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Abstract— We consider an energy harvesting cooperative mul-
tiple access channel (MAC) with decoding costs. In this setting,
users cooperate at the physical layer (data cooperation) in order
to increase the achievable rates. Data cooperation comes at the
expense of decoding costs: each user spends some amount of its
harvested energy to decode the message of the other user, before
forwarding both messages to the receiver. The decoding power
spent is an increasing convex function of the incoming message
rate. We characterize the optimal power scheduling policies that
achieve the boundary of the maximum departure region subject
to energy causality constraints and decoding costs by using a
generalized water-filling algorithm.

I. INTRODUCTION

Scheduling in energy harvesting communication systems
has received considerable attention recently. References [1]–
[4] consider a single-user channel and design optimal power
policies that maximize the throughput or minimize the trans-
mission completion time under various assumptions on the bat-
tery size and channel fading. References [5]–[7] extend these
results to multi-user settings. While most of the energy har-
vesting literature focuses on transmitter-size energy harvesting,
recent work [8]–[10] considers receiver-side energy harvesting,
where harvested energy is used for decoding incoming data.

In this paper, we consider an energy harvesting coopera-
tive MAC, see Fig. 1. In a cooperative MAC, users decode
the signals transmitted by the other user to form common
information, and cooperatively send the previously established
common information to the receiver to achieve beamforming
gains [11]. This model has the unique property that the
transmitters act as receivers as well, where transmission power
and decoding costs simultaneously reflect on the total energy
budget of each node. The energy harvesting cooperative MAC
is considered in [12] for data cooperation only, and extended in
[13] to the case of joint data and energy cooperation, without
taking into account the decoding costs incurred at the nodes,
and significant gains in departure regions are demonstrated.

The goal of this paper is to incorporate the decoding cost of
cooperation into the cooperative MAC model, and investigate
the gains from cooperation in a more realistic setup. To this
end, we model the decoding power as an increasing convex
function in the incoming rate [8]–[10], and in particular,
we focus on exponential decoding functions [14], [15]. We
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Fig. 1. Energy harvesting cooperative MAC with decoding costs.

characterize the optimal offline power scheduling policies that
maximize the departure region by a given deadline subject to
energy causality constraints and decoding costs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted system, where energies arrive
in amounts of E1i and E2i at the first and the second user,
respectively, in slot i. The energy arriving at each user can be
used for transmission, decoding, or can be saved in a battery
to be used in future slots. The users communicate with the
receiver over a Gaussian MAC, with a noise variance σ2 > 1 at
the receiver. They also overhear each other’s transmission over
stronger links: the channels between the users are assumed
to be Gaussian with unit-variance. In order to make use of
the overheard information, the messages are transmitted to the
receiver using block Markov superposition coding [11]. Users
1 and 2 create common information using powers p12 and p21,
and convey the created common information to the receiver
using powers pu1 and pu2. Since user-receiver links are weaker
than user-user links, direct transmission is not considered [16].

For a given power policy (p12, p21, pu1, pu2), a rate pair
(r1, r2) belongs to the achievable rate region of the cooperative
MAC, denoted by FCMAC (p12, p21, pu1, pu2), if [11]

r1 ≤
1

2
log (1 + p12) (1)

r2 ≤
1

2
log (1 + p21) (2)

r1 + r2 ≤
1

2
log

(
S

σ2

)
(3)

where S , σ2 + p12 + p21 +
(√
pu1 +

√
pu2

)2
. Throughout

this paper, we denote g(p) , 1
2 log(1 + p).



Our goal is to characterize the maximum departure region
[5], FCMAC , subject to energy causality constraints and
decoding costs at both users. Since FCMAC is a convex region,
its boundary can be characterized by solving the following
weighted sum rate maximization problem for all µ1, µ2 > 0,

max
r1,r2,p12,p21

pu1,pu2

N∑
i=1

µ1r1i + µ2r2i

s.t. (r1i, r2i) ∈ FCMAC (p12i, p21i, pu1i, pu2i) , ∀i
k∑

i=1

p12i + pu1i + φ(r2i) ≤
k∑

i=1

E1i, ∀k

k∑
i=1

p21i + pu2i + φ(r1i) ≤
k∑

i=1

E2i, ∀k

r1i, r2i, p12i, p21i, pu1i, pu2i ≥ 0 (4)

where φ(r), an increasing convex function in r, is the decoding
power (cost) needed to decode a message of rate r. Therefore,
each user needs to adapt its powers (and rates) to both its own
and the other user’s energy arrivals.

