1. Find the minimum value of the function $f(x) = x^2 + \frac{1}{x^2 + 1}, \quad x \in \mathbb{R}.$

(A) $\frac{1}{16}$ (B) $\frac{3}{16}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$ (E) 1

Answer: E.

Solution. We have $f(x) = x^2 + 1 + \frac{1}{x^2 + 1} - 1 \ge 2\sqrt{(x^2 + 1)\frac{1}{x^2 + 1}} - 1 = 1$. The equality occurs when $x^2 + 1 = \frac{1}{x^2 + 1}$, which is equivalent to x = 0.

2. How many solutions does the equation $\sqrt{x+1} + 2\exp(x^3 + 1) = 2019$ have?

 $(A) 0 \qquad (B) 1 \qquad (C) 2 \qquad (D) 3 \qquad (E) 4$

Answer: B.

Solution. The function $f(x) = \sqrt{x+1} + 2\exp(x^3+1) - 1$ is an increasing function on $[-1, \infty)$ with range $[1, \infty)$. Hence the given equation has a unique solution.

3. What is the remainder when $x^{2019} + 2019x - 2018$ is divided by x - 1?

(A) 1 (B) 2 (C) 2017 (D) 2019 (E) 2020

Answer: B.

Solution. The remainder is the value of the polynomial at x = 1.

4. Let $n \ge 2$. Assume that $(x - a_1)(x - a_2) \dots (x - a_n) = x^n + P(x)$ for all $x \in \mathbb{R}$, where P(x) is a polynomial of degree n - 2. Find the value of the sum $a_1 + a_2 + \dots + a_n$. (A polynomial of degree k is a function of the form $\alpha_k x^k + \alpha_{k-1} x^{k-1} + \dots + \alpha_0$.)

(A) 1 (B) -1 (C) n (D) -n (E) 0

Answer: E. Solution. This sum equals the negative of the coefficient of x^{n-1} .

- 5. Let *a* be a real number. The system of equations 3x + 2y = 8 and ax 8y = 9 has no solutions (x, y). What is the value of *a*?
 - (A) 0 (B) 1 (C) 3 (D) -8 (E) -12

Answer: E.

Solution. The lines must be parallel, i.e., the answer is E.

Alternatively, the first equation yields y = 4 - (3/2)x. Substitute into the second equation to get ax - 32 + 12x = 9. This becomes (a + 12)x = 41. If a = -12, we get 0 = 41, so there is no solution (and if $a \neq -12$, there is a solution).

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Answer: D.

Solution. Draw the graphs of $y = \log_{10}(x)$ and $y = \sin(x)$. The graphs cross once between 0 and π , and twice between 2π and 3π .

7. Positive integer numbers a and b satisfy the equation $\sqrt{3} + 2\sqrt{2} = a + b\sqrt{2}$. What is the value of a + b?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

Answer: B.

Solution. From $3 + 2\sqrt{2} = a^2 + 2ab\sqrt{2} + 2b$, we have $a^2 + 2b = 3$ and ab = 1. Hence either a = b = 1 or a = b = -1, and only in the former case we have $a^2 + 2b = 3$.

- 8. Let $x^2 + y^2 = 10$. What is the biggest value for *xy*?
 - (A) 10 (B) 20 (C) 5 (D) $10\sqrt{5}$ (E) 6

Answer: C.

Solution. Since $0 \le (x - y)^2 = x^2 - 2xy + y^2 = 10 - 2xy$, we have $xy \le 5$. The equality is attained when x = y.

9. If n! = 7! 6! then what is *n*?

(A) 8 (B) 9 (C) 10 (D) 13 (E) Such *n* does not exist

Answer: C.

Solution. Since n > 7, the problem is equivalent to finding $n \ge 8$ such that $8 \cdot \ldots \cdot n = 6! = 720$. Trying successively $n = 8, 9, \ldots$, we find: n = 10.

10. What is the value of $\sqrt{1+2+4+8+16+\cdots+2^{2019}}$, rounded up to the nearest whole number?

(A)
$$2^{1010} - 1$$
 (B) 2^{1010} (C) $2^{1010} + 1$ (D) $2^{2019} - 1$ (E) $2^{2019} + 1$

Answer: B.

