1. How many points (x, y) in the plane satisfy both $x^2 + y^2 = 25$ and $x^2 - 10x + y^2 - 24y = -105$?

(A) none (B) 1 (C) 2 (D) 3 (E) more than 3

Answer: B.

Solution. The second equation, upon completing the squares, becomes $(x - 5)^2 + (y - 12)^2 = 64$. Therefore, both equations represent circles. Their centers are 13 units apart and the sum of their radii is also 13.

2. Let $f(x) = (2x+3)^3$ and $g(x) = x^3 + x^2 - x - 1$. Denote the sum of the coefficients of the polynomial h(x) = f(g(x)) by *s*. Which of the following statements is true?

(A) $s \le 0$ (B) $1 \le s \le 6$ (C) $7 \le s \le 20$ (D) $21 \le s \le 36$ (E) s > 36

Answer: D.

Solution. The sum of the coefficients of any polynomial p(x) equals p(1). Therefore, s = h(1) = f(g(1)). We have g(1) = 0 and hence h(1) = f(0) = 27.

3. The graph of the function f(x) = ||2x| - 10| on the interval [-10, 10] looks like

(A) M (B) W (C) V (D) Λ (E) none of these

Answer: B.

Solution. The graph of the function g(x) = |2x| on [-10, 10] is a letter "V" with vertices at the points (-10, 20), (0, 0) and (10, 20). The graph of h(x) = g(x) - 10 is the graph of g(x) shifted downward by 10 units – the half of its height. The graph of f(x) = |h(x)| is obtained from the graph of g(x) by reflecting its part lying below the x-axis (a smaller "V") across the x-axis, thus creating a letter "W".

4. There is a unique positive number *r* such that the two equations y+2x = 0 and $(x-3)^2+(y-6)^2 = r^2$ have exactly one simultaneous solution. Which of the following statements is true?

(A) 0 < r < 1 (B) $1 \le r < 3$ (C) $3 \le r < 5$ (D) $5 \le r < 6$ (E) $r \ge 6$

Answer: D.

Solution. The first equation y + 2x = 0 describes a line, while the second equation $(x - 3)^2 + (y - 6)^2 = r^2$ describes a circle of radius *r* centered at the point (3, 6). The uniqueness of the simultaneous solution of the two equations means that the circle is tangent to the line, that is, *r* is the shortest distance from the circle's center to the line. To calculate *r*, consider the triangle with vertices *P*(3, 6), *Q*(-3, 6) and *O*(0, 0). Considering the sides *PQ* or *OQ* as its bases, we obtain two expressions for the triangle's area which are, therefore, equal: $(1/2)6 \cdot 6 = (1/2)\sqrt{6^2 + 3^2} \cdot r$. Consequently, $r = (6 \cdot 6)/\sqrt{45} = 12/\sqrt{5}$. It follows that 5 < r < 6 since $r^2 = \frac{144}{5} = 28\frac{4}{5}$ is between 5^2 and 6^2 .

5. The vertices of a triangle are the centers of the circles $C_1 = \{(x, y) \mid x^2 + y^2 = 1\}$, $C_2 = \{(x, y) \mid (x - 4)^2 + y^2 = 1\}$ and $C_3 = \{(x, y) \mid x^2 - 14x + y^2 - 16y = 0\}$. Let *S* be the area of the triangle. Which of the following statements is true?

(A) $S \le 6$ (B) $6 < S \le 9$ (C) $9 < S \le 12$ (D) $12 < S \le 15$ (E) S > 15

Answer: E.

Solution. The centers are (0,0) (4,0) and (7,8), so the area of the triangle is $\frac{1}{2}(4)(8) = 16$

6. How many real solutions does the following system have?

$$\begin{cases} x + y &= 2, \\ xy - z^2 &= 1. \end{cases}$$

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Answer: B.

Solution. The second equation implies that $xy = z^2 + 1 \ge 1 > 0$, so that x and y are of the same sign. It follows then from the first equation that they are positive. Hence the Arithmetic Mean – Geometric Mean Inequality applies, which says that $(x + y)/2 \ge \sqrt{xy}$. In our case, (x + y)/2 = 1 while $\sqrt{xy} \ge 1$ so the inequality turns into equality; in this case it implies that x = y. Therefore, x = y = 1 and z = 0.

7. Let a > 1. How many positive solutions has the equation

$$\sqrt{a - \sqrt{a + x}} = x ?$$

(A) 1 (B) 2 (C) 0 (D) 3 (E) 4

Answer: A.

Solution. The numbers $x \ge 0$ for which the function $f(x) = \sqrt{a - \sqrt{a + x}} - x$ is defined form an interval I = [0, b], where $b = a^2 - a$. In this interval the function f(x) is continuous and decreasing from $\sqrt{a - \sqrt{a}} > 0$ to -b < 0. Therefore, there is exactly one value x_0 in this interval such that $f(x_0) = 0$. Since f(0) > 0 and f(b) < 0, we have $0 < x_0 < b$, so that x_0 is positive as required.

