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Abstract—Visual text analytics has recently emerged as one of the most prominent topics in both academic research and the
commercial world. To provide an overview of the relevant techniques and analysis tasks, as well as the relationships between them, we
comprehensively analyzed 263 visualization papers and 4,346 mining papers published between 1992-2017 in two fields: visualization
and text mining. From the analysis, we derived around 300 concepts (visualization techniques, mining techniques, and analysis tasks)
and built a taxonomy for each type of concept. The co-occurrence relationships between the concepts were also extracted. Our
research can be used as a stepping-stone for other researchers to 1) understand a common set of concepts used in this research topic;
2) facilitate the exploration of the relationships between visualization techniques, mining techniques, and analysis tasks; 3) understand
the current practice in developing visual text analytics tools; 4) seek potential research opportunities by narrowing the gulf between
visualization and mining techniques based on the analysis tasks; and 5) analyze other interdisciplinary research areas in a similar way.
We have also contributed a web-based visualization tool for analyzing and understanding research trends and opportunities in visual

text analytics.

Index Terms—Visualization, visual text analytics, text mining

1 INTRODUCTION

HE significant growth of textual data and the rapid

advancement of text mining have led to the emergence
and prevalence of visual text analytics [1], [2]. This research
combines the advantages of interactive visualization and
text mining techniques to facilitate the exploration and anal-
ysis of large-scale textual data from both a structured and
unstructured perspective. Visual text analytics has recently
emerged as one of the most prominent topics in both aca-
demic research and the commercial world. For example, a
leading business intelligence system, Power BI, announced
features that enable the exploration and analysis of textual
collections in 2016 [3]. The ultimate goal of visual text ana-
lytics is to enable human understanding and reasoning
about large amounts of textual information in order to
derive insights and knowledge [4].
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Due to the rapid expansion of research in the area of
visual text analytics [4], [5], [6], [7], there is a growing need
for a meta-analysis of this area to support understanding
how approaches have been developed and evolved over
time, and their potential to be integrated into real-world
applications. There are several initial efforts to summarize
the existing text visualization techniques by different
aspects, such as data sources, tasks, and visual representa-
tions [7], [8], [9]. For example, Alencar and Oliveira summa-
rized around 30 text visualization techniques published
before 2013 [7]. Later, Kucher and Kerren extended this sur-
vey work by creating a comprehensive taxonomy with mul-
tiple categories and items in order to classify the techniques
with fine granularity [1]. They also developed a useful Web-
based survey browser to facilitate the exploration of the cre-
ated taxonomy. The most recent effort focuses on analyzing
scientific literature [10]. While these efforts provide an over-
view of text visualization techniques, they do not investi-
gate the underlying text mining techniques. On the other
hand, several comprehensive surveys of the work on text
mining have been published summarizing the relevant
research progress [11], [12], [13], [14], [15], [16], [17]. These
surveys provide much valuable complementary informa-
tion to existing literature reviews on text visualization.
However, they do not establish a link between text mining
and interactive visualization. The most powerful visual text
analytics systems make use of advanced data mining algo-
rithms and techniques, and we are still in need of an over-
view, accounting for both the user-facing visualization
and the back-end data mining approaches. Our survey
will provide practical knowledge that relates to building
visual text analytics tools, and it will support researchers in
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Fig. 1. Task-oriented analysis: visualization and mining techniques are connected through their shared analysis tasks (here, only 80 percent of the
edges are shown), to aid researchers and practitioners in understanding current practices in visual text analytics, identifying research gaps, and
seeking potential research opportunities. Concepts are organized into three taxonomies which can be navigated interactively.
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Fig. 2. The analysis pipeline aims at extracting, correlating, organizing, and presenting three types of concepts: mining techniques, analysis tasks,
and visualization techniques. Three concepts comprise our description of the space of visual text analytics.

discovering opportunities to narrow the gulf between the
visualization and text mining fields. In particular, the gaps
between these two fields based on analysis tasks have not
been explored yet. Many available text mining techniques
that may be useful for visual text analytics have not been
connected to visualizations. This may hinder the further
development of this research area.

Hence, our approach is to highlight associations between
analysis tasks, visualization techniques, and text mining
techniques through a set of taxonomies. As shown in Fig. 1,
these taxonomies contribute to 1) understanding current
practices in developing visual text analytics tools, the on-
going research, and the principal research trends; and 2)
seeking potential research opportunities by relating text visu-
alization research with text mining research. Ultimately, these
taxonomies will pave the way for identifying the relation-
ships and gaps between analysis tasks and techniques (visu-
alization and text mining) to explore future research
directions and develop novel applications.

To this end, we analyzed over 4,600 research papers
published between 1992-2017 in 4 journals (IEEE TVCG,
ACM TOCHI, IEEE TKDE, and JMLR) and 16 conference

proceedings (InfoVis, VAST, SciVis, EuroVis, PacificVis,
AVI, CHI, IUI, KDD, WWW, AAAI, IJCAI, ICML, NIPS,
ACL and SIGIR) in the fields of text mining and visualiza-
tion. As shown in Fig. 2, a semi-automatic analysis process
was designed to analyze the text visualization and mining
literature. We first extracted and summarized the concepts
(described in phrases) that capture visualization techniques,
mining techniques, and analysis tasks related to visual text
analytics. Our extraction method is based on a pattern-
based concept extraction algorithm [18]. Accordingly, three
concept taxonomies—visualization techniques, analysis
tasks, and mining techniques—were derived. The relation-
ships between the concepts in the taxonomies were then
extracted by using the co-occurrence statistics between dif-
ferent types of concepts in papers (e.g., the co-occurrence of
the visualization techniques and analysis tasks). Finally, a
graph-based interactive visualization was developed to
help understand and analyze the three taxonomies and the
relationships between them.

By semi-automatically refining and analyzing these con-
cepts in an interactive and progressive process, we identi-
fied the following key features of visual text analytics. First,
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Fig. 3. Corpus size by data source over time. The volume of mining papers is much larger than that of visualization papers.

the most used visualization techniques are traditional ones
such as chart visualizations, typographic visualizations,
and graph visualizations. The popularity of these techniques
is probably due to their simplicity and intuitiveness, as well
as the employment of more advanced mining techniques
in recent years. Second, a set of less frequently studied tasks
in visual text analytics were identified, which include
“information retrieval,” “network analysis,” “classification,”
“outlier analysis,” and “predictive analysis.” Third, different
analysis tasks are supported by different techniques, includ-
ing text mining and visualization techniques, as well as their
combination.

Through a task-oriented and data-driven analysis, we
thoroughly investigated each of the three concept taxono-
mies and their connections to identify overarching research
trends and under-investigated research topics within visual
text analytics. Consequently, we map out future directions
and research challenges to enhance the development of new
visual text analytics techniques and systems. The major con-
tributions of this work are:

o A semi-automatic analysis approach that focuses on
extracting, understanding, and analyzing the major
concepts in the area of visual text analytics. This
approach can be easily extended to analyze other
research areas.

o Three concept taxonomies and a data-driven method to
extract the relationships between them, better rev-
ealing overarching research trends and missing res-
earch topics within visual text analytics.

o A web-based visualization tool that enables the analysis
of the major research trends and the potential res-
earch directions in visual text analytics. This visuali-
zation tool is published at: http://visgroup.thss.
tsinghua.edu.cn/textvis.

o A comprehensive survey of the literature in visual text
analytics, classifying thousands of papers along our
technique- and task-taxonomies.

