx+ nr (19)

where the noise term vector nr ∼ CN (0, IK). During the
first phase, each relay decodes the users’ messages by either
decoding the weak user’s message first by treating the strong
user’s signal as noise, and then decoding the strong user’s
message via successive interference cancellation, or it can
do the whole process in the reverse order by decoding the
strong user’s message first followed by that of the weak user.
Choosing the decoding order depends on in which part of the
rate region the system is operating. For simplicity, we let all
the relays choose the same decoding order, i.e., they all take
one collective decision on that matter. Let the superscript (i),
i = 1, 2, denote the ith decoding order, with i = 1 denoting
decoding the strong user’s message first followed by that of
the weak user, and i = 2 denoting the reverse order. Thus,
the achieved rate pairs at the kth relay after the first phase
are either given as follows for i = 1:(
R

(1)
k,1, R

(1)
k,2

)
=
(
log
(

1 +
|hr,k|2αP̄

1+|hr,k|2ᾱP̄

)
, log

(
1 + |hr,k|2ᾱP̄

))
,

or are given as follows for i = 2:(
R

(2)
k,1, R

(2)
k,2

)
=
(
log
(
1 + |hr,k|2αP̄

)
, log

(
1 +

|hr,k|2ᾱP̄
1+|hr,k|2αP̄

))
.

In the second phase, the relays form the transmitted signal
xr, which is exactly as in (3) but after replacing P with P−P̄ .
We assume that the relays use the same power fraction α in the
second phase. While in general each relay can use a different
power fraction, we use the same fraction for simplicity of
presentation of the scheme hereafter. The relays use a unit-
norm beamforming vector d ∈ CK during the second phase,
i.e., the kth relay multiplies the transmitted signal xr by dk and
sends it through the channel, and hence the received signals
at the legitimate users and the eavesdropper are given by

yrj = gj
†dxr + nrj , j = 1, 2, e (20)

where the superscript r is to denote signals received from
the relays, and the noise terms nr1, nr2, and nre are i.i.d. ∼
CN (0, 1). We let the relays use independent codewords from
those used by the BS to forward their messages. The achieved
rates at the legitimate users after the second phase are given by
(21) and (22) at the top of the next page [16, Theorem 16.2],
given that the relays follow the decoding order (i), with the
superscript DF denoting decode-and-forward.

For K ≥ 2, we design the beamforming vector d to be a
unit-norm vector orthogonal to ge, and denote it by do. This
way, the eavesdropper does not gain any useful information
during the second phase. Thus, we have

g†edo = 0. (23)

Further, for K ≥ 3, we have that {g1, g2, ge} are linearly
independent w.p. 1, and hence

|g†1do| > 0, |g†2do| > 0, w.p. 1. (24)

Thus, the achievable secrecy rates in this case are given by

rDFs,1 =
1

2

[
rDF1 − log

(
1 + |he|2αP̄

)]+
(25)

rDFs,2 =
1

2

[
rDF2 − log

(
1 +

|he|2ᾱP̄
1 + |he|2αP̄

)]+

(26)



rDF1 = min

{
log
(
1 + |h1|2αP̄

)
+ log

(
1 +

∣∣∣g†1d∣∣∣2 α (P − P̄ )) , min
1≤k≤K

R
(i)
k,1

}
(21)

rDF2 = min

log

(
1 +

|h2|2ᾱP̄
1 + |h2|2αP̄

)
+ log

1 +

∣∣∣g†2d∣∣∣2 ᾱ (P − P̄ )
1 +

∣∣∣g†2d∣∣∣2 α (P − P̄ )
 , min

1≤k≤K
R

(i)
k,2

 (22)

where the extra multiplication by 1
2 is due to transmission of

the same message over two phases with equal durations.
We now optimize the beamforming vector do. Towards that

end, we rewrite the constraint in (23) slightly differently as

do = P⊥(ge)ud (27)

where P⊥(·), as defined in (15), now represents a projection
matrix onto the orthogonal complement of vectors in CK , and
ud ∈ CK is some vector to be designed. Next, it is direct to

see that rDF1 is non-decreasing in
∣∣∣g†1do∣∣∣2 and that rDF2 , after

simple first derivative analysis, is non-decreasing in
∣∣∣g†2do∣∣∣2.

Hence, one needs to choose do to maximize these terms. We
propose maximizing their convex combination β

∣∣∣g†1do∣∣∣2+(1−

β)
∣∣∣g†2do∣∣∣2, for some 0 ≤ β ≤ 1 of choice. Using (27), and

after simple manipulations, the optimal ûd is given by the
solution of the following problem:

max
ud

u†dP
⊥(ge)

(
βg1g

†
1 + (1− β)g2g

†
2

)
P⊥(ge)ud

s.t. u†dP
⊥(ge)ud = 1 (28)

and therefore ûd is given by the leading eigenvector of the
(Hermitian) matrix:

P⊥(ge)
(
βg1g

†
1 + (1− β)g2g

†
2

)
P⊥(ge) (29)

i.e., the eigenvector corresponding to its largest eigenvalue.
Finally, the optimal d̂o is given by

d̂o =
P⊥(ge) ûd
‖P⊥(ge) ûd‖

. (30)

Substituting d̂o in (25) and (26) gives the secrecy rates.