8. The top of a rectangular box has area 40 square inches, the front has area 48 square inches, and the side has area 30 square inches. How high is the box?

(A) 3 (B) 4 (C) 5 (D) 6 (E) 8

Answer: D.

Solution. Let *x*, *y*, *z* be the width, depth, and height of the box, respectively. Then xy = 40, xz = 48 and yz = 30. Hence

$$x^2y^2z^2 = (xy)(xz)(yz) = 40 \cdot 48 \cdot 30 = 57600.$$

Therefore, xyz = 240, and z = (xyz)/(xy) = 240/40 = 6.

9. The lower two vertices of a square lie on the *x*-axis, while the upper two vertices of the square lie on the parabola $y = 15 - x^2$. What is the area of the square?

(A) 9 (B) $10\sqrt{2}$ (C) 16 (D) 25 (E) 36

Answer: E.

Solution. The parabola, and hence the whole picture, is symmetric with respect to the y-axis. Therefore, the midpoint of the bottom side of the square is at the origin, so that the upper right vertex (x, y) of the square satisfies two equations y = 2x and $y = 15 - x^2$. They imply that $2x = 15 - x^2$. This quadratic equation has one nonnegative root x = 3. Therefore, the sides of the square have length $2 \cdot 3 = 6$.

10. Pansies have 5 petals while lilacs have 4 petals. A bouquet has 20 flowers with a total of 92 petals. Let *P* be the number of pansies in the bouquet. Which of the following statements does *P* satisfy?

(A) $3 \le P \le 7$ (B) $8 \le P \le 10$ (C) $11 \le P \le 14$ (D) $15 \le P \le 17$ (E) $P \ge 18$

Answer: C.

Solution. If all the 20 flowers were lilacs, then there would be a total of $20 \cdot 4 = 80$ petals. Hence some lilacs should be replaced with pansies. How many? Each such replacement adds one more petal. Therefore, 92 - 80 = 12 lilacs should be replaced with pansies.

11. A three-digit number *abc* is *palindromic* if a = c. What is the number of distinct three-digit palindromic numbers?

(A) 72 (B) 84 (C) 88 (D) 90 (E) 100

Answer: D.

Solution. The pair of equal digits a = c can be selected in 9 ways (1, 2, ..., 9) while, for any such selection, *b* can be chosen in 10 different ways (0, 1, 2, ..., 9). Hence the number sought for is $9 \cdot 10 = 90$.

12. The double of a positive number is the triple of its cube. The number is:

(A) $\sqrt{2/3}$ (B) 1 (C) $\sqrt{3/2}$ (D) $\sqrt[3]{2}/\sqrt{3}$ (E) $\sqrt[3]{3}/\sqrt{2}$

Answer: A.

Solution. Let x be the number sought for. Then $2x = 3x^3$, or, equivalently, $x(2 - 3x^2) = 0$. Since x > 0, it follows that $x^2 = 2/3$ so that $x = \sqrt{2/3}$.

13. Suppose *a*, *b* and *c* are positive integers with a < b < c such that 1/a + 1/b + 1/c = 1. What is a + b + c?

(A) 6 (B) 8 (C) 9 (D) 11 (E) no such integers exist

Answer: D.

Solution. First note that a = 1 is impossible since this would imply that 1/a + 1/b + 1/c > 1. Similarly, $a \ge 3$ would imply that $1/a+1/b+1/c \le 1/3+1/4+1/5 < 1$, which is not possible either. Therefore, a = 2. Now we need to find integers b and c such that $3 \le b < c$ and 1/b + 1/c = 1/2. Again, $b \ge 4$ is ruled out since in this case $1/b + 1/c \le 1/4 + 1/5 < 1/2$. Therefore, b = 3 and hence c = 6, so that a + b + c = 2 + 3 + 6 = 11. 14. A quadratic equation $x^2 - 9x + a = 0$ has two distinct roots, one of them being twice the other. Which of the following statements is true?

(A) $a \le 5$ (B) $5 < a \le 10$ (C) $10 < a \le 15$ (D) $15 < a \le 20$ (E) a > 20

Answer: D.

Solution. Let the roots of the quadratic equation be *u* and 2*u*. Then the equation can be rewritten in the form (x - u)(x - 2u) = 0, or, equivalently, $x^2 - 3ux + 2u^2 = 0$. It follows that 3u = 9, so that u = 3 and hence $a = 2 \cdot 3^2 = 18$.

15. In the quadratic equation $x^2 - 7x + a = 0$ the sum of the squares of the roots equals 39. Find a.

(A) 8 (B) 7 (C) 6 (D) 5 (E) 4

Answer: D.

Solution. Let x_1 and x_2 be the roots of the equation. The latter can be rewritten as $(x - x_1)(x - x_2) = 0$ so that $x_1 + x_2 = 7$ and $x_1x_2 = a$. Then $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = 7^2 - 2a$. It follows that 49 - 2a = 39 and hence a = (49 - 39)/2 = 5.