III. PROPERTIES OF THE OPTIMAL POLICY

We first show that in the cooperative MAC, the optimal rate
allocation (r1, r2) can be expressed directly in terms of powers
p12 and p21 used for common message generation.

Lemma 1 There exists an optimal policy for problem (4)
where the two inequalities (1) and (2) hold with equality ∀i.

Proof: Assume that in the optimal policy (1) does not hold
with equality for some time slot k. Then, we decrease p12k

and increase pu1k by the same amount, until (1) holds with
equality. This either increases Sk, or keeps it constant, hence
the third inequality still holds. The new power allocation is
energy feasible. Since the rate allocation did not change, the
newly obtained policy is optimal as well. Similar arguments
follow if the second inequality does not hold with equality. �

We remark here that in the cooperative MAC with no
decoding costs [12], the optimal policy is to send at a rate pair
so that (3) as well holds with equality, or else the rates can
be improved [12, Lemma 2]. However this is not necessarily
true in the presence of decoding costs, as increasing one of
the user’s rate comes at the expense of decreasing the other
user’s rate, as some of the power used for transmission needs
to be shifted to decoding at the cooperative partner.

In the sequel, we focus on the case of exponential decoding
costs. Specifically, we set φ = a · g−1, for some decoding
power factor a > 0 [17]. By Lemma 1, the problem can now
be written only in terms of the powers as

max
p12,p21,pu1,pu2

N∑
i=1

µ1g(p12i) + µ2g(p21i)

s.t. g(p12i) + g(p21i) ≤
1

2
log

(
Si

σ2

)
, ∀i

k∑
i=1

p12i + pu1i + ap21i ≤
k∑

i=1

E1i, ∀k

k∑
i=1

p21i + pu2i + ap12i ≤
k∑

i=1

E2i, ∀k

p12i, p21i, pu1i, pu2i ≥ 0 (5)

which is not a convex optimization problem due to the first
set of constraints. Next, we characterize the (local) optimality
conditions for problem (5). The Lagrangian is

L =−
(

N∑
i=1

µ1g(p12i) + µ2g(p21i)

)

+

N∑
i=1

λi

(
g(p12i) + g(p21i)−

1

2
log

(
Si

σ2

))

+

N∑
k=1

γ1k

(
k∑

i=1

p12i + pu1i + ap21i −
k∑

i=1

E1i

)

+

N∑
k=1

γ2k

(
k∑

i=1

p21i + pu2i + ap12i −
k∑

i=1

E2i

)

−
(

N∑
i=1

ω1ipu1i + ω2ipu2i + η1ip12i + η2ip21i

)
(6)

where {λi, γ1i, γ2i, η1i, η2i, ω1i, ω2i} are non-negative La-
grange multipliers. Differentiating with respect to the powers
and equating to zero we get the following KKT conditions

N∑
k=i

γ1k + aγ2k =
µ1 − λi
1 + p12i

+
λi
Si

+ η1i (7)

N∑
k=i

γ2k + aγ1k =
µ2 − λi
1 + p21i

+
λi
Si

+ η2i (8)

N∑
k=i

γ1k =

(
1 +

√
pu2i

pu1i

)
λi
Si

+ ω1i (9)

N∑
k=i

γ2k =

(
1 +

√
pu1i

pu2i

)
λi
Si

+ ω2i (10)

along with the complementary slackness conditions

λi

(
g(p12i) + g(p21i)−

1

2
log

(
Si

σ2

))
= 0, ∀i (11)

γ1k

(
k∑

i=1

p12i + pu1i + ap21i −
k∑

i=1

E1i

)
= 0, ∀k (12)

γ2k

(
k∑

i=1

p21i + pu2i + ap12i −
k∑

i=1

E2i

)
= 0, ∀k (13)

η1ip12i = 0, η2ip21i = 0, ∀i (14)
ω1ipu1i = 0, ω2ipu2i = 0, ∀i (15)

Note that, for the derivatives in (9) and (10) to be well defined,
the cooperative powers pu1i, pu2i must be non-zero; otherwise
the problem formulation needs to be revisited. Since the case



where the users do not send any cooperative codewords occurs
very rarely in practice, in this work, we focus only on policies
where pu1i and pu2i are positive, i.e., ω1i = ω2i = 0. We have
the following claim regarding the optimal value of λi.

Lemma 2 The optimal λi satisfies λi ≤ max{µ1, µ2}.