2 SURVEY LANDSCAPE

To obtain an overview of visual text analytics and the rela-
tionship between the relevant visualization and mining
fields, we systematically reviewed research articles from both
fields. The approach we took for each type of article was
different. For visualization papers, we followed an exhaus-
tive manual review of relevant venues. For text mining
papers, we followed the semi-automated approach of Sacha
et al. [19], which is a combination of a manual selection and
an automatic keyword-based extraction method.

2.1 Paper Selection: Visualization

There are fewer visualization papers than text mining
papers. Therefore, it was possible to do an in-depth manual
selection. For this group of papers we preferred precision in
that we only wanted papers that deal with visualizing text
data. Depending on how closely related the venue (e.g., a
conference) was to visualization research, we followed two
main approaches: full coverage or search-driven selection.
For venues identified as being primarily about visualization,
we reviewed every title from all the conference proceedings
to identify candidates. We then reviewed the abstracts of
candidates, and finally the full text of any papers when it
was not clear from the title and abstract whether the paper
contained any text visualizations. The venues for this
approach were: InfoVis, VAST, Vis (later SciVis), EuroVis,
AV, PacificVis, and IUIL For higher volume venues with a
larger proportion of irrelevant papers, we used two search
queries (“text” AND “visualization”; “text” AND “analytics”),
then reviewed titles, abstracts, and full texts to finalize the
selections. This approach was applied to all available years
of: CHI, KDD, and WWW. Finally, we used this same search-
driven selection approach on all available years of two rele-
vant journals: IEEE TKDE and IEEE TVCG. This resulted in a
total of 263 included papers that deal with text visualization
and visual text analytics. Our method is extensible, so it
would be possible to add further venues to the analysis and
accompanying website in the future.

2.2 Paper Selection: Text Mining

For the text mining papers, we optimize for recall as we are
open to including text mining techniques that may be
unknown or underutilized in the visualization field. To pro-
vide good coverage of visual text analytics and related
text mining methods, we followed the approach of Sacha
et al. [19] to extract relevant research papers in a semi-auto-
mated fashion. The paper collection was done in three steps.

In the first step, we performed seed paper selection man-
ually by reviewing titles and abstracts from the most recent
year of papers from leading data mining conferences and
journals (AAAI, KDD, WWW, SIGIR, ICML, NIPS, IJCAIL
ACL, and JMLR). 607 papers were thus identified. These
were combined with the papers from our visualization
paper collection to create the seed collection of papers used
in the second step. A detailed description of the statistics is
shown in Fig. 3.

In the second step, we performed keyword extraction
based on the seed paper collection. Specifically, we manu-
ally checked the top keywords of the seed paper collection
and selected 10 keywords that denote the data source.
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Fig. 4. The pipeline of concept extraction.

The keywords then serve as query terms to retrieve more min-
ing papers. The 10 extracted keywords were: “text, document,
blog, news, tweet, twitter, wikipedia, book, microblog, textual.”

In the third step, we retrieved the full text of all papers
from the aforementioned top data mining venues. The
retrieved papers were indexed by using Lucene [20]. We
then searched the Lucene index with the 10 keywords
extracted from the second step, and ranked the papers
based on the relevance score provided by Lucene. Papers
with relevance scores larger than 0.1 were selected as the
text mining papers. This cut-off threshold of 0.1 was used
because we found that it can balance precision and recall.
After this step, we obtained 4,346 mining papers.

Since the number of text mining papers are an order of
magnitude greater than the number of visual text analytics
related articles, analyzing the two corpora jointly may lead
to the results being dominated by patterns from the text
mining articles. Therefore, we developed an approach for
analyzing each corpus separately and connecting the two
corpora by tasks and techniques.

2.3 Analysis Process

Recently, Isenberg et al. [21] developed a data-driven
approach to determine major visualization topics and point
out missing and overemphasized topics. To this end, they
mainly focused on examining and analyzing two sets of
keywords: author-assigned keywords and PCS taxonomy
keywords. Inspired by their method, we first examined the
263 collected text visualization papers and performed a bot-
tom-up analysis, mainly focusing on checking the employed
techniques and the tasks supported by the techniques.

Our preliminary analysis revealed that visualization tech-
niques, analysis tasks, and mining techniques are the key types
of concepts in visual text analytics. We distilled the three
types of concepts by 1) studying the definition, scope, and
pipelines of visual (text) analytics; and 2) learning the key
aspects of academic papers. Previous study in the field of
natural language processing has shown that the application
domain and technique are two key aspects for a scientific
paper [18]. In the field of visual text analytics, information
regarding application domains is usually captured by anal-
ysis tasks [22]. According to the pipelines of visual (text)
analytics, mining techniques and visualization techniques
are two essential types of techniques [4], [22]. Hence, our
analysis is based on analysis tasks, mining techniques, and

Mining Techniques

‘latent dirichlet allocation |
imodel, latent dirichlet i

1allocation, « .«

visualization techniques. In particular, we focus on identify-
ing the key concepts in each type, as well as, the co-occur-
rence relationships between different types of concepts
(Fig. 2).

To identify tasks and techniques from the surveyed
research articles, we performed both manual coding and
automated analysis that leverages the manual coding
results to bootstrap concept identification on a much larger
scale. In particular, visualization papers were gathered first;
the manually labeled tasks and mining techniques from
these papers were later used as seeds for extracting further
concepts from the mining papers.

We developed a semi-automatic method to extract the
three taxonomies from our source papers and identified the
relationships between them. Fig. 2 shows the corresponding
workflow to generate and analyze the three types of con-
cepts in visual text analytics. The workflow consists of three
levels: concept extraction to extract the three types of concepts
by using a computational linguistics method [18]; taxonomy
building to create a concept taxonomy for each type of con-
cept manually or by the K-means clustering algorithm; and
concept visualization to facilitate the understanding and anal-
ysis of the concepts and the relationships among them. In
the following sections, each of the three levels will be
described in more detail.

3 CONCEPT EXTRACTION

Our approach extracts concepts from both text visualization
papers (total number: 263) and text mining papers (total
number: 4,346). As shown in Fig. 4, concepts from the text
visualization papers were annotated manually. In total, we
got 92 mining techniques, 77 analysis tasks, and 25 visuali-
zation techniques. Since the number of text mining papers
was large, we used a semi-automatic method to extract the
corresponding analysis tasks and mining techniques. This
method combines automatic concept extraction with two
types of expert knowledge: 1) the mining techniques and
analysis tasks extracted manually from the text visualiza-
tion papers; and 2) expert labeling and refinement of the
concepts. Specifically, our method consists of three steps:
candidate concept extraction, expert labeling and classifica-
tion, and concept refinement.

Candidate Concept Extraction. In the first step, we extract
the candidate concepts using a computational linguistics
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method proposed by Gupta et al. [18]. Given a collection
of research papers, this method extracts analysis tasks
(e.g., speech recognition) and techniques (e.g., latent Dirich-
let allocation) by matching dependency patterns between
words. For example, given a sentence “we addressed this
problem by using latent Dirichlet allocation,” we can extract
the technique “latent Dirichlet allocation” by using pattern
“using — (direct — object).” A key here is to define the pat-
terns used to extract the techniques and tasks (application
domains). In this paper, we combine the seed patterns pro-
vided by Gupta et al. [18] with the patterns we extracted by
using the mining techniques and tasks extracted from the
visualization papers. In total, we extracted 1,772 candidate
tasks and 8,805 candidate mining techniques.

