1. Find the minimum value of the function $f(x)=x^{2}+\frac{1}{x^{2}+1}, \quad x \in \mathbb{R}$.
(A) $\frac{1}{16}$
(B) $\frac{3}{16}$
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
(E) 1
2. How many solutions does the equation $\sqrt{x+1}+2 \exp \left(x^{3}+1\right)=2019$ have?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
3. What is the remainder when $x^{2019}+2019 x-2018$ is divided by $x-1$?
(A) 1
(B) 2
(C) 2017
(D) 2019
(E) 2020
4. Let $n \geqslant 2$. Assume that $\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)=x^{n}+P(x)$ for all $x \in \mathbb{R}$, where $P(x)$ is a polynomial of degree $n-2$. Find the value of the sum $a_{1}+a_{2}+\cdots+a_{n}$. (A polynomial of degree k is a function of the form $\alpha_{k} x^{k}+\alpha_{k-1} x^{k-1}+\cdots+\alpha_{0}$.)
(A) 1
(B) -1
(C) n
(D) $-n$
(E) 0
5. Let a be a real number. The system of equations $3 x+2 y=8$ and $a x-8 y=9$ has no solutions (x, y). What is the value of a ?
(A) 0
(B) 1
(C) 3
(D) -8
(E) -12
6. How many real numbers x with $0<x \leqslant 10$ are solutions to $\log _{10}(x)=\sin (x)$, where x in $\sin (x)$ is in radians and $\log _{10}(x)$ is the logarithm of x to base 10 ?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
7. Positive integer numbers a and b satisfy the equation $\sqrt{3+2 \sqrt{2}}=a+b \sqrt{2}$. What is the value of $a+b$?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
8. Let $x^{2}+y^{2}=10$. What is the biggest value for $x y$?
(A) 10
(B) 20
(C) 5
(D) $10 \sqrt{5}$
(E) 6
9. If $n!=7!6$! then what is n ?
(A) 8
(B) 9
(C) 10
(D) 13
(E) Such n does not exist
10. What is the value of $\sqrt{1+2+4+8+16+\cdots+2^{2019}}$, rounded up to the nearest whole number?
(A) $2^{1010}-1$
(B) 2^{1010}
(C) $2^{1010}+1$
(D) $2^{2019}-1$
(E) $2^{2019}+1$
11. The numbers x and y satisfy $2^{x}=9$ and $3^{y}=16$. What is the value of $x y$?
(A) 7
(B) 8
(C) $\frac{64}{9}$
(D) $\frac{69}{8}$
(E) $\frac{25}{3}$
12. Let $f(x)=\frac{x-1}{x+1}$ and let $f^{(n)}(x)$ denote the n-fold composition of $f(x)$ with itself. That is, $f^{(1)}(x)=f(x)$ and $f^{(n)}(x)=f\left(f^{(n-1)}(x)\right)$. Which of the following is $f^{(2019)}(x)$?
(A) $-\frac{x+1}{x-1}$
(B) $-\frac{1}{x}$
(C) $\frac{x-1}{x+1}$
(D) x
(E) $-\frac{x-1}{x+1}$
13. It is known that $a+b+c=5$ and $a b+b c+a c=5$. What could be the value of $a^{2}+b^{2}+c^{2}$?
(A) 10
(B) 15
(C) 20
(D) 25
(E) 30
14. For which value of a does the straight line $y=6 x$ intersect the parabola $y=x^{2}+a$ at exactly one point?
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9
15. The solutions of the quadratic equation $x^{2}+p x+q=0$ are obtained by adding 5 to each of the solutions of $x^{2}-4 x+2=0$. Find the value of $3 p+q$.
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9
16. How many solutions (a, b, c) does the following system have?

$$
\begin{aligned}
& 1+a+b=a b \\
& 2+a+c=a c \\
& 5+b+c=b c
\end{aligned}
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Infinitely many
17. Find the value of the product $P=\left(1-\frac{1}{2^{2}}\right) \cdot\left(1-\frac{1}{3^{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{10^{2}}\right)$.
(A) 0.25
(B) 0.33
(C) 0.44
(D) 0.55
(E) 0.66
18. The sequence a_{n} is defined by $a_{n}=1+\sqrt{\frac{1}{n}}-\sqrt{\frac{1}{n+1}}-\sqrt{\frac{1}{n}-\frac{1}{n+1}}$. What is the value of the product $a_{1} a_{2} \cdots a_{99}$?
(A) $\frac{1}{55}$
(B) $\frac{1}{110}$
(C) $\frac{1}{99}$
(D) $\frac{2}{99}$
(E) $\frac{1}{100}$
19. The graph of the function $y=\frac{x-3}{x^{2}-x+6}$ is obtained from the graph of $y=\frac{1}{x+2}$ by deleting a single point (u, v). What is the value of $u \cdot v$?
(A) $-\frac{3}{5}$
(B) $-\frac{1}{5}$
(C) 0
(D) $\frac{1}{5}$
(E) $\frac{3}{5}$
20. Find the value of the expression $S=1!\cdot 3-2!\cdot 4+3!\cdot 5-4!\cdot 6+\ldots-2016!\cdot 2018+2017$!.
(A) 1
(B) -1
(C) -2018
(D) 2018
(E) 2017

