1. How many points (x, y) in the plane satisfy both $x^{2}+y^{2}=25$ and $x^{2}-10 x+y^{2}-24 y=-105$?
(A) none
(B) 1
(C) 2
(D) 3
(E) more than 3
2. Let $f(x)=(2 x+3)^{3}$ and $g(x)=x^{3}+x^{2}-x-1$. Denote the sum of the coefficients of the polynomial $h(x)=f(g(x))$ by s. Which of the following statements is true?
(A) $s \leq 0$
(B) $1 \leq s \leq 6$
(C) $7 \leq s \leq 20$
(D) $21 \leq s \leq 36$
(E) $s>36$
3. The graph of the function $f(x)=||2 x|-10|$ on the interval $[-10,10]$ looks like
(A) M
(B) W
(C) V
(D) Λ
(E) none of these
4. There is a unique positive number r such that the two equations $y+2 x=0$ and $(x-3)^{2}+(y-6)^{2}=r^{2}$ have exactly one simultaneous solution. Which of the following statements is true?
(A) $0<r<1$
(B) $1 \leq r<3$
(C) $3 \leq r<5$
(D) $5 \leq r<6$
(E) $r \geq 6$
5. The vertices of a triangle are the centers of the circles $C_{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}, C_{2}=\{(x, y) \mid$ $\left.(x-4)^{2}+y^{2}=1\right\}$ and $C_{3}=\left\{(x, y) \mid x^{2}-14 x+y^{2}-16 y=0\right\}$. Let S be the area of the triangle. Which of the following statements is true?
(A) $S \leq 6$
(B) $6<S \leq 9$
(C) $9<S \leq 12$
(D) $12<S \leq 15$
(E) $S>15$
6. How many real solutions does the following system have?

$$
\begin{cases}x+y & =2 \\ x y-z^{2} & =1\end{cases}
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
7. Let $a>1$. How many positive solutions has the equation

$$
\sqrt{a-\sqrt{a+x}}=x ?
$$

(A) 1
(B) 2
(C) 0
(D) 3
(E) 4
8. The top of a rectangular box has area 40 square inches, the front has area 48 square inches, and the side has area 30 square inches. How high is the box?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 8
9. The lower two vertices of a square lie on the x-axis, while the upper two vertices of the square lie on the parabola $y=15-x^{2}$. What is the area of the square?
(A) 9
(B) $10 \sqrt{2}$
(C) 16
(D) 25
(E) 36
10. Pansies have 5 petals while lilacs have 4 petals. A bouquet has 20 flowers with a total of 92 petals. Let P be the number of pansies in the bouquet. Which of the following statements does P satisfy?
(A) $3 \leq P \leq 7$
(B) $8 \leq P \leq 10$
(C) $11 \leq P \leq 14$
(D) $15 \leq P \leq 17$
(E) $P \geq 18$
11. A three-digit number $a b c$ is palindromic if $a=c$. What is the number of distinct three-digit palindromic numbers?
(A) 72
(B) 84
(C) 88
(D) 90
(E) 100
12. The double of a positive number is the triple of its cube. The number is:
(A) $\sqrt{2 / 3}$
(B) 1
(C) $\sqrt{3 / 2}$
(D) $\sqrt[3]{2} / \sqrt{3}$
(E) $\sqrt[3]{3} / \sqrt{2}$
13. Suppose a, b and c are positive integers with $a<b<c$ such that $1 / a+1 / b+1 / c=1$. What is $a+b+c$?
(A) 6
(B) 8
(C) 9
(D) 11
(E) no such integers exist
14. A quadratic equation $x^{2}-9 x+a=0$ has two distinct roots, one of them being twice the other. Which of the following statements is true?
(A) $a \leq 5$
(B) $5<a \leq 10$
(C) $10<a \leq 15$
(D) $15<a \leq 20$
(E) $a>20$
15. In the quadratic equation $x^{2}-7 x+a=0$ the sum of the squares of the roots equals 39 . Find a.
(A) 8
(B) 7
(C) 6
(D) 5
(E) 4
16. Evaluate $S=\cot 1^{\circ} \cot 2^{\circ} \cot 3^{\circ} \ldots \cot 89^{\circ}$.
(A) $\frac{\pi}{2}$
(B) $\frac{2}{\pi}$
(C) 1
(D) $\frac{\sqrt{2}}{2}$
(E) 2
17. The sides of a right triangle form an arithmetic sequence, while their sum equals 48 . Find the area of the triangle.
(A) 24
(B) 96
(C) 48
(D) 54
(E) 84
18. The ratio of the legs in a right triangle equals $3 / 2$, while the length of the hypotenuse is $\sqrt{52}$. Find the area of the triangle.
(A) 12
(B) 13
(C) 26
(D) 30
(E) 169
19. The Chebyshev polynomial of the first kind of order n is defined by $T_{n}(\cos \alpha)=\cos n \alpha$, so that $T_{0}(\cos \alpha)=1$ and hence $T_{0}(x)=1 ; T_{1}(\cos \alpha)=\cos \alpha$, hence $T_{1}(x)=x ; T_{2}(\cos \alpha)=\cos 2 \alpha=$ $2 \cos ^{2} \alpha-1$ so that $T_{2}(x)=2 x^{2}-1$, etc. What is the value of $T_{10}(\sin \alpha)$?
(A) $\cos 10 \alpha$
(B) $\sin 10 \alpha$
(C) $-\sin 10 \alpha$
(D) $-\cos 10 \alpha$
(E) $\frac{\sin 10 \alpha}{\cos \alpha}$
20. Find the maximum value of the expression $f(x, y)=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}$ over the square Q : $-1 \leq x \leq 1,-1 \leq y \leq 1$.
(A) 1
(B) $\sqrt{\frac{3}{2}}$
(C) $\frac{3}{2}$
(D) $\frac{2}{\sqrt{3}}$
(E) $\frac{4}{3}$