Expert Labeling and Concept Classification. While the com-
putational linguistics method is able to identify many can-
didate techniques and tasks, its ability to differentiate
meaningless phrases such as “this problem” from meaning-
ful phrases such as “text categorization” is limited. To reduce
the noise, we sampled 2,000 candidate concepts, asked
experts to label whether each concept was noise or not, and
then used classification to identify noise in the rest of the can-
didate concepts. Specifically, five experts, all having more
than five years of research experience in text mining and/or
text visualization, were asked to label the candidate con-
cepts. We assigned the concepts to the experts so that each
concept was labeled by two experts. The labeling agreement
was 81.4 percent. 1,628 concepts that were given the same
label by two experts were used in the classification.

Next, we employed the support vector machine (SVM)
model [254] to classify the remaining concepts. The SVM
inputs were feature vectors and labels of the concepts. To
calculate the feature vector of each concept, we used
KNET [255], which is a deep learning framework for learn-
ing word embeddings. By using this framework, concepts
with similar syntactic and semantic relationships were
assigned to similar feature vectors. The SVM model was
trained using a five-fold cross validation with average accu-
racy of 89.4 percent for analysis tasks and 91.4 percent
for mining techniques. After applying the model to the
remaining 8,949 candidate concepts, we found 187 analysis
tasks and 718 mining techniques.

Concept Refinement. When examining the concepts extrac-
ted, we observed that some of them were quite similar (e.g.,
“text categorization” and “text classification”). Also, the
classification result of the second step was not perfect.
To solve these problems, we asked two experts to manually
check the results, merge similar concepts, and reduce noise.
To facilitate the labeling process, we organized similar
concepts into clusters by applying K-means on the word
embedding feature vectors. By checking the clusters, the
experts were able to detect concepts that needed to be
merged or removed. Following this step, we obtained 141
refined analysis tasks and 126 refined mining techniques.

4 TAXONOMY BUILDING

Based on the three-level workflow (Fig. 2) and the analysis
of a large number of text visualization papers and text min-
ing papers, we have constructed three taxonomies: analysis
tasks, visualization techniques, and mining techniques.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.25, NO.7, JULY 2019

To build the visualization technique taxonomy, two co-
authors, who are the experts in the visualization field, manu-
ally constructed the taxonomy based on the 25 visualization
technique concepts that were manually extracted from text
visualization papers. The other co-authors then examined
and refined the visualization taxonomy. The refinement was
done in an iterative fashion; all co-authors participated in
multiple rounds of discussions to finalize the visualization
taxonomy. With this method, we generated a two-level visu-
alization technique hierarchy with 6 internal nodes.

As more concepts were extracted for analysis tasks and
mining techniques, a semi-automatic method was employed
to build the corresponding taxonomies. Previous research
has indicated that good taxonomies should not be too deep
or too wide[256]. As a result, we strived to establish a com-
promise between the tree depth and width while building
these two taxonomies. In particular, we first employed the
popular K-means clustering algorithm to create the task tax-
onomy and mining taxonomy. We iteratively divided the
embedding feature vectors into K clusters by using K-means
and generated a four-level task hierarchy with 24 internal
nodes as well as a five-level mining hierarchy with 25 inter-
nal nodes. Then two authors worked iteratively to refine
and improve these two taxonomies. Next, all other authors
examined and refined these two taxonomies iteratively.
Finally, we consulted with 4 text mining or machine learn-
ing experts to derive the final taxonomies.

The main objective of the resulting taxonomies is to pro-
vide a framework that is useful from the researcher’s and
practitioner’s standpoint. They help to match techniques to
real-world problems (represented by tasks), and more
importantly serve as a foundation to develop new techni-
ques and new applications.

4.1 Taxonomy of Visualization Techniques

We manually labeled all visualization papers with the con-
cepts in the visualization technique taxonomy. In Table 1,
we present the two-level taxonomy of visualization techni-
ques, along with a list of representative papers that use each
individual visualization technique in the hierarchy (at most
30 papers for each second level visualization technique).
For each visualization technique, we reported the number
of papers that use this technique.

The first level visualization techniques include 9 con-
cepts, such as “graph visualizations” (Fig. 5a), “timeline vis-
ualizations” (Fig. 5b), and “spatial projections” (Fig. 5c).
Some first-level concepts are further organized into 2 to 4
second-level concepts. Taking “timeline visualizations” as
an example, it contains two second-level concepts: “stream
graph” and “flow.” As shown in Table 1, all papers that
belong to a second-level visualization concept are included
in the papers column.

The three first-level visualization concepts that have the
largest number of related papers are “typographic visual-
izations,” “chart visualizations,” and “graph visualizations.”
The first-level concept that captures the largest number of
publications is “typographic visualizations,” which contains
125 papers. Since all of the visualization papers included in
our survey are related to text data, it makes sense that many
of these visualizations include a view that presents the texts
in a typographic form.



LIU ET AL.: BRIDGING TEXT VISUALIZATION AND MINING: A TASK-DRIVEN SURVEY

2487

TABLE 1

Taxonomy of Visualization Techniques and the Papers Demonstrating Each Technique

First-level

Second-level

Examples

typographic
visualizations (127)

text [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [341, [35], [36], [37], [38], [39], [40],

highlighting (97)  [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52]

word cloud (56) [23], [33], [53], [54], [55], [56], [571, [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68],
[69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [801

hybrid (4) [66], [81],[82], [83]

chart
visualizations (102)

other charts
(e.g., bar chart) (52)

[23], [28], [29], [37], [38], [40], [57], [60], [62], [68], [70], [72], [73], [84], [85], [86], [87], [88],
[89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]

scatterplot (32)

[24], [27], [29], [37], [38], [42], [50], [91], [99], [101], [102], [103], [104], [105], [106], [107], [108],
[109], [110], [111], [112],[113], [114], [115], [116], [117], [118], [119], [120], [121]

line chart (29) [55], [66], [72], [73], [100], [105], [109], [111], [119], [122], [123], [124], [125], [126], [127], [128],
[129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141]
table (15) [33], [71], [105], [110], [112], [134], [142], [143], [144], [145], [146], [147], [148], [149], [150]

graph
visualizations (95)

node-link (48)

[25], [39], [68], [86], [94], [99], [130], [151], [152], [153], [154], [155], [156], [157], [158], [159],
[160], [161], [162], [163],[164], [165], [166], [167], [168], [169], [170], [171], [172], [173]

tree (34)

[26], [27], [44], [64], [73], [100], [103], [105], [108], [111], [114], [118], [140], [166], [174], [175],
[176], [1771], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188], [189]

matrix (26)

[36], [86], [94], [112], [128], [157], [132], [134], [161], [190], [191], [192], [193], [194], [195],
[196], [197], [198], [199], [200], [201], [202], [203], [204], [205]

timeline stream graph (35)  [32], [44], [45], [46], [49], [52], [80], [104], [1211, [139], [154], [161], [165], [168], [178], [179],
visualizations (50) [185], [187], [206], [207], [208], [209], [210], [211], [212], [213], [214], [215], [216], [217]
flow (28) [32], [54], [67], [73], [80], [139], [143], [144], [147], [161], [167], [168], [169], [173], [178], [179],
[185], [187], [208], [213], [215], [218], [219], [220], [221], [222], [223], [224]
galaxies (33) [33], [34], [36], [58], [70], [74], [116], [128], [130], [142], [144], [146], [149], [153], [161], [164],

spatial
projections (35)

