Target Practice 2

1. How many ordered pairs (x, y) of positive integers satisfy

$$
x y+x+y=199 ?
$$

2. The quantity V varies inversely with quantity t and directly with quantity R. When $R=2$ and $t=4, V=12$. What is the value of V when $t=9$ and $R=3$?
3. How many different amounts can be made using one or more coins from a stack consisting of two pennies, three nickles, four dimes and five quarters.
4. Triangle T has vertices $(0,1),(1,0)$, and $(5,0)$. Circle C circumscribes T. If (a, b) is the center of C, then $a+b=$
5. A particle starts at the origin $(0,0)$ at time 0 . It moves at one unit per second first to $(1,0)$ then to $(1,1),(0,1),(-1,1)$ and to $(-1,0)$ spiraling outward and tracing out rectangular regions. Find the location of the particle after 2000 seconds.
6. The animal shown in the diagram is a gnu. Which one of the labeled body parts can be repositioned to produce a new gnu?

7. Let

$$
g(x)= \begin{cases}|x| & \text { if } x<3 \\ x^{2}-1 & \text { if } x \geq 3\end{cases}
$$

What is slope of the line joining the two points $(-2, g(-2))$ and $(3, g(3))$?

Mathcounts Coaches Workshop, IOLANI SCHOOL, Summer 2000

8. There exist positive integers x, y, and z satisfying

$$
28 x+30 y+31 z=365
$$

Compute the value of $z-2 x$ for some such triplet.
9. The product of four distinct positive integers, a, b, c, and d is 8 !. The numbers also satisfy

$$
\begin{align*}
a b+a+b & =391 \tag{1}\\
b c+b+c & =199 . \tag{2}
\end{align*}
$$

What is d ?
10. Find the sum of all values of x that satisfy

$$
|x+1|+3|x-2|+5|x-4|=20
$$

11. What is the product of the roots of

$$
(x-1)(x-3)+(x-4)(x+5)+(x-3)(x-7)=0 ?
$$

12. Twelve lattice points are arranged along the edges of a 3×3 square as shown. How many triangles have all three of their vertices among these points? One such triangle is shown.