V. AMPLIFY-AND-FORWARD

In this section, we discuss the amplify-and-forward scheme.
As in the decode-and-forward scheme, communication takes
place over two phases. In the first phase, the received signals
at the legitimate users, eavesdropper, and relays are given
by (1)–(2), (6), and (19), respectively, with a total transmit
power P̄ ≤ P . In the second phase, the kth relay amplifies its
received signal by multiplying it by a constant ak and sends
it through the channel. Effectively, this can be written as the
multiplication diag (a)yr, where a ∈ CK is a beamforming
vector to be designed, and diag (a) is a diagonalization of
the vector a. The received signals at the legitimate users and
the eavesdropper in the second phase are given by

yrj = g†jdiag (a)yr + nrj , j = 1, 2, e. (31)

Now observe that from, e.g., the strong user’s perspective, this
amplify-and-forward scheme can be viewed, using (19), as the
following single-input multiple-output (SIMO) system:[

y1

yr1

]
=

[
h1

g†1diag (a)hr

]
x+

[
n1

ñr1

]
(32)

where the noise term ñr1 , g†1diag (a)nr + nr1 is
complex-Gaussian with zero mean and variance E

[
|ñr1|2

]
=

g†1diag (a∗)diag (a) g1 +1, with the superscript ∗ denoting
the conjugate operation. One can write similar equations for
the weak user as well. Hence, the achievable rates at the
legitimate users of this SIMO system after the second phase
are given by [17, Section 5.3.1]

rAF1 =log

(
1+ |h1|2αP̄ +

a†G1,ra

1 + a†G1a
αP̄

)
(33)

rAF2 =log

(
1+

|h2|2ᾱP̄
1+|h2|2αP̄

+
a†G2,raᾱP̄

1+a†G2a+a†G2,raαP̄

)
(34)

with the superscript AF denoting amplify-and-forward, and

Gj,r , diag (h∗r) gjg
†
jdiag (hr) , j = 1, 2 (35)

Gj , diag
(
g∗j
)
diag (gj) , j = 1, 2. (36)

As for the eavesdropper, observe that by (19) we have

g†ediag (a)yr = g†ediag (a)hrx+ g†ediag (a)nr. (37)

Upon noting that g†ediag (a)hr = g†ediag (hr)a, we
propose, for K ≥ 2, designing the beamforming vector a
to be orthogonal to the vector diag (h∗r) ge and denote it
by ao. This way, the eavesdropper does not gain any useful
information during the second phase. Thus, we have

g†ediag (hr)ao = 0. (38)

As in the decode-and-forward scheme, we have for K ≥ 3
that {g1, g2, ge} are linearly independent w.p. 1. Hence

|g†1diag (hr)ao| > 0, |g†2diag (hr)ao| > 0, w.p. 1.
(39)

Thus, the achievable secrecy rates in this case are given by

rAFs,1 =
1

2

[
rAF1 − log

(
1 + |he|2αP̄

)]+
(40)

rAFs,2 =
1

2

[
rAF2 − log

(
1 +
|he|2 (1− α) P̄

1 + |he|2αP̄

)]+

(41)

where the extra multiplication by 1
2 is due to transmission of

the same message over two phases of equal durations.
We now focus on further optimizing the beamforming signal



ao. Towards that, we first note that the power transmitted in
the second phase by the relays is given by

E
[
a†odiag (y∗r )diag (yr)ao

]
= a†o

(
diag (h∗r)diag (hr) P̄ + IK

)
ao , a†oAao. (42)

Next, we rewrite the constraint (38) slightly differently as

ao = P⊥(diag (hr) ge)ua , Fua (43)

for some vector ua ∈ CK to be designed. Next, we note that
for the strong user, using (42) and (43), finding the optimal
ua is tantamount to solving the following problem (note that
F is a Hermitian matrix):

max
ua

u†aFG1,rFua

1 + u†aFG1Fua
s.t. u†aFAFua=P − P̄ (44)

which can be equivalently rewritten as the following problem:

max
ua

u†aFG1,rFua

u†aF
(

1
P−P̄A + G1

)
Fua

(45)

whose solution is given by the leading generalized eigenvector
[18] of the following matrix pencil:(

FG1,rF , F

(
1

P − P̄
A + G1

)
F

)
(46)

i.e., the generalized eigenvector corresponding to the largest
generalized eigenvalue of the pencil. Let us denote such a
vector by u

(1)
a . Similarly, one can show that the optimal ua for

the weak user is given by the leading generalized eigenvector
of the following matrix pencil:(

