Problem Set 2, Handbook 2000 Problems

1. How many integers in the set $\{1,2,3,4, \ldots, 360\}$ have at least one prime divisor in common with 360 ?
Solution: 264
2. Use the digits 2 through 9 , one per square, to maximize the value of

What is that maximum value?
Solution: $15,932=9632+84 \times 75$.
3. How many equilateral triangles have all three vertices in the hexagonal lattice shown?

Solution: 8

4. The product of the digits of a four-digit number is $6!$. What is the largest the number could be? What is the smallest it could be? How many such numbers are there?
Solution: largest: 9852, smallest: 2589, how many: 72.
5. Find all pairs of positive integers, (x, y) such that

$$
1+4 x+6 y=x y
$$

Solution: Transform to $x y-6 y-4 x-5^{2}+4 \cdot 6=0$. Then factor to get $(x-6)(y-4)=25$. Finally, find six different pairs.
6. The pentagon $A B C D E$ with vertices $A=(0,0), B=(7,0), C=(13,8)$, $D=(5,14)$, and $E=(0, y)$ has perimeter 42. What is y ?

Solution: $y=2$.
7. The pentagon P with vertices $A=(0,0), B=(7,0), C=(13,8), D=(5,14)$, and $E=(0,14)$. A line L through the origin divides P into two quadrilaterals with equal perimeters. Find the coordinates of the point F where L meets $\overline{C D}$.

Solution: $6 / 10(5,14)+4 / 10(13,8)=(8.20,11.60)$.
8. There are eight unit squares that have two or more vertices in the 2 by 3 array of lattice points • •
How many unit squares have at least two vertices in an m by n array of lattice points?

Solution: Its $(m-1)(n-1)+2(n-1)+2(m-1)$
9. Each of the six faces of a plastic cube is colored either red or green with equal probability. What is the probability that such a coloring results in a cube that has a vertex, all three of whose containing faces is the same color?
Solution: $46 / 64=23 / 32$.
10. Three faces of a cube are randomly selected. What is the probability that they have a common vertex?

Solution: $2 / 5$.
11. Find a number that differs by 1 from the sum of the squares of its digits.

Solution: 35 and 75
12. A point is randomly selected from the triangle with vertices at $(0,0),(2,0)$, and $(0,3)$. What is the probability that the point is within one unit of $(0,0)$? Express your answer in terms of π.
Solution: $\pi / 12$
13. A point is randomly selected from the rectangle with vertices at $(0,0),(2,0)$, $(2,3)$ and $(0,3)$. What is the probability that the x-coordinate of the point is less than the y-coordinate?
Solution: $2 / 3$.
14. Both \odot and $*$ are in the set $\{+, \times, \div,-\}$, and

$$
(12 \odot 2) \div(9 * 3)=2 / 9
$$

Compute the value of $(8 \odot 4) \div(1 * 2)$.
Solution: 1
15. Compute the value of $99^{3}+3 \cdot 99^{2}+3 \cdot 99$

Solution: $100^{3}-1=999,999$.
16. There are several sets of three different numbers whose sum is 14 which can be chosen from $\{1,2,3,4,5,6,7,8,9\}$. How many of these sets contain a 4 ?
Solution: 3
17. Two circles of radius 1 are centered at $(4,0)$ and $(-4,0)$. How many circles contain exactly one point of each of the given circles and also the point $(0,5)$?
Solution: 4
18. How many integers in the range 500 to 999 have no consecutive identical digits. For example, 626 qualifies but 722 does not.

Solution: 405
19. The function f is linear and satisfies $f(d+1)-f(d)=3$ for all real numbers d. What is $f(3)-f(5)$?
Solution: -6 .