[176], [187], [196], [202], [225], [226], [227], [228], [229], [230], [231], [232], [233], [234]

voronoi (6)

[144], [164], [185], [225], [235], [236]

high-dimensional glyph (24) [231, [25], 331, [38], [65], [891, [119], [122], [123], [139], [120], [140], [142], [158], [159], [161],
visualizations (34) [164], [188], [193], [196], [198], [2371, [238], [239]

PCP (11) [661, [72], [82], [94], [104], [136], [169], [173], [238], [240], [241]
topological [26], [34], [39], [571, [68], [73], [74], [78], [921, [100], [107], [129], [130], [153], [176], [177], [180],
maps (33) [206], [2071, [216], [219], [222], [227], [228], [231], [242], [243], [244], [2451, [246],
radial 731, [100], [1021, [108], [126], [144], [155], [169], [174], [1761, [182], [194], [247], [248], [249]

visualizations (15)

3D visualizations (10)

[85], [110], [111], [162], [196], [245], [250], [251], [252], [253]

The number in the bracket is the number of papers that use each visualization technique.
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Fig. 5. Example text visualizations: (a) TopicPanorama [116] leverages graph visualization to encode topic graphs from multiple sources; (b) Even-
tRiver [46] helps users browse, search, track, associate, and investigate events by using a timeline-based visualization; (c) In DemographicVis [33],
spatial projection is employed to show user groups based on topic interests.
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The second-level techniques under “typographic visual-
izations” include “word cloud,” “text highlighting,” and
“hybrid.” For example, 56 papers incorporate a “word cloud”
visualization; note that some papers designate word clouds as
a primary view to summarize texts, while other papers use
word clouds as facilitative visualization in addition to other
visualization techniques. Another large first-level concept,
“graph visualizations,” is mentioned by 95 text visualization
papers. This concept includes three second-level concepts,
namely “tree,” “matrix,” and “node-link.” The “node-link”
technique captures the largest number of papers (48) under
this concept. The “tree” and “matrix” techniques capture
34 and 26 papers, respectively. As many papers employ tree-
based visualizations as the main view, we separate this con-
cept to emphasize its role in visual text analytics.

Overall, the taxonomy provides a categorization of the
visualization techniques presented in all the papers from the
visualization publication venues. The taxonomy provides
both an overview of the available visualization techniques
and a way for researchers and practitioners to quickly identify
papers related to a particular visualization technique.

4.2 Taxonomy of Analysis Tasks

When iteratively refining and improving the automatically
generated task taxonomy, we first referred to the call for
papers (CFPs) and section organization of several top-tier
text-mining-related conferences and journals, including
SIGIR, ACL, WWW, KDD, AAAI, ICML, NIPS, IJCAI and
JMLR. In particular, we used the topics in the CFPs to orga-
nize and refine the concept hierarchy. We further used the ses-
sion name of each paper to validate the concept(s) that are
contained in the paper. For example, initially, “fragment
detection” and “duplicate detection” were put at the first level
by the K-means-based taxonomy building method. After
checking the CFPs and section names of several SIGIR confer-
ences, we found a topic and similar section names in SIGIR
2009 and 2010, for some of the papers related to the two
concepts. The topic was “structure analysis,” so we organized
these two concepts as sub-concepts under the concept
“structure analysis” in “information retrieval.” Second, two
senior PhD students, who majored in interactive machine
learning and are not the co-authors of this paper, worked
closely with two of the co-authors to iteratively refine the tax-
onomy through face-to-face discussions. Finally, we also
worked with two researchers who majored in text mining
or machine learning, a senior researcher from Microsoft
Research, and a professor from the Hong Kong University of
Science and Technology, to further verify and refine our
taxonomy.

The final taxonomy of analysis tasks consists of three
levels. The first level includes 9 concepts ranging from
“information retrieval,” “cluster/topic analysis,” to several
mining-related concepts such as “outlier analysis” and
“network analysis.” The selection and refinement of the first
level concepts was inspired by previous studies on data
mining tasks [12], [322]. In particular, we roughly divide the
first-level concepts into three categories: tasks on model building
(e.g., “classification” and “cluster/topic analysis”), tasks on
pattern detection (e.g., “outlier analysis” and “trend analysis”),
and tasks on applications (e.g., “natural language processing
(NLP)” and “information retrieval”).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.25, NO.7, JULY 2019

The largest first-level cluster in terms of number of
papers and child nodes is “information retrieval,” which
contains 1,884 papers (33 visualization papers and 1,851
mining papers) and 12 children, such as “entity ranking,”
“XML retrieval,” and “efficiency and scalability” (Table 2).
Another first-level cluster which also has the largest number
of child nodes (12 children) is “natural language proc-
essing.” The second largest cluster in terms of number of
papers is ”cluster/topic analysis,” which contains 1,624
papers (54 visualization papers and 1,570 mining papers).
“Exploratory analysis” and “natural language processing”
are the largest and second largest clusters in terms of num-
ber of visualization papers, containing 132 and 120 papers,
respectively. An interesting fact is that “exploratory analy-
sis” only ranks 5th in terms of paper number. This indicates
that the well-studied visual text analytics topic is not the
most popular in the text mining field. The second level con-
tains 62 concepts. For example, the cluster “topic analysis”
contains sub-clusters “flat topic analysis”, “hierarchical topic
detection,” and “topic evolution.” The cluster “clustering”
contains sub-clusters “flat clustering” and “hierarchical
clustering.” The third level consists of 62 fine-granularity
concepts, such as “part-of-speech tagging,” “co-reference
analysis,” “query processing,” “search log analysis,” and
“indexing.” The number of the second-level concepts is the
same as that of the third-level concepts. After examining
the taxonomy, we found that only 14 of the 62 second-level
concepts had third-level child nodes.

The top five first-level clusters (including their children)
ranked by the number of papers in each cluster are shown
in Table 2. For each second-level node in the hierarchy, we
select a few exemplar papers to show a range of analysis
tasks within the corresponding visualization and mining
papers. As there may be dozens of papers related to each
second-level concept, we selected three visualization papers
for those concepts whose relevant paper number is greater
than three, if the number of visualization papers is less than
three, mining papers are additionally selected.

2T

4.3 Taxonomy of Mining Techniques

We categorized the mining techniques based on the three
major stages of the machine learning life cycle: “data proc-
essing,” “modeling,” and “model inference” [323]. In the
“data processing” stage, data is gathered and preprocessed
for training and testing. In the “modeling” stage, we gather
knowledge about the problem domain, make assumptions
based on our knowledge, and express these assumptions in a
precise mathematical form. In the “model inference” stage,
the model variables are computed based on the data. Techni-
ques related to other stages (e.g., evaluation and diagnosis)
were merged with the three major stages to keep the taxon-
omy concise and clear. After building the taxonomy, we
asked three researchers who majored in data mining to help
refine the taxonomy. One researcher is a professor from the
Hong Kong University of Science and Technology, the other
two researchers are senior PhD students with more than four
years of research experience in data mining,.

