1. How many points (x, y) in the plane satisfy both $x^{2}+y^{2}=25$ and $x^{2}-10 x+y^{2}-24 y=-105$?
(A) none
(B) 1
(C) 2
(D) 3
(E) more than 3

Answer: B.

Solution. The second equation, upon completing the squares, becomes $(x-5)^{2}+(y-12)^{2}=64$. Therefore, both equations represent circles. Their centers are 13 units apart and the sum of their radii is also 13.
2. Let $f(x)=(2 x+3)^{3}$ and $g(x)=x^{3}+x^{2}-x-1$. Denote the sum of the coefficients of the polynomial $h(x)=f(g(x))$ by s. Which of the following statements is true?
(A) $s \leq 0$
(B) $1 \leq s \leq 6$
(C) $7 \leq s \leq 20$
(D) $21 \leq s \leq 36$
(E) $s>36$

Answer: D.

Solution. The sum of the coefficients of any polynomial $p(x)$ equals $p(1)$. Therefore, $s=h(1)=$ $f(g(1))$. We have $g(1)=0$ and hence $h(1)=f(0)=27$.
3. The graph of the function $f(x)=||2 x|-10|$ on the interval $[-10,10]$ looks like
(A) M
(B) W
(C) V
(D) Λ
(E) none of these

Answer: B.

Solution. The graph of the function $g(x)=|2 x|$ on $[-10,10]$ is a letter "V" with vertices at the points $(-10,20),(0,0)$ and $(10,20)$. The graph of $h(x)=g(x)-10$ is the graph of $g(x)$ shifted downward by 10 units - the half of its height. The graph of $f(x)=|h(x)|$ is obtained from the graph of $g(x)$ by reflecting its part lying below the x-axis (a smaller "V") across the x-axis, thus creating a letter "W".
4. There is a unique positive number r such that the two equations $y+2 x=0$ and $(x-3)^{2}+(y-6)^{2}=r^{2}$ have exactly one simultaneous solution. Which of the following statements is true?
(A) $0<r<1$
(B) $1 \leq r<3$
(C) $3 \leq r<5$
(D) $5 \leq r<6$
(E) $r \geq 6$

Answer: D.

Solution. The first equation $y+2 x=0$ describes a line, while the second equation $(x-3)^{2}+$ $(y-6)^{2}=r^{2}$ describes a circle of radius r centered at the point $(3,6)$. The uniqueness of the simultaneous solution of the two equations means that the circle is tangent to the line, that is, r is the shortest distance from the circle's center to the line. To calculate r, consider the triangle with vertices $P(3,6), Q(-3,6)$ and $O(0,0)$. Considering the sides $P Q$ or $O Q$ as its bases, we obtain two expressions for the triangle's area which are, therefore, equal: $(1 / 2) 6 \cdot 6=(1 / 2) \sqrt{6^{2}+3^{2}} \cdot r$. Consequently, $r=(6 \cdot 6) / \sqrt{45}=12 / \sqrt{5}$. It follows that $5<r<6$ since $r^{2}=\frac{144}{5}=28 \frac{4}{5}$ is between 5^{2} and 6^{2}.
5. The vertices of a triangle are the centers of the circles $C_{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}, C_{2}=\{(x, y) \mid$ $\left.(x-4)^{2}+y^{2}=1\right\}$ and $C_{3}=\left\{(x, y) \mid x^{2}-14 x+y^{2}-16 y=0\right\}$. Let S be the area of the triangle. Which of the following statements is true?
(A) $S \leq 6$
(B) $6<S \leq 9$
(C) $9<S \leq 12$
(D) $12<S \leq 15$
(E) $S>15$

Answer: E.
Solution. The centers are $(0,0)(4,0)$ and $(7,8)$, so the area of the triangle is $\frac{1}{2}(4)(8)=16$
6. How many real solutions does the following system have?

$$
\begin{cases}x+y & =2 \\ x y-z^{2} & =1\end{cases}
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Answer: B.
Solution. The second equation implies that $x y=z^{2}+1 \geq 1>0$, so that x and y are of the same sign. It follows then from the first equation that they are positive. Hence the Arithmetic Mean Geometric Mean Inequality applies, which says that $(x+y) / 2 \geq \sqrt{x y}$. In our case, $(x+y) / 2=1$ while $\sqrt{x y} \geq 1$ so the inequality turns into equality; in this case it implies that $x=y$. Therefore, $x=y=1$ and $z=0$.
7. Let $a>1$. How many positive solutions has the equation

$$
\sqrt{a-\sqrt{a+x}}=x ?
$$

(A) 1
(B) 2
(C) 0
(D) 3
(E) 4

Answer: A.
Solution. The numbers $x \geq 0$ for which the function $f(x)=\sqrt{a-\sqrt{a+x}}-x$ is defined form an interval $I=[0, b]$, where $b=a^{2}-a$. In this interval the function $f(x)$ is continuous and decreasing from $\sqrt{a-\sqrt{a}}>0$ to $-b<0$. Therefore, there is exactly one value x_{0} in this interval such that $f\left(x_{0}\right)=0$. Since $f(0)>0$ and $f(b)<0$, we have $0<x_{0}<b$, so that x_{0} is positive as required.
8. The top of a rectangular box has area 40 square inches, the front has area 48 square inches, and the side has area 30 square inches. How high is the box?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 8