Proof: First, note that by concavity of the objective function, it
is sub-optimal to move all the energy in slot i forward to future
slots. This means that either p12i or p21i is strictly positive
for any i. By complementary slackness, this means that either
η1i = 0 or η2i = 0. Without loss of generality, assume η1i = 0
for some i. Substituting (9) and (10) into (7), we get(

1 +

√
pu2i

pu1i

)
λi
Si

+

(
1 +

√
pu1i

pu2i

)
aλi
Si

=
µ1 − λi
1 + p12i

+
λi
Si

(16)

Observe that we always have(
1 +

√
pu2i

pu1i

)
λi
Si
≥ λi
Si

(17)

and hence, to satisfy (16) we need to have

0 ≤
(

1 +

√
pu1i

pu2i

)
aλi
Si
≤ µ1 − λi

1 + p12i
(18)

which leads to λi ≤ µ1 ≤ max{µ1, µ2}. �
Note that if λi > µ1 for some i, then we must have η1i > 0

so that (16) is satisfied (after adding η1i to its right hand side).
We will use this observation later in the upcoming proofs. The
next lemma shows that we can overcome the non-convexity
issue of problem (5) by using its relation to problem (4).

Lemma 3 Any local optimal point for problem (5) is also a
local optimal point for problem (4).

Proof: We prove the lemma by showing that any primal and
dual variables satisfying the KKT conditions for problem (5)
correspond to those satisfying the KKT conditions for problem
(4). The KKT optimality conditions for (4) are

λ1i + λ12i = µ1 + ν1i (19)
λ2i + λ12i = µ2 + ν2i (20)

N∑
k=i

γ1k + aγ2k =
λ1i

1 + p12i
+
λ12i

Si
+ η1i (21)

N∑
k=i

γ2k + aγ1k =
λ2i

1 + p21i
+
λ12i

Si
+ η2i (22)

N∑
k=i

γ1k =

(
1 +

√
pu2i

pu1i

)
λ12i

Si
(23)

N∑
k=i

γ2k =

(
1 +

√
pu1i

pu2i

)
λ12i

Si
(24)

along with the complementary slackness conditions

λ1i (r1i − g(p12i)) = 0, ∀i (25)

λ2i (r2i − g(p21i)) = 0, ∀i (26)

λ12i

(
r1i + r2i −

1

2
log

(
Si

σ2

))
= 0, ∀i (27)

γ1k

(
k∑

i=1

p12i + pu1i + ap21i −
k∑

i=1

E1i

)
= 0, ∀k (28)

γ2k

(
k∑

i=1

p21i + pu2i + ap12i −
k∑

i=1

E2i

)
= 0, ∀k (29)

η1ip12i = 0, η2ip21i = 0, ∀i (30)
ν1ir1i = 0, ν2ir2i = 0, ∀i (31)

Now, consider a KKT point for problem (5), i.e., some
feasible primal and dual variables {p̃jki, p̃uji, γ̃ji, λ̃i, η̃ji},
j, k ∈ {1, 2}, j 6= k, satisfying (7)-(14). We then assign the
following values for the variables of problem (4)

p12i = p̃12i, p21i = p̃21i, pu1i = p̃u1i, pu2i = p̃u2i (32)
r1i = log (1 + p̃12i) , r2i = log (1 + p̃21i) (33)
γ1i = γ̃1i, γ2i = γ̃2i (34)

λ12i = λ̃i, λ1i =
(
µ1 − λ̃i

)+

, λ2i =
(
µ2 − λ̃i

)+

(35)

ν1i =
(
λ̃i − µ1

)+

, ν2i =
(
λ̃i − µ2

)+

(36)

η1i = η̃1i +
(
µ1 − λ̃i

)−
, η2i = η̃2i +

(
µ2 − λ̃i

)−
(37)

where (·)+ = max{0, ·} and (·)− = min{0, ·}. Using the
observation stated right after Lemma 2, we can directly verify
that (19)-(31) are satisfied using the above assignments. �

We note that problem (4) is convex, and thus its KKT
conditions are also sufficient for optimality [18]. Therefore,
by Lemma 3, we can optimally solve problem (4) by charac-
terizing the KKT points of problem (5), which we focus on
in the remainder of this paper.

A power allocation policy which uses all available energy
by the end of the transmission is called an energy consuming
policy. The next lemma shows that, it is sufficient to restrict
our attention to energy consuming policies.

Lemma 4 There exists an optimal policy for problem (5)
where both users exhaust all their energies, in transmission
and decoding, by the end of communication.