The first two levels of the mining technique taxonomy are
presented in Table 3. As shown in the table, we divided data
processing techniques based on the data types. Accordingly,
we got four second-level concepts: “document-level” data



LIU ET AL.: BRIDGING TEXT VISUALIZATION AND MINING: A TASK-DRIVEN SURVEY

TABLE 2

Taxonomy of Analysis Tasks (Top Five Largest Clusters
Ranked by the Number of Papers in Each Cluster)

and Example Papers
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TABLE 3
Taxonomy of Mining Techniques and Example Papers
First-level Second-level Examples

data sentence-level [325], [326], [327]

processing (sentence embedding) (25)

1,175) word/phrase/entity-level (679) [328], [329], [330]
document-level (288) [331], [332], [333]
hybrid (387) [334], [335], [336]

model non-probabilistic inference (267) [3371, [338], [339]

inference probabilistic inference (1,160) [340], [341], [342]

(1,335)

modeling models for classification (1,636) [343], [344], [345]

(3,085)

models for clustering (908)

[346], [347], [348]

models for dimension
reduction (247)

[3491, [3501, [351]

topic models (1,089)

[352], [353], [354]

models for regression (256)

[355], [356], [357]

language model (271)

[358], [359], [3601

graphical models (187)

[361], [362], [363]

neural networks (412)

[364], [365], [366]

mixture models (128)

[367], [368], [369]

First-level Second-level Examples
information entity ranking (6) [257], [258], [259]
PG XML retrieval (5) 2601, [261], [262]
evaluation (35) [236], [263], [264]
user activity tracking (2) [25], [265]
search (76) [25], [229], [266]
recommendation (27) [267], [268], [269]
structure analysis (22) [199], [270], [271]
query analysis (302) [175], [272], [273]
filtering (15) [26], [274], [275]
interactive retrieval (12) [371], [183], [276]
unstructured information [164], [250], [277]
retrieval (107)
efficiency and scalability (361) [278], [279], [280]
cluster/ community discovery (6) [281], [282], [283]
;Onl;;il(;fsis text segmentation (26) [284], [285], [286]
(1,624) topic analysis (556) [54], [178], [240]
contextual text mining (2) [287], [288]
clustering (699) [289], [290], [291]
natural geotagging (8) [292], [293], [294]
grr:)%::sgiig data/information extraction (535)  [73], [206], [293]
(NLP) domain adaption (54) [295], [296], [297]
(1,623) data enrichment (7) [23], [47], [92]
alignment (3) [202], [218], [298]
event analysis (113) [46], [571, [125]
discourse analysis (28) [70], [189], [190]
content analysis (78) [64], [68], [299]
sentiment analysis (467) [118], [185], [201]
lexical/syntactical analysis (73) [118], [189], [201]
question answering (156) [146], [300], [301]
text summarization (526) [43], [59], [192]
classification  cross language text [302], [303]
(1,299) classification (2)
image classification (37) [304], [305], [306]
sub-document classification (4) [371, [90], [93]
binary classification (64) [3071, [308], [309]
taxonomy integration (2) [169], [310]
hierarchical classification (23) [311], [312], [313]
query classification (23) [314], [315], [316]
web page classification (14) [101], [317], [318]
uncertainty tackling (4) [28], [164], [169]
tandem learning (1) [319]
exploratory ~ monitoring (113) [26], [142], [320]
?{tglzgis comparison (541) 331, [82], [199]

navigation/exploration (348)

[24], [25], [166]

region of interest (6)

[36], [205], [321]

The number in the bracket represents the number of papers that aim at tackling

each analysis task.

The number in the bracket is the number of papers that leverage each mining
technique.

processing (e.g., document segmentation), “sentence/para-
graph-level” data processing (e.g., sentence embedding),
“word /phrase/entity-level” data processing (e.g., tokeniza-
tion), and “hybrid” processing (e.g., relevance calculation).
The modeling techniques were summarized based on text-
books on text mining and machine learning [12], [324]. Spe-
cifically, we have models for “classification” (e.g., Support
Vector Machine), “clustering” (e.g., K-means), “dimension
reduction” (e.g., multidimensional scaling), “topic” (e.g.,
latent Dirichlet allocation), and “regression” (e.g., convex
regression). We also have “language model,” “graphical
models” (e.g., hidden Markov model), “neural networks”
(e.g., convolutional neural networks), and “mixture models.”
The data inference techniques were categorized based
on whether the method was probabilistic or not. For “proba-
bilistic inference,” the taxonomy contains parametric
methods such as expectation maximization, as well as non-
parametric methods such as Gibbs sampling. For “non-prob-
abilistic inference,” we have optimization techniques such as
dynamic programming and convex optimization.

5 VISUALIZATION OF CONCEPT RELATIONS

To understand the relationship between the visualization
techniques, analysis tasks, and mining techniques, we
developed an interactive visualization which connects the
three concept hierarchies and provides access to the under-
lying research papers (see Fig. 1). Our visualization is task-
oriented, placing analysis tasks at the center as the bridge
between mining and visualization techniques. The goal of
the visualization is to reveal common connections between
visualization and text mining, as well as show research
topics that are not well connected to identify potential
opportunities for future work.
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Fig. 6. Our hierarchical visualization of concept relationships. On the left, the initial overview shows relationships extracted from visualization papers
in red and data mining papers in blue. On the right, a drill down operation has been applied to investigate tasks under the high level concept of clus-
ter/topic analysis, and the timeline for task topic analysis is hovered, isolating connections to this task and revealing detailed statistics in a tooltip.

The paper panel is populated with papers related to this task.

Our visualization is a tripartite graph, framed around the
three concept hierarchies extracted from the research papers.
Each column initially contains the first-level concepts, while
connections are shown between the columns (see Fig. 6 left).
Level-of-detail filters are provided to reduce clutter by
decreasing the number of edges (co-occurrences) based on
frequency thresholds. Connections at lower levels of the hier-
archy are propagated to the parent concept, so that the initial
overview shows a summary of all connections in the dataset,
and drill-down can be used to see the details.

We separated source concepts into ones coming from
visualization papers, shown in red, and others coming from
data mining papers, shown in blue (bi-colored connections
between (b) and (c) in Fig. 1). The total number of occur-
rences of a concept across all papers is encoded in the size of
the concept label. Trends over time between visualization
and data mining are revealed through spark lines appearing
beside the concept label. Since the total number varies widely
across concepts, we normalized the spark lines for each con-
cept so that they reveal the relative number of papers at each
year. The absolute number of papers in each concept is
encoded in the horizontal bar charts under the spark lines.

Connections in the visualization are based on concept co-
occurrences. The number of papers containing both con-
cepts at the endpoints of an edge is encoded in the thickness
of the edge. The color of the edge is split along the length of
the edge to show the proportion of contributing papers
from each research field. For example, in Fig. 6 on the left,
the connection between the task “cluster/topic analysis”
and the mining technique “modeling” shows that most co-
occurrences of these concepts came from mining papers
(edge is mostly blue). We found a similar proportional pat-
tern between “natural language processing” and “model
inference,” but overall a lower number of co-occurrences
(thinner edge).

Hovering on a concept label highlights all reachable
edges and concepts while fading the others, thus revealing
the co-occurring concepts across the dataset (see Fig. 6
right). Hovering on a timepoint in a spark line graph reveals
a rich tooltip with precise numerical data. Since each spark
line is independently scaled to maximize the visibility of
trends, the precise values can be used to compare across
spark lines. Selecting a concept populates the paper panel at
the right to show titles, abstracts, and metadata for papers
labelled with that concept. Selecting an edge populates the

paper panel with papers containing both of the associated
concepts. Target concepts appearing in the abstract text are
highlighted in the paper panel for quick identification.
Finally, the full text of any paper can be accessed by clicking
its DOI link in the paper panel.