Answer: D.
Solution. Let x, y, z be the width, depth, and height of the box, respectively. Then $x y=40, x z=48$ and $y z=30$. Hence

$$
x^{2} y^{2} z^{2}=(x y)(x z)(y z)=40 \cdot 48 \cdot 30=57600 .
$$

Therefore, $x y z=240$, and $z=(x y z) /(x y)=240 / 40=6$.
9. The lower two vertices of a square lie on the x-axis, while the upper two vertices of the square lie on the parabola $y=15-x^{2}$. What is the area of the square?
(A) 9
(B) $10 \sqrt{2}$
(C) 16
(D) 25
(E) 36

Answer: E.
Solution. The parabola, and hence the whole picture, is symmetric with respect to the y-axis. Therefore, the midpoint of the bottom side of the square is at the origin, so that the upper right vertex (x, y) of the square satisfies two equations $y=2 x$ and $y=15-x^{2}$. They imply that $2 x=15-x^{2}$. This quadratic equation has one nonnegative root $x=3$. Therefore, the sides of the square have length $2 \cdot 3=6$.
10. Pansies have 5 petals while lilacs have 4 petals. A bouquet has 20 flowers with a total of 92 petals. Let P be the number of pansies in the bouquet. Which of the following statements does P satisfy?
(A) $3 \leq P \leq 7$
(B) $8 \leq P \leq 10$
(C) $11 \leq P \leq 14$
(D) $15 \leq P \leq 17$
(E) $P \geq 18$

Answer: C.
Solution. If all the 20 flowers were lilacs, then there would be a total of $20 \cdot 4=80$ petals. Hence some lilacs should be replaced with pansies. How many? Each such replacement adds one more petal. Therefore, $92-80=12$ lilacs should be replaced with pansies.
11. A three-digit number $a b c$ is palindromic if $a=c$. What is the number of distinct three-digit palindromic numbers?
(A) 72
(B) 84
(C) 88
(D) 90
(E) 100

Answer: D.
Solution. The pair of equal digits $a=c$ can be selected in 9 ways $(1,2, \ldots, 9)$ while, for any such selection, b can be chosen in 10 different ways ($0,1,2, \ldots, 9$). Hence the number sought for is $9 \cdot 10=90$.
12. The double of a positive number is the triple of its cube. The number is:
(A) $\sqrt{2 / 3}$
(B) 1
(C) $\sqrt{3 / 2}$
(D) $\sqrt[3]{2} / \sqrt{3}$
(E) $\sqrt[3]{3} / \sqrt{2}$

Answer: A.
Solution. Let x be the number sought for. Then $2 x=3 x^{3}$, or, equivalently, $x\left(2-3 x^{2}\right)=0$. Since $x>0$, it follows that $x^{2}=2 / 3$ so that $x=\sqrt{2 / 3}$.
13. Suppose a, b and c are positive integers with $a<b<c$ such that $1 / a+1 / b+1 / c=1$. What is $a+b+c$?
(A) 6
(B) 8
(C) 9
(D) 11
(E) no such integers exist

Answer: D.
Solution. First note that $a=1$ is impossible since this would imply that $1 / a+1 / b+1 / c>1$. Similarly, $a \geq 3$ would imply that $1 / a+1 / b+1 / c \leq 1 / 3+1 / 4+1 / 5<1$, which is not possible either. Therefore, $a=2$. Now we need to find integers b and c such that $3 \leq b<c$ and $1 / b+1 / c=1 / 2$. Again, $b \geq 4$ is ruled out since in this case $1 / b+1 / c \leq 1 / 4+1 / 5<1 / 2$. Therefore, $b=3$ and hence $c=6$, so that $a+b+c=2+3+6=11$.
14. A quadratic equation $x^{2}-9 x+a=0$ has two distinct roots, one of them being twice the other. Which of the following statements is true?
(A) $a \leq 5$
(B) $5<a \leq 10$
(C) $10<a \leq 15$
(D) $15<a \leq 20$
(E) $a>20$

Answer: D.

Solution. Let the roots of the quadratic equation be u and $2 u$. Then the equation can be rewritten in the form $(x-u)(x-2 u)=0$, or, equivalently, $x^{2}-3 u x+2 u^{2}=0$. It follows that $3 u=9$, so that $u=3$ and hence $a=2 \cdot 3^{2}=18$.
15. In the quadratic equation $x^{2}-7 x+a=0$ the sum of the squares of the roots equals 39 . Find a.
(A) 8
(B) 7
(C) 6
(D) 5
(E) 4

Answer: D.
Solution. Let x_{1} and x_{2} be the roots of the equation. The latter can be rewritten as $\left(x-x_{1}\right)\left(x-x_{2}\right)=$ 0 so that $x_{1}+x_{2}=7$ and $x_{1} x_{2}=a$. Then $x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=7^{2}-2 a$. It follows that $49-2 a=39$ and hence $a=(49-39) / 2=5$.
16. Evaluate $S=\cot 1^{\circ} \cot 2^{\circ} \cot 3^{\circ} \ldots \cot 89^{\circ}$.
(A) $\frac{\pi}{2}$
(B) $\frac{2}{\pi}$
(C) 1
(D) $\frac{\sqrt{2}}{2}$
(E) 2

Answer: C.