Proof: Let one of the users, say user 1, have some leftover
energy at the end of transmission. Then, we can increase
pu1N until user 1’s energy is exhausted. This is feasible, as it
increases the right hand side of (3), and does not change the
rates, and therefore, is optimal. �

Note that (3) is a constraint on the total data rate. When it
holds with equality, the users send at the maximum allowed
data rate. We call such policies data consuming policies. The
next lemma shows that it is sufficient to restrict our attention
to policies that are data consuming in the last slot.

Lemma 5 There exists an optimal policy for problem (5) that
is data consuming in the last time slot.



Proof: If (3) is not tight in slot N , then we can decrease, say,
pu1N until the data consumption constraint holds with equality
in time slot N . This is energy feasible, and does not change
the rates, and therefore, is optimal. �

IV. SINGLE ENERGY ARRIVAL

In this section, we consider the case where each user
harvests only one packet of energy. By Lemma 4, both users
consume all the available energy, i.e., we have

p12 + ap21 + pu1 = E1, p21 + ap12 + pu2 = E2 (38)

We now solve the above equations for p12 and p21 in terms
of the cooperative powers pu1 and pu2, and substitute back in
problem (5) for the N = 1 case to get the following reduced
problem in terms of the cooperative powers1

max
pu1,pu2

µ1g

(
E1 − aE2

1− a2
− pu1 − apu2

1− a2

)
+ µ2g

(
E2 − aE1

1− a2
− pu2 − apu1

1− a2

)
s.t. g

(
E1 − aE2

1− a2
− pu1 − apu2

1− a2

)
+ g

(
E2 − aE1

1− a2
− pu2 − apu1

1− a2

)
≤ 1

2
log

(
Su

σ2

)
0 ≤ pu1 ≤ E1, 0 ≤ pu2 ≤ E2

a(E2 − pu2) ≤ E1 − pu1 ≤
E2 − pu2

a
(39)

where the last constraint assures the non-negativity of p12 and
p21, and the term Su is given by

Su , σ
2 +

E1 + E2 + apu1 + apu2 + 2(1 + a)
√
pu1pu2

1 + a
(40)

We solve the above problem over two stages as follows.
Stage 1: First, we solve a relaxed problem by ignoring the

data consumption constraint. Note that the relaxed problem
is a convex problem. To solve it, we further note that, if the
last constraint in problem (39) is not binding, i.e., if both
p12 and p21 are strictly positive, then by taking derivative of
the objective function with respect to the cooperative powers,
the solution of the relaxed problem is found by solving the
following two linear equations in (pu1, pu2)(

1

aµ2
+

a

µ1

)
pu2 −

(
1

µ2
+

1

µ1

)
pu1 = c1 (41)(

1

µ2
+

1

µ1

)
pu2 −

(
a

µ2
+

1

aµ1

)
pu1 = c2 (42)

where the constants c1 and c2 are given by

c1 =
1− a2 + E2 − aE1

aµ2
− 1− a2 + E1 − aE2

µ1
(43)

c2 =
1− a2 + E2 − aE1

µ2
− 1− a2 + E1 − aE2

aµ1
(44)

1Without loss of generality, we focus on the case a < 1 throughout this
work. Similar analysis follows for the case a ≥ 1.

If (41)-(42) admit a solution, (p̃u1, p̃u2), not satisfying the
last constraint in (39), then by the concavity of the objective
function, the solution is given by projecting (p̃u1, p̃u2) onto
this last constraint set, which will make one of the constraint’s
inequalities hold with equality. Substituting this into the objec-
tive function, the relaxed problem in this case gets simplified
to a one-variable convex optimization problem that can be
solved by first derivative analysis over the feasible region. We
denote the solution of the relaxed problem by (p̄u1, p̄u2).

Stage 2: We now check whether (p̄u1, p̄u2) satisfies the
data consumption constraint. Denote the left hand side of the
constraint by G (p̄u1, p̄u2) and let S̄u = Su

∣∣
(p̄u1,p̄u2)

. If the
constraint is not satisfied, then we have

G (p̄u1, p̄u2) >
1

2
log

(
S̄u

σ2

)
(45)

Hence, the goal now is to find the closest point (p∗u1, p
∗
u2)

to (p̄u1, p̄u2) such that G (p∗u1, p
∗
u2) = 1

2 log
(
S∗
u/σ

2
)
. To-

wards that end, we note that 1
2 log

(
Su/σ

2
)

is increasing in
(pu1, pu2), and that G(E1, E2) = 0. By the concavity of G, the
two functions G(pu1, pu2) and 1

2 log
(
Su/σ

2
)

are guaranteed
to intersect at some point (p∗u1, p

∗
u2) > (p̄u1, p̄u2). The optimal

(p∗u1, p
∗
u2) is the pair at which the intersection of the two

functions yields the maximum value for the objective function.
This concludes our discussion on the single energy arrival

scenario. In the next section, we use this result to extend the
analysis to the general multiple energy arrival scenario.