FG2,rF , F

(
1

P − P̄
A + G2 + G2,rαP̄

)
F

)
(47)

which we denote by u
(2)
a . To satisfy the power constraint (42)

and the orthogonality constraint (43), the corresponding a
(j)
o ,

j = 1, 2, is given by

a(j)
o =

√
P − P̄

u
(j)T
a FAFu

(j)
a

Fu(j)
a , j = 1, 2. (48)

Then, as in the decode-and-forward scheme, we propose
choosing the optimal âo by the following convex combination:

âo = βa(1)
o + (1− β)a(2)

o (49)

for some 0 ≤ β ≤ 1 of choice. Given âo, we substitute in
(40) and (41) to get the achievable secrecy rates.

VI. NUMERICAL EVALUATIONS

In this section, we first discuss evaluating the optimal
transmit power and the optimal power fraction for each of the
proposed relaying schemes, such that the secrecy rate region
is maximized. Specifically, we characterize the boundary of
the secrecy rate region by solving the following problem:

max
α,P̄

µrns,1 + (1− µ)rns,2

s.t. 0 ≤ P̄ ≤ P, 0 ≤ α ≤ 1 (50)

for some µ ∈ [0, 1], and n ∈ {J,DF,AF} corresponds to one
of the proposed schemes. For the decode-and-forward scheme,
we do an outer maximization over the decoding order (i),
i = 1, 2 (see (21) and (22)). We use a line search algorithm to
numerically solve the above problem. Note that the feasible set
is bounded, which facilitates the convergence of the algorithm
to an optimal point. We use β = µ in (28) and (49).

The physical layout we consider is a one-dimensional
system, where the strong user, the weak user, and the eaves-
dropper are located at 30 meters, 40 meters, and 50 meters
from the BS, respectively. We have K = 5 relays, and for
simplicity we assume that they are all close enough to each
other that they are approximately at the same distance of 15
meters from the BS. To emphasize the effect of distance on the
channel gains, we use the following simplified channel model
[12]: h =

√
1/lγejθ, where h is the channel gain between two

nodes, l is the distance between them, γ = 3.5 is the path loss
exponent, and θ is a uniform random variable in [0, 2π]. We
denote by le the distance from the BS to the eavesdropper. We
set P to 30 dBm4. We run multiple iterations of the simulations
and compute the average performance.

In Fig. 2, we plot the achievable secrecy rate regions
of the proposed schemes. Solid lines represent the system
parameters stated above, and dashed lines represent the case
of le = 20 meters. We see that when le = 50 meters,
cooperative jamming outperforms direct transmission and is in
turn outperformed by both decode-and-forward and amplify-
and-forward which perform relatively close to each other. With
le = 20 meters, direct transmission achieves zero secrecy rates
since the eavesdropper is closer to the BS than both users.
However, strictly positive secrecy rates are achievable by all
the relaying schemes. We also see that cooperative jamming
performs best, since the relays are close to the eavesdropper
and hence their jamming effect is quite powerful. For parts of
the region, it even performs very close to decode-and-forward
and amplify-and-forward for the le = 50 meters case.

Next, we show the effect of the number of relays on the
achievable secrecy sum rates of the proposed schemes in
Fig. 3. Again we observe that all relaying schemes achieve
positive secrecy sum rates when le = 20 meters and that
cooperative jamming performs best in this case. We also
observe that amplify-and-forward is more sensitive than the
other schemes to the number of relays.

Finally, we fix the users’ distances and show the effect of
the relays’ distance from the BS (and hence the users) on
the achievable secrecy sum rates in Fig. 4. For this case, we
vary the relays’ distance but still keep them closer to the BS
than the legitimate users and the eavesdropper. The dashed
lines in this case are when le = 27 meters. We see that only
the cooperative jamming scheme’s performance monotonically
increases with the relays’ distance, which is again attributed
to the fact that the jamming effect is more powerful when the

4Note that the noise power is normalized in this paper, and hence P also
represents the SNR.
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Fig. 2. Achievable secrecy rate regions of the proposed schemes. Solid lines
are when le = 50 meters, and dashed lines are when le = 20 meters.
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Fig. 3. Achievable secrecy sum rates vs. the number of relays. Solid lines
are when le = 50 meters, and dashed lines are when le = 20 meters.

relays get closer to the eavesdropper.

VII. CONCLUSION

The security benefits of using trusted cooperative half
duplex relays in a two-user SISO NOMA downlink system
with an external eavesdropper have been studied under three
relaying schemes: cooperative jamming, decode-and-forward,
and amplify-and-forward. For each scheme, secure beamform-
ing signals have been designed at the relays to maximize the
achievable secrecy rate region. While the schemes improve the
secrecy rate region, their performance varies depending on the
eavesdropper’s and relays’ distances from the BS and also on
the number of relays.
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