Solution. The formula for the sum of a geometric series implies that

$$1 + 2 + 4 + 8 + 16 + \dots + 2^{2019} = 2^{2020} - 1.$$

Now $\sqrt{2^{2020}} = 2^{\frac{1}{2}2020} = 2^{1010}$, so $\sqrt{1 + 2 + 4 + 8 + \dots + 2^{2019}} = \sqrt{2^{2020} - 1}$. Then, putting $m = 2^{1010}$ and $s = \sqrt{2^{2020} - 1}$, we have $m - s = (m^2 - s^2)/(m + s) = 1/(m + s) < 1/m$ so that $m - m^{-1} < s < m$.

11. The numbers x and y satisfy $2^x = 9$ and $3^y = 16$. What is the value of xy?

(A) 7 (B) 8 (C)
$$\frac{64}{9}$$
 (D) $\frac{69}{8}$ (E) $\frac{25}{3}$

Answer: B.

Solution. $x = \log 9 / \log 2 = (2 \log 3) / \log 2$ and $y = \log 16 / \log 3 = (4 \log 2) / \log 3$, hence xy = 8.

12. Let $f(x) = \frac{x-1}{x+1}$ and let $f^{(n)}(x)$ denote the *n*-fold composition of f(x) with itself. That is, $f^{(1)}(x) = f(x)$ and $f^{(n)}(x) = f(f^{(n-1)}(x))$. Which of the following is $f^{(2019)}(x)$?

(A)
$$-\frac{x+1}{x-1}$$
 (B) $-\frac{1}{x}$ (C) $\frac{x-1}{x+1}$ (D) x (E) $-\frac{x-1}{x+1}$

Answer: A.

Solution. It is convenient to set $f^{(0)}(x) = x$. Then we have $f^{(1)}(x) = f(x)$, $f^{(2)}(x) = -\frac{1}{x}$, $f^{(3)}(x) = -\frac{x+1}{x-1}$, and $f^{(4)}(x) = x = f^{(0)}(x)$. After that, the sequence $f^{(n)}(x)$ repeats periodically with period 4 so that for any $n \ge 0$ we have $f^{(n)}(x) = f^{(r_n)}(x)$, where r_n is the remainder of the division of n by 4. Since $2019 = 4 \cdot 504 + 3$, we have $f^{(2019)}(x) = f^{(3)}(x) = -\frac{x+1}{x-1}$.

- 13. It is known that a + b + c = 5 and ab + bc + ac = 5. What could be the value of $a^2 + b^2 + c^2$?
 - (A) 10 (B) 15 (C) 20 (D) 25 (E) 30

Answer: B. Solution. $a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ac) = 5^2 - 2 \cdot 5 = 15.$

14. For which value of *a* does the straight line y = 6x intersect the parabola $y = x^2 + a$ at exactly one point?

(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

Answer: E.

Solution. This will happen when equation $6x = x^2 + a$ has only one solution, i.e. its discriminant $6^2 - 4a = 0$. Hence, a = 9.

15. The solutions of the quadratic equation $x^2 + px + q = 0$ are obtained by adding 5 to each of the solutions of $x^2 - 4x + 2 = 0$. Find the value of 3p + q.

(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

Answer: A.

Solution. If x is a root of the equation $x^2 + px + q = 0$, then x - 5 is a root of $x^2 - 4x + 2 = 0$, that is,

$$0 = (x-5)^2 - 4 \cdot (x-5) + 2 = x^2 - 14x + 47.$$

Therefore, the quadratic polynomials $x^2 + px + q$ and $x^2 - 14x + 47$, having the same roots and the same leading term x^2 , are identical so that $3p + q = 3 \cdot (-14) + 47 = 5$.

16. How many solutions (a, b, c) does the following system have?

$$1 + a + b = ab,$$

$$2 + a + c = ac,$$

$$5 + b + c = bc.$$

 $(A) 0 \qquad (B) 1 \qquad (C) 2 \qquad (D) 3 \qquad (E) Infinitely many$

Answer: C.

Solution. The given equations can be rewritten in the form:

$$(a-1)(b-1) = 2,$$

 $(a-1)(c-1) = 3,$
 $(b-1)(c-1) = 6,$

or, setting x = a - 1, y = b - 1, z = c - 1, in the form

$$xy = 2,$$

 $xz = 3,$
 $yz = 6.$

Multiplying these equations, we get $(xyz)^2 = 36$, so that either xyz = 6 or xyz = -6. In the former case we have z = (xyz)/(xy) = 6/2 = 3, y = 6/3 = 2, x = 6/6 = 1; in the latter case, similarly, z = -3, y = -2, x = -1. Hence there are two solutions.