6 RESULTS

In this section, we examine the current practices in visual text
analytics by analyzing the three concept taxonomies, the con-
nections between them, and the temporal trends revealed by
our visualization tool. We also discuss potential research
opportunities by comparing the trends observed in the litera-
ture of visual text analytics to the trends in text mining.

6.1 Current Practices of Visual Text Analytics

This study demonstrates that the visualization tool based on
our literature analysis can help researchers and practitioners
to better understand the current practices in visual text ana-
lytics. In particular, we discuss different trends in visualiza-
tion techniques, the major analysis tasks, frequently used
mining techniques, and the connections between them.

6.1.1  Current Practices of Visualization Techniques

Fig. 1a summarizes nine first-level visualization techniques,
their temporal trends, and how frequently they are used.
One can see that the usage patterns vary among different
types of techniques. To better understand the current practi-
ces, we divided these techniques into three groups based on
how frequently they were used.

The first group (Fig. 1A) contains the three most frequently
used techniques: “typographic visualizations” (125 papers),
“chart visualizations” (102 papers), and “graph visual-
izations” (95 papers). We observed that these popular techni-
ques were the traditional ones: they were also frequently used
in text visualization papers before 2000. Moreover, the pro-
portion of papers that use these techniques has tended to
increase the past few years.

To study this phenomenon in more detail, we drilled into
the next level of “chart visualization.” As shown in Fig. 7,
“chart visualization” has four children: “line chart,”
“scatterplot,” “table,” and “other charts.” After we switched
to the temporal spark lines that display the absolute number
of papers at each year, we observed an interesting “revival”
of these techniques (Fig. 7). While these techniques were
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Fig. 7. All chart visualizations began to “revive” after 2005.

popular in early years, there was a time period (2000 to
2005) when these techniques were not used frequently.
After this time period, researchers started to use these tech-
niques again. The trend to use these simple yet effective
techniques has been even stronger the past five years. This
phenomenon is interesting because of two reasons. First, all
four types of chart visualizations share similar patterns.
Second, the percentage of visualization papers involved
(39 percent) is large. We then checked the latest papers that
used the techniques with the paper panel in the visualiza-
tion tool. The paper panel reveals that in some cases, these
techniques served a supportive role as part of a detail view
or dashboard (e.g., in [73]), but in other cases, they were the
main visualization components described in the papers
(e.g., in [24]). One hypothesis regarding the revival of chart
visualizations is due to the preference for simpler and more
intuitive visualizations in order to reduce the learning curve
of users. Another possible reason is that researchers tend to
rely on more advanced learning methods instead of more
complex visualizations to discover interesting patterns. For
example, Berger et al. presented cite2vec [24], a visualiza-
tion scheme that allows users to dynamically browse docu-
ments via how other documents use them. This usage-
oriented exploration is enabled by projecting the words and
documents into a common embedding space via word
embedding. Here, a simple scatterplot was leveraged to
visualize the embedding space. While the visualization was
relatively simple, a variety of useful patterns could be found
due to special properties of the embedded space.

The second group consists of four first-level techniques:
“timeline visualizations” (50 papers), “spatial projections”
(35 papers), “high-dimensional visualizations” (34 papers),
and “topological maps” (33 papers) (Fig. 1B). These techni-
ques are effective for specific types of data. For example,
“timeline visualizations” are suitable for analyzing textual
data with time stamps. “Topological maps” are intuitive
choices for joint analysis of geographical information and
text. This scenario illustrates that our visualization tool
helps new researchers and practitioners to identify relevant
visualization and mining techniques as well as the related
papers for a certain type of data.

The last group (Fig. 1C) includes two first-level techni-
ques that are not used very frequently: “radial visualization”
(15 papers), “3D visualizations” (10 papers). Studying
such techniques may help to discover the potential for
rarely-used techniques and trigger the development of novel
visualizations.

6.1.2 Current Practices of Analysis Tasks

The task taxonomy consists of nine first-level concepts

(Fig. 1b), which are divided into the following two groups.
The first group contains the most studied tasks in text

visualization papers. Tasks in this group are “exploratory
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Fig. 8. Visualization techniques supporting the “predictive analysis” task.
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analysis,” “natural language processing,” “trend analysis,”
and “cluster/topic analysis.” All these tasks have been stud-
ied in more than 50 visualization papers. Except for “trend
analysis,” all the tasks were frequently studied before 2000.
Their temporal trends are also diverse. For example, “cluster/
topic analysis” shows an upward trend between 2006
and 2014, while “exploratory analysis” experiences a surge
after 2000.

The second group contains the less frequently studied
tasks in the visualization field, namely “information
retrieval,” “network analysis,” “classification,” “outlier ana-
lysis,” and “predictive analysis.” We were a little surprised
when we found that there were only a few text visualization
papers on classification. In our collection, there were several
visualization papers on classification at IEEE VIS each year.
After a careful examination of the relevant papers published
at IEEE VIS in recent years, we found that most of them con-
sidered general data sources instead of textual data [370],
[371]. Among the five tasks in this group, only “information
retrieval” has shown a downward trend in the visualization
field in recent years. The task concepts “classification,”
“outlier analysis,” and “predictive analysis” have experi-
enced an upward trend in recent years. However, in inter-
preting these trend lines one has to be cautious due to the
small sample size, with fewer than 10 visualization papers
for each concept.

Using our interactive visual interface, users may analyze
and explore the relationships between the visualization
techniques and tasks to understand which visualization
techniques have been applied to support which tasks. For
example, we selected the task “predictive analysis” for fur-
ther investigation. Hovering over this task in the web-based
visualization tool will highlight all visualization techniques
that have been used to support the predictive analysis (Fig. 8).
The visualization techniques supporting the “predictive
analysis” task include: “typographic visualizations,” “chart
visualizations,” “spatial projections,” “high-dimensional
visualizations,” “topological maps,” and “radial visuali-
zations.” Different groups of visualization techniques are
applied to support various predictive analysis tasks.
“Spatial projections” and “topological maps” are employed
when predicting the user’s demographic information.
“High-dimensional visualizations,” “topological maps,”
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Fig. 9. Models used in text visualization papers: (a) traditional models
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Fig. 10. Drilling into (a) models for classification; (b) topic models.

and “chart visualizations” are applied when predicting user
actions in social media.

6.1.3 Current Practices of Mining Techniques

The current practices of the three first-level mining techni-
ques: “modeling,” “model inference,” and “data processing”
are illustrated in Fig. 1c. Most of the text visualization papers
focus on “modeling” (131 papers) and “data processing”
(110 papers), while fewer papers support “model inference”
(17 papers). The spark lines show that the proportion of visu-
alization papers focusing on “data processing” and “model
inference” was the largest between 2000 and 2005 (Figs. 1D
and 1E). After that, their popularity waned.