Solution. We have
$S=\cot 1^{\circ} \cot 2^{\circ} \cot 3^{\circ} \ldots \cot 89^{\circ}$ and
$S=\cot 89^{\circ} \cot 88^{\circ} \cot 87^{\circ} \ldots \cot 1^{\circ}$.
Note that $\cot \left(90^{\circ}-x^{\circ}\right)=\tan x^{\circ}$ and hence $\cot \left(90^{\circ}-x^{\circ}\right) \cdot \cot x^{\circ}=1$. It follows that $S^{2}=\left(\cot 1^{\circ} \cot 89^{\circ}\right)\left(\cot 2^{\circ} \cot 88^{\circ}\right) \ldots\left(\cot 89^{\circ} \cot 1^{\circ}\right)=1$. Since $S>0$, we also have $S=1$.
17. The sides of a right triangle form an arithmetic sequence, while their sum equals 48 . Find the area of the triangle.
(A) 24
(B) 96
(C) 48
(D) 54
(E) 84

Answer: B.

Solution. Let $a<b<c$ be the lengths of the legs and the hypotenuse of the triangle. Then $c-b=b-a=h$ for some $h>0$. By the Pythagorean theorem, $(b-h)^{2}+b^{2}=(b+h)^{2}$ or $(b+h)^{2}-(b-h)^{2}=b^{2}$. Then $4 b h=b^{2}$. It follows that $h=b / 4$. The equality $(b-h)+b+(b+h)=48$ implies that $b=16$ so that $h=4$ and the lengths of the legs are 12 and 16 . Therefore, the area of the triangle equals $(1 / 2) 12 \cdot 16=96$.
18. The ratio of the legs in a right triangle equals $3 / 2$, while the length of the hypotenuse is $\sqrt{52}$. Find the area of the triangle.
(A) 12
(B) 13
(C) 26
(D) 30
(E) 169

Answer: A.
Solution. The lengths of the legs of the triangle are a and $\left(\frac{3}{2}\right) a$ for some $a>0$.
By the Pythagorean theorem, $a^{2}+\left(\left(\frac{3}{2}\right) a\right)^{2}=52$, so that $\left(\frac{13}{4}\right) a^{2}=52$. It follows that the legs have lengths $a=4$ and $\left(\frac{3}{2}\right) a=6$. Therefore, the area of the triangle is $\left(\frac{1}{2}\right) 6 \cdot 4=12$.
19. The Chebyshev polynomial of the first kind of order n is defined by $T_{n}(\cos \alpha)=\cos n \alpha$, so that $T_{0}(\cos \alpha)=1$ and hence $T_{0}(x)=1 ; T_{1}(\cos \alpha)=\cos \alpha$, hence $T_{1}(x)=x ; T_{2}(\cos \alpha)=\cos 2 \alpha=$ $2 \cos ^{2} \alpha-1$ so that $T_{2}(x)=2 x^{2}-1$, etc. What is the value of $T_{10}(\sin \alpha)$?
(A) $\cos 10 \alpha$
(B) $\sin 10 \alpha$
(C) $-\sin 10 \alpha$
(D) $-\cos 10 \alpha$
(E) $\frac{\sin 10 \alpha}{\cos \alpha}$

Answer: D.
Solution. We have $\sin \alpha=\cos \left(\frac{\pi}{2}-\alpha\right)$ so that

$$
\begin{gathered}
T_{10}(\sin \alpha)=T_{10}\left(\cos \left(\frac{\pi}{2}-\alpha\right)\right)=\cos \left(10\left(\frac{\pi}{2}-\alpha\right)\right) \\
=\cos (5 \pi-10 \alpha)=-\cos (-10 \alpha)=-\cos 10 \alpha
\end{gathered}
$$

20. Find the maximum value of the expression $f(x, y)=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}$ over the square Q : $-1 \leq x \leq 1,-1 \leq y \leq 1$.
(A) 1
(B) $\sqrt{\frac{3}{2}}$
(C) $\frac{3}{2}$
(D) $\frac{2}{\sqrt{3}}$
(E) $\frac{4}{3}$

Answer: A.
Solution. Let $u=\sqrt{1-x^{2}}$ and $v=\sqrt{1-y^{2}}$. Using the Arithmetic Mean - Geometric Mean Inequality, we obtain:

$$
f(x, y)=x v+y u \leq\left(\frac{1}{2}\right)\left(x^{2}+v^{2}\right)+\left(\frac{1}{2}\right)\left(y^{2}+u^{2}\right)=\left(\frac{1}{2}\right)\left(x^{2}+u^{2}+y^{2}+v^{2}\right)=\left(\frac{1}{2}\right)(1+1)=1 .
$$

Therefore, $f(x, y) \leq 1$ for all x, y in the square Q. On the other hand, $f(1,0)=1$.