17. Find the value of the product $P = \left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{10^2}\right)$.

(A) 0.25 (B) 0.33 (C) 0.44 (D) 0.55 (E) 0.66

Answer: D. **Solution.** Use the formula for the difference of two squares:

$$P = \left(1 - \frac{1}{2}\right) \cdot \left(1 + \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 + \frac{1}{3}\right) \cdot \dots \cdot \left(1 - \frac{1}{9}\right) \cdot \left(1 + \frac{1}{9}\right) \cdot \left(1 - \frac{1}{10}\right) \cdot \left(1 + \frac{1}{10}\right)$$
$$= \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{9}{8} \cdot \frac{8}{9} \cdot \frac{10}{9} \cdot \frac{9}{10} \cdot \frac{11}{10} = \frac{1}{2} \cdot \frac{11}{10} = \frac{11}{20} = 0.55.$$

Test with Solutions for Sponsors

18. The sequence a_n is defined by $a_n = 1 + \sqrt{\frac{1}{n}} - \sqrt{\frac{1}{n+1}} - \sqrt{\frac{1}{n} - \frac{1}{n+1}}$. What is the value of the product $a_1 a_2 \cdots a_{99}$?

(A)
$$\frac{1}{55}$$
 (B) $\frac{1}{110}$ (C) $\frac{1}{99}$ (D) $\frac{2}{99}$ (E) $\frac{1}{100}$

Answer: A.

Solution. We start with converting a_n into a product:

$$a_n = 1 + \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}} = \left(1 + \frac{1}{\sqrt{n}}\right) \left(1 - \frac{1}{\sqrt{n+1}}\right)$$
$$= \frac{\sqrt{n+1}}{\sqrt{n}} \cdot \frac{\sqrt{n+1} - 1}{\sqrt{n+1}} = \frac{\sqrt{n+1}}{\sqrt{n}} \cdot \frac{(n+1) - 1}{\sqrt{n+1} + 1} \cdot \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n+1}}{\sqrt{n+1} + 1} \cdot \frac{\sqrt{n}}{\sqrt{n+1}}$$

Then

$$a_{1} \cdot a_{2} \cdots a_{99} = \left(\frac{\sqrt{1}+1}{\sqrt{2}+1} \cdot \frac{\sqrt{1}}{\sqrt{2}}\right) \cdot \left(\frac{\sqrt{2}+1}{\sqrt{3}+1} \cdot \frac{\sqrt{2}}{\sqrt{3}}\right) \cdot \left(\frac{\sqrt{3}+1}{\sqrt{4}+1} \cdot \frac{\sqrt{3}}{\sqrt{4}}\right) \cdot \dots \cdot \\ = \left(\frac{\sqrt{99}+1}{\sqrt{100}+1} \cdot \frac{\sqrt{99}}{\sqrt{100}}\right) = \frac{2 \cdot 1}{(10+1) \cdot 10} = \frac{1}{55}.$$

19. The graph of the function $y = \frac{x-3}{x^2-x+6}$ is obtained from the graph of $y = \frac{1}{x+2}$ by deleting a single point (u, v). What is the value of $u \cdot v$?

(A) $-\frac{3}{5}$ (B) $-\frac{1}{5}$ (C) 0 (D) $\frac{1}{5}$ (E) $\frac{3}{5}$

Answer: E.

Solution. We may rewrite $y = \frac{x-3}{x^2-x+6}$ as $y = \frac{x-3}{(x-3)\cdot(x+2)}$. For $x \neq 3$ we may simplify and get $y = \frac{1}{x+2}$, hence the point to be deleted is (3, 1/5).

20. Find the value of the expression $S = 1! \cdot 3 - 2! \cdot 4 + 3! \cdot 5 - 4! \cdot 6 + \ldots - 2016! \cdot 2018 + 2017!$.

(A) 1 (B) -1 (C) -2018 (D) 2018 (E) 2017

Answer: A. **Solution.** Observe that

$$S = 1! \cdot (1+2) - 2! \cdot (1+3) + 3! \cdot (1+4) - 4! \cdot (1+5) + \dots + 2015! \cdot (1+2016) - 2016! \cdot (1+2017) + 2017! = 1! + 2! - 2! - 3! + 3! + 4! - 4! - 5! + \dots + 2015! + 2016! - 2016! - 2017! + 2017! = 1.$$