In contrast, “modeling” has continued to attract attention
since 1995. To further study the temporal pattern, we drilled
into the concept “modeling.” The eight types of models used
in text visualization papers appear in Fig. 9. They can be
divided into two groups based on their temporal trends. The
first group contains traditional models used frequently before
2008 (Fig. 9a). Models in this group include “clustering,”
“dimension reduction,” “neural networks,” and “language
model.” The second group consists of trending models that
became more popular after 2008 (Fig. 9b). This group
includes “classification,” “topic models,” “graphical mod-
els,” and “regression.” We further drilled into these second-
level concepts to determine which specific techniques con-
tribute to the aforementioned temporal trends. Figs. 10a and
10b show three specific models for classification and three
types of topic models, respectively. The spark lines indicate
that “support vector machine” and “boosting” contribute
more to the trendiness of classification in contrast to “part-
of-speech tagging.” For topic models, the temporal trends of
static and dynamic models are similar. Researchers and
practitioners interested in text visualization can utilize our
visualization tool to find more trending techniques and
leverage these state-of-the-art methods in their work.

"o

6.2 Investigating Research Opportunities

In this study, we illustrate how our visualization may help to
identify potential research opportunities in a data-driven
manner. This is achieved by revealing research gaps between
text visualization and text mining research.
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Fig. 11. Example tasks proposed by mining researchers.

6.2.1 Opportunities Learned by Comparing Analysis

Tasks

To understand the gaps between the text visualization and
mining fields, we compared the paper distributions from
these two fields under different tasks, as well as examined
the connections between these concepts. In particular, we
identified two main types of interesting tasks.

Tasks Less Frequently Studied in the Visualization Field.
Some tasks are considered by many mining papers, but by
few text visualization papers, as shown in Fig. 1b. For
example, “classification” and “information retrieval” have
been less studied in text visualization papers. In contrast,
these two tasks have been extensively studied in the text
mining field. Based on these observations, we summarize
two opportunities.

Opportunity 1: Supporting tasks proposed by mining res-
earchers. After we drilled into the hierarchy and examined
more specific tasks, we recognized that many tasks pro-
posed by text mining researchers are complex and/or
interactive in nature, for which visual analytics research
may be suitable. However, currently, the visualization field
has not paid much attention to them. For example, by dril-
ling into “information retrieval” (Fig. 11a), we identified
tasks such as “query ambiguity,” “federated search,” and
“distributed information retrieval,” which have not been
well studied in the visualization field. Among the children
of “classification,” the least studied tasks in the visualiza-
tion field are “taxonomy integration,” “cross language text
classification,” and “hierarchical classification” (Fig. 11b).
Studying these tasks may help broaden the horizon of cur-
rent visual text analytics research.

Opportunity 2: Integrating human knowledge to better sup-
port text mining tasks. When we explored the task taxonomy,
tasks such as ‘binary classification” and “recommendation”
attracted our attention. These tasks are typical tasks for a
mining paper. They have been less considered by the visual-
ization field because they can be solved using an automatic
algorithm. Usually, these tasks are well defined and the per-
formance of the solution can be automatically evaluated.
For these tasks, we believe that visual analytics can help
improve the model performance by integrating human
knowledge, especially when models do not work as
expected. For example, to improve the performance of text
classification, an interactive visualization can be developed
to enable experts to effectively provide informative supervi-
sion at every stage of the classification pipeline. Such super-
vision can be performed through the identification of
outliers in the training data, verification of labels of impor-
tant data samples, and better parameter settings.

Tasks with Insufficient Coverage in Both Fields. We also
noticed that several tasks had not yet attracted much atten-
tion from either the visualization or the mining field.
Examples are “predictive analysis” and “outlier analysis”
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novelty detection
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structured prediction

causality analysis spammer detection

Fig. 12. Example tasks that can be better supported by tightly integrating
interactive visualization with text mining techniques.

(Fig. 1b). After analyzing these tasks, we identified the
following opportunity.

Opportunity 3: Supporting challenging tasks in text analysis.
After drilling into “predictive analysis” and “outlier analy-
sis,” we found several tasks that were difficult to handle,
even for human experts, including “causality analysis,”
“structured predication,” and “novelty detection” (Fig. 12).
Developing visual text analytics approaches that support
such challenging tasks is an open research opportunity.
To better support these tasks, we need to employ the full
potential of both interactive visualization and text mining.
One possible starting point is to study the state-of-the-art lit-
erature from both the visualization and mining fields and
find a solution to tightly combine them by active learning or
semi-supervised learning.

6.2.2 Opportunities Learned by Comparing Mining
Techniques

We compared the visual text analytics papers with the text
mining papers in terms of the mining techniques they used.
Through our analysis, we identified the following three
opportunities.

Opportunity 4: Incorporating state-of-the-art mining techni-
ques. Connections between tasks and mining techniques
demonstrate that a majority of mining techniques are not
supported by existing text visualization papers (as shown
by the bi-colored connections between (b) and (c) in Fig. 1).
This gap can be observed by comparing the lengths of red
segments with the lengths of blue segments. For each task,
our visualization allows users to find the relevant state-of-
the-art mining techniques. Leveraging these techniques
may help in supporting more difficult tasks and in develop-
ing better visual analytics methods. Take topic modeling as
an example. To find the state-of-the-art techniques, we
drilled into a relevant mining technique: “static topic mod-
els.” Examples of several static topic models are shown in
Fig. 13. While the visualization field tends to use “Latent
Dirichlet Allocation (LDA),” text mining researchers also
use other topic models such as “spherical topic models”
and a “correlated topic model.” By observing the temporal
trends, we discovered a recently-proposed model named
“geometric Dirichlet means algorithm” [342] that is more
computationally efficient than LDA and can handle larger
numbers of documents. Accordingly, our analysis results
can be leveraged to discover the state-of-the-art technique
(s) from both the visualization and the mining fields. This
can further advance the research and development of visual
text analysis applications.

Opportunity 5: Opening the black-box of text mining. In addi-
tion, we recognized that the text mining field has produced
a substantial amount of techniques that were specialized
black-box models tailored to specific tasks. Examples are
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“mixture models,” “neural networks,” and “graphical mod-
els.” An open research challenge that involves both text
mining and visualization is to make these techniques under-
standable. Therefore, developing new visual analytics app-
roaches for understanding the inner-workings of these
models, which can steer users to better performance, is a gap
that has a great deal of potential for innovative research.
Opportunity 6: Connecting big textual data with people. Tex-
tual data such as web pages, tweets, emails, instant mes-
sages, web click-streams, or CRM information, is flooding
into the business world, academic community, and relevant
governmental agencies. This data deluge is a large part of
big data. In our exploration, we noticed that there were
already some initial efforts in the visualization and mining
fields for divining actionable information from the deluge.
For example, the task concept “trend/pattern analysis”
under “trend analysis” contains one recent paper on visu-
ally analyzing streaming textual data [45]. We also observed
that there were a few initial efforts from the mining field.
For example, Twitter, Inc. developed a large-scale topic
modeling method for handling Twitter data [372] (under
the task concept “cluster/topic analysis”). Despite the
promising start in both fields, more research is needed for
this research topic, especially for shaping visual analytics
research that tightly integrates interactive visualization and
text mining techniques to maximize the value of both in
handling large-scale textual data.

7 DIScuUSSIONS AND REFLECTIONS

Our work has studied three primary concepts, visualization
techniques, mining techniques and analysis tasks. The analy-
sis with the web-based visualization tool (Section 6) has dis-
closed the connection between mining and visualization
techniques through analysis tasks, as well as their temporal
trends over time. By investigating the relationships between
the three types of concepts, we schematically illustrated cur-
rent practices and developments of visualization techniques,
mining techniques, and analysis tasks. Popular research
topics and potential emerging research topics were extracted
by examining the connections between the three types of
concepts and the gaps between them. One unique aspect of
our survey is that the research question drove us to survey
two distinct research fields, and the need to identify a bridge
connecting them. Our goal is to provide an overview of the
research related to text mining and visualization from the
two fields, and foster more cross-pollination research. In this
section, we introduce the by-product of our review work, les-
sons learned, and the limitations of our work.