16. Evaluate $S = \cot 1^{\circ} \cot 2^{\circ} \cot 3^{\circ} \dots \cot 89^{\circ}$.

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{2}{\pi}$ (C) 1 (D) $\frac{\sqrt{2}}{2}$ (E) 2

Answer: C. Solution. We have $S = \cot 1^{\circ} \cot 2^{\circ} \cot 3^{\circ} \dots \cot 89^{\circ}$ and $S = \cot 89^{\circ} \cot 88^{\circ} \cot 87^{\circ} \dots \cot 1^{\circ}$. Note that $\cot(90^{\circ} - x^{\circ}) = \tan x^{\circ}$ and hence $\cot(90^{\circ} - x^{\circ}) \cdot \cot x^{\circ} = 1$. It follows that $S^{2} = (\cot 1^{\circ} \cot 89^{\circ})(\cot 2^{\circ} \cot 88^{\circ}) \dots (\cot 89^{\circ} \cot 1^{\circ}) = 1$. Since S > 0, we also have S = 1.

17. The sides of a right triangle form an arithmetic sequence, while their sum equals 48. Find the area of the triangle.

(A) 24 (B) 96 (C) 48 (D) 54 (E) 84

Answer: B.

Solution. Let a < b < c be the lengths of the legs and the hypotenuse of the triangle. Then c - b = b - a = h for some h > 0. By the Pythagorean theorem, $(b - h)^2 + b^2 = (b + h)^2$ or $(b+h)^2 - (b-h)^2 = b^2$. Then $4bh = b^2$. It follows that h = b/4. The equality (b-h)+b+(b+h) = 48 implies that b = 16 so that h = 4 and the lengths of the legs are 12 and 16. Therefore, the area of the triangle equals $(1/2)12 \cdot 16 = 96$.

- 18. The ratio of the legs in a right triangle equals 3/2, while the length of the hypotenuse is $\sqrt{52}$. Find the area of the triangle.
 - (A) 12 (B) 13 (C) 26 (D) 30 (E) 169

Answer: A.

Solution. The lengths of the legs of the triangle are a and $\left(\frac{3}{2}\right)a$ for some a > 0. By the Pythagorean theorem, $a^2 + \left(\left(\frac{3}{2}\right)a\right)^2 = 52$, so that $\left(\frac{13}{4}\right)a^2 = 52$. It follows that the legs have lengths a = 4 and $\left(\frac{3}{2}\right)a = 6$. Therefore, the area of the triangle is $\left(\frac{1}{2}\right)6 \cdot 4 = 12$.

19. The Chebyshev polynomial of the first kind of order *n* is defined by $T_n(\cos \alpha) = \cos n\alpha$, so that $T_0(\cos \alpha) = 1$ and hence $T_0(x) = 1$; $T_1(\cos \alpha) = \cos \alpha$, hence $T_1(x) = x$; $T_2(\cos \alpha) = \cos 2\alpha = 2\cos^2 \alpha - 1$ so that $T_2(x) = 2x^2 - 1$, etc. What is the value of $T_{10}(\sin \alpha)$?

(A) $\cos 10\alpha$ (B) $\sin 10\alpha$ (C) $-\sin 10\alpha$ (D) $-\cos 10\alpha$ (E) $\frac{\sin 10\alpha}{\cos \alpha}$

Answer: D. Solution. We have $\sin \alpha = \cos \left(\frac{\pi}{2} - \alpha\right)$ so that $T_{10}(\sin \alpha) = T_{10} \left(\cos \left(\frac{\pi}{2} - \alpha\right)\right) = \cos \left(10 \left(\frac{\pi}{2} - \alpha\right)\right)$ $= \cos(5\pi - 10\alpha) = -\cos(-10\alpha) = -\cos 10\alpha.$

- 20. Find the maximum value of the expression $f(x, y) = x\sqrt{1-y^2} + y\sqrt{1-x^2}$ over the square Q: $-1 \le x \le 1, -1 \le y \le 1$.
 - (A) 1 (B) $\sqrt{\frac{3}{2}}$ (C) $\frac{3}{2}$ (D) $\frac{2}{\sqrt{3}}$ (E) $\frac{4}{3}$

Answer: A.

Solution. Let $u = \sqrt{1 - x^2}$ and $v = \sqrt{1 - y^2}$. Using the Arithmetic Mean – Geometric Mean Inequality, we obtain:

$$f(x,y) = xv + yu \le \left(\frac{1}{2}\right)(x^2 + v^2) + \left(\frac{1}{2}\right)(y^2 + u^2) = \left(\frac{1}{2}\right)(x^2 + u^2 + y^2 + v^2) = \left(\frac{1}{2}\right)(1+1) = 1.$$

Therefore, $f(x, y) \le 1$ for all x, y in the square Q. On the other hand, f(1, 0) = 1.