V. MULTIPLE ENERGY ARRIVALS

We present an iterative generalized water-filling algorithm
that optimally solves problem (5) for general N . We need to
determine the optimal energy distribution among the slots for
each user. We first initialize the energy state vectors S1 = E1

and S2 = E2 and solve for each slot i independently using the
results of the previous section with energies S1i and S2i. Next,
given the powers in each slot, we determine λi by solving (16)
if p12i > 0 (and if p21i > 0 we solve a similar equation with
appropriate coefficients). Next, we solve equations (7)-(10) for
all the remaining Lagrange multipliers treating

∑N
k=i γ1k and∑N

k=i γ2k as variables of their own, because we are solving
for each slot independently. Let us define

κ1i ,
1∑N

k=i γ1k + aγ2k

, κ2i ,
1∑N

k=i γ2k + aγ1k

(46)

We can compute {κ1i, κ2i}Ni=1 given the initialization policy.
We interpret these terms as generalized water levels to be
equalized to the extent possible among the slots. We have the
following lemma regarding their optimal values.

Lemma 6 The optimal generalized water levels {κ∗1i, κ∗2i} for
problem (5) are non-decreasing, and increase synchronously.
The latter event occurs only if at least one user consumes its
energy in transmission and decoding.

Proof: The first part follows by noting that due to the non-
negativity of the Lagrange multipliers {γ1i, γ2i}, the denomi-
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Fig. 2. Departure regions for different values of the decoding cost parameter.

nators of the water levels in (46) are non-increasing. For the
second part, since a > 0, both denominators decrease from
slot i to slot i + 1 iff at least γ1i > 0 or γ2i > 0. This
makes both water levels increase synchronously. Finally, by
complementary slackness, if we have γji > 0, then user j
consumes its energy in slot i, j = 1, 2. �

Next, we check if the obtained water levels satisfy the con-
ditions of the previous lemma. If not, then some energy needs
to flow forward until they satisfy these conditions. However,
due to the decoding costs, energy transfer from one user affects
both water levels, and therefore both users’ powers. Hence, we
keep record of how much energy is transferred forward at each
user by, e.g., putting measuring meters in between the slots of
each user [19]. We start by updating slots 1 and 2, followed by
slots 2 and 3, and so on. If at a given two slots (i, i+1) we have
κ1i > κ1(i+1) or κ2i > κ2(i+1) then energy flows from slot i
to i+1 from either one or both users until the water levels are
equalized. We keep iterating until the conditions of Lemma 6
are satisfied for all the slots. During the iterations, energy can
be drawn back, using the values stored in the meters, if this
increases the objective function. Iterations converge to a KKT
point of problem (5), which is, by Lemma 3, a KKT point of
problem (4), and thereby the optimal solution.

VI. NUMERICAL RESULTS

In this section, we present some simple numerical examples.
We consider a five slot system with energies E1 = [5, 1, 6, 2, 2]
and E2 = [2, 3, 4, 3, 4] at the first and the second user,
respectively. The receiver noise variance is set to σ2 = 1.2.

We solve the problem with different values of decoding
costs and plot Bj =

∑N
i=1 rji, the number of total departed

bits for user j, in Fig. 2. For reference, we plot the case
a = 0 studied in [12] that provides the largest departure region,
and also the non-cooperative (direct) MAC departure region
studied in [5]. We observe that the departure region shrinks as
we increase the decoding cost. With a = 0.3, the region is still
completely outside the non-cooperative MAC region, showing

the advantage of data cooperation. For the case a = 0.7, the
regions intersect, and not all operating points are better than
the non-cooperative MAC. Finally, for a relatively large a = 2,
the departure region is completely inside the non-cooperative
MAC region, showing that the users achieve higher rates if
they do not cooperate due to the high decoding costs they
incur. Therefore, the results show that it is not always better to
perform data cooperation, but rather it depends on how much
energy each user spends to decode the other user’s message.

We also compute the optimal generalized water levels for
a particular operating point: Q in Fig. 2 for the case of
a = 0.3 with µ1 = µ2 = 1. Iterations converge to: κ∗

1 =
[4.1, 16.3, 17.5, 17.5, 30.7] and κ∗

2 = [3.1, 6.6, 7.3, 7.3, 9.2].
We see that the water levels are non-decreasing, and increase
simultaneously, as stated in Lemma 6.
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