7.1 Research By-Product

In addition to a comprehensive survey, our research has
also delivered a research by-product, a visual-analytics-
based literature analysis approach. The major feature of this
approach is that it is based on the overall understanding
and analysis of the major concepts (e.g., utilized techniques)
mentioned in research papers. In this work, we mainly
focused on analyzing two types of concepts, techniques
and tasks. Inspired by Gupta and Manning’s method [18]
for automatically extracting key concepts, we developed
a semi-automatic concept annotation method. By examining
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Fig. 13. Examples of static topic models and their temporal trends.

and analyzing the connections between different types of
concepts, we provided a comprehensive overview of the
on-going research efforts in the area of visual text analytics,
including major research topics, their temporal trends, hot
research topics, as well as less studied research topics.
Based on the analysis of the aforementioned data, several
research opportunities were identified and highlighted
for the visualization domain. As the whole process is
data-driven, this approach can be easily extended to other
literature review work. It is particularly useful for an inter-
disciplinary review. Together with this approach, a vis-
ualization tool for navigating these concepts and the
connections between them was also deployed as a web-
based tool (http://visgroup.thss.tsinghua.edu.cn/textvis),
which allows users to navigate through the major concepts
in a publication dataset, their connections, and the corre-
sponding papers.

7.2 Lessons Learned

This taxonomy was constructed in a semi-automatic way,
where we iteratively and progressively extracted concepts
and built a taxonomy for each type of concept. During this
process, we learned several practical lessons, which are
summarized in the remainder of this section.

Combination of Data and Knowledge. In order to provide a
comprehensive overview of visual text analytics, we ana-
lyzed over 4,600 research papers and extracted around 300
keyword-based concepts. We settled on a semi-automatic
method for concept extraction that is driven by both data
and knowledge for two reasons. On the one hand, with
such a large number of papers and concepts involved, man-
ual labeling would have been very difficult and time-
consuming. On the other hand, the accuracy of the auto-
matic concept extraction method is not sufficient and
depends on the coverage of the seed patterns. To overcome
these issues, we employed a semi-automatic concept extrac-
tion method that tightly couples human knowledge with
data (Fig. 4). Initially, we manually extracted a set of techni-
ques and analysis tasks from the visualization papers
that we were familiar with (knowledge-driven approach).
Next, we extracted more concepts from the mining papers
based on the manually extracted concepts and Gupta and
Manning’s method (data-driven approach). All the authors
then worked together to verify the extracted concepts itera-
tively and resolved conflicts (knowledge-driven approach).
The combination of the data- and knowledge-driven app-
roaches improved both the quality of the concepts extracted
and the labeling performance.
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A similar approach that combines data and human knowl-
edge (e.g., expert feedback) was also used to build the taxon-
omy. K-means clustering was employed to build the initial
taxonomy. Then the authors, as well as several experts from
machine learning and data mining refined and improved the
taxonomy progressively. The experts preferred a balanced
concept taxonomy that was not too deep or too wide. This is
also consistent with a recent study [373]. Another useful les-
son we learned is that human knowledge and experience are
very useful to code concepts and build taxonomies. Typically,
coding and taxonomy building are an iterative and progres-
sive process. This process is most efficiently handled if experi-
enced experts build an initial taxonomy that gets enriched by
others, based on their understanding.

The data-driven approach for finding research opportunities is
a good complement to the knowledge-based method. In the
past, most literature reviews were manually carried out with
the aim of examining the progress of a particular research
topic and identifying emerging research opportunities. Typi-
cally, the breadth and depth of research opportunities
depend on the experts’ knowledge and their understanding
of the research area. Our work contributes to this body of
work by presenting the connections between different types
of concepts, which allows experts to examine the overall
trend of different research topics, as well as the gaps between
different research fields in an interdisciplinary research area.
This data-driven approach can be considered as a comple-
ment to the current knowledge-based approach for identify-
ing emerging research opportunities.

7.3 Limitations

Although the developed semi-automatic approach sheds
light on the research progress and emerging research oppor-
tunities in visual text analytics, we would like to note a few
limitations.

When gathering the data, we tried our best to collect all
relevant papers in both research fields. However, we may
have missed some papers due to the large number of avail-
able venues and articles. To compensate for this, we will
further extend our visualization tool to allow users to manu-
ally add papers that they believe to be relevant. We will
then batch process and verify the submitted papers and
merge the results into the existing concept taxonomies.

Another limitation is related to the calculations of con-
nections between different concepts. We chose to leverage
concept co-occurrences in the full-text to derive the connec-
tions between different concepts. This strategy may lead to
some inaccurate connections between concepts. For exam-
ple, one paper mentions using a scatterplot for an overview
and a line chart for observing the temporal trend. Based on
concept co-occurrences, we built all the possible connections
between the four concepts, including “scatterplot” and
“overview,” “scatterplot” and “trend analysis,” “line chart”
and “overview,” as well as “line chart” and “trend analy-
sis.” Here the concepts “scatterplot” and “trend analysis,”
as well as “line chart” and “overview,” did not need to be
connected. The correlation accuracy can be improved by
employing more advanced approaches such as relationship
extraction [374]. Another solution is to utilize a crowd-
sourcing platform in order to collect multiple annotations


http://visgroup.thss.tsinghua.edu.cn/textvis

LIU ET AL.: BRIDGING TEXT VISUALIZATION AND MINING: A TASK-DRIVEN SURVEY

for each pair of connections. Accordingly, an interesting
avenue of potential future work is to leverage a crowd-
sourcing model such as M?V [375] to infer the correct con-
nection from noisy crowd-sourced labels.

8 CONCLUSIONS

In this work, we conducted a comprehensive survey based
on 263 text visualization papers and 4,346 text mining
papers that have been published between 1992 and 2017.
With a semi-automatic, data-driven analysis, we identified
and extracted three types of concepts. Two of the concepts,
visualization techniques and mining techniques, summarize
the research trends in the respective research fields, while
the analysis tasks summarizes the goals of such research.
Through statistically analyzing the relationships between
the three types of concepts, we connected visualization
techniques and mining techniques with analysis tasks serv-
ing as the bridge. In addition, a web-based visualization
tool has been developed to facilitate the investigation of
the major research trends in the area of text visualization,
including the major techniques and tasks, their develop-
ment over time, as well as the gaps between the visualiza-
tion and mining fields.

We believe the data-driven analysis process developed
in this work can be directly used to conduct literature anal-
ysis in other interdisciplinary research areas, such as inter-
active machine learning [376], [377], bio-informatics
visualization, or brain-inspired artificial intelligence. The
key is to find an important intermediate concept that
bridges the two fields. For example, for the research area
of brain-inspired artificial intelligence, different types of
neurons and their operating mechanisms might be a candi-
date intermediate concept that connects neuro-science and
artificial intelligence. In this survey we have shown that
using such an intermediate concept may help to narrow
the gaps between two research domains and provide use-
ful insights into an interdisciplinary area, which can foster
a better understanding of the research field and opens
promising avenues for future research.
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