1. Find the minimum value of the function $f(x)=x^{2}+\frac{1}{x^{2}+1}, \quad x \in \mathbb{R}$.
(A) $\frac{1}{16}$
(B) $\frac{3}{16}$
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
(E) 1

Answer: E.
Solution. We have $f(x)=x^{2}+1+\frac{1}{x^{2}+1}-1 \geqslant 2 \sqrt{\left(x^{2}+1\right) \frac{1}{x^{2}+1}}-1=1$. The equality occurs when $x^{2}+1=\frac{1}{x^{2}+1}$, which is equivalent to $x=0$.
2. How many solutions does the equation $\sqrt{x+1}+2 \exp \left(x^{3}+1\right)=2019$ have?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Answer: B.
Solution. The function $f(x)=\sqrt{x+1}+2 \exp \left(x^{3}+1\right)-1$ is an increasing function on $[-1, \infty)$ with range $[1, \infty)$. Hence the given equation has a unique solution.
3. What is the remainder when $x^{2019}+2019 x-2018$ is divided by $x-1$?
(A) 1
(B) 2
(C) 2017
(D) 2019
(E) 2020

Answer: B.
Solution. The remainder is the value of the polynomial at $x=1$.
4. Let $n \geqslant 2$. Assume that $\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)=x^{n}+P(x)$ for all $x \in \mathbb{R}$, where $P(x)$ is a polynomial of degree $n-2$. Find the value of the sum $a_{1}+a_{2}+\cdots+a_{n}$. (A polynomial of degree k is a function of the form $\alpha_{k} x^{k}+\alpha_{k-1} x^{k-1}+\cdots+\alpha_{0}$.)
(A) 1
(B) -1
(C) n
(D) $-n$
(E) 0

Answer: E.
Solution. This sum equals the negative of the coefficient of x^{n-1}.
5. Let a be a real number. The system of equations $3 x+2 y=8$ and $a x-8 y=9$ has no solutions (x, y). What is the value of a ?
(A) 0
(B) 1
(C) 3
(D) -8
(E) -12

Answer: E.
Solution. The lines must be parallel, i.e., the answer is E.
Alternatively, the first equation yields $y=4-(3 / 2) x$. Substitute into the second equation to get $a x-$ $32+12 x=9$. This becomes $(a+12) x=41$. If $a=-12$, we get $0=41$, so there is no solution (and if $a \neq-12$, there is a solution).
6. How many real numbers x with $0<x \leqslant 10$ are solutions to $\log _{10}(x)=\sin (x)$, where x in $\sin (x)$ is in radians and $\log _{10}(x)$ is the logarithm of x to base 10 ?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Answer: D.
Solution. Draw the graphs of $y=\log _{10}(x)$ and $y=\sin (x)$. The graphs cross once between 0 and π, and twice between 2π and 3π.
7. Positive integer numbers a and b satisfy the equation $\sqrt{3+2 \sqrt{2}}=a+b \sqrt{2}$. What is the value of $a+b$?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Answer: B.
Solution. From $3+2 \sqrt{2}=a^{2}+2 a b \sqrt{2}+2 b$, we have $a^{2}+2 b=3$ and $a b=1$. Hence either $a=b=1$ or $a=b=-1$, and only in the former case we have $a^{2}+2 b=3$.
8. Let $x^{2}+y^{2}=10$. What is the biggest value for $x y$?
(A) 10
(B) 20
(C) 5
(D) $10 \sqrt{5}$
(E) 6

Answer: C.
Solution. Since $0 \leqslant(x-y)^{2}=x^{2}-2 x y+y^{2}=10-2 x y$, we have $x y \leqslant 5$. The equality is attained when $x=y$.
9. If $n!=7!6!$ then what is n ?
(A) 8
(B) 9
(C) 10
(D) 13
(E) Such n does not exist

Answer: C.
Solution. Since $n>7$, the problem is equivalent to finding $n \geqslant 8$ such that $8 \cdot \ldots \cdot n=6!=720$. Trying successively $n=8,9, \ldots$, we find: $n=10$.
10. What is the value of $\sqrt{1+2+4+8+16+\cdots+2^{2019}}$, rounded up to the nearest whole number?
(A) $2^{1010}-1$
(B) 2^{1010}
(C) $2^{1010}+1$
(D) $2^{2019}-1$
(E) $2^{2019}+1$

Answer: B.
Solution. The formula for the sum of a geometric series implies that

$$
1+2+4+8+16+\cdots+2^{2019}=2^{2020}-1
$$

Now $\sqrt{2^{2020}}=2^{\frac{1}{2} 2020}=2^{1010}$, so $\sqrt{1+2+4+8+\cdots+2^{2019}}=\sqrt{2^{2020}-1}$. Then, putting $m=2^{1010}$ and $s=\sqrt{2^{2020}-1}$, we have $m-s=\left(m^{2}-s^{2}\right) /(m+s)=1 /(m+s)<1 / m$ so that $m-m^{-1}<s<m$.
11. The numbers x and y satisfy $2^{x}=9$ and $3^{y}=16$. What is the value of $x y$?
(A) 7
(B) 8
(C) $\frac{64}{9}$
(D) $\frac{69}{8}$
(E) $\frac{25}{3}$

Answer: B.
Solution. $x=\log 9 / \log 2=(2 \log 3) / \log 2$ and $y=\log 16 / \log 3=(4 \log 2) / \log 3$, hence $x y=8$.
12. Let $f(x)=\frac{x-1}{x+1}$ and let $f^{(n)}(x)$ denote the n-fold composition of $f(x)$ with itself. That is, $f^{(1)}(x)=f(x)$ and $f^{(n)}(x)=f\left(f^{(n-1)}(x)\right)$. Which of the following is $f^{(2019)}(x)$?
(A) $-\frac{x+1}{x-1}$
(B) $-\frac{1}{x}$
(C) $\frac{x-1}{x+1}$
(D) x
(E) $-\frac{x-1}{x+1}$

Answer: A.
Solution. It is convenient to set $f^{(0)}(x)=x$. Then we have $f^{(1)}(x)=f(x), f^{(2)}(x)=-\frac{1}{x}, f^{(3)}(x)=$ $-\frac{x+1}{x-1}$, and $f^{(4)}(x)=x=f^{(0)}(x)$. After that, the sequence $f^{(n)}(x)$ repeats periodically with period 4 so that for any $n \geqslant 0$ we have $f^{(n)}(x)=f^{\left(r_{n}\right)}(x)$, where r_{n} is the remainder of the division of n by 4. Since $2019=4 \cdot 504+3$, we have $f^{(2019)}(x)=f^{(3)}(x)=-\frac{x+1}{x-1}$.
13. It is known that $a+b+c=5$ and $a b+b c+a c=5$. What could be the value of $a^{2}+b^{2}+c^{2}$?
(A) 10
(B) 15
(C) 20
(D) 25
(E) 30

Answer: B.
Solution. $a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(a b+b c+a c)=5^{2}-2 \cdot 5=15$.
14. For which value of a does the straight line $y=6 x$ intersect the parabola $y=x^{2}+a$ at exactly one point?
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Answer: E.
Solution. This will happen when equation $6 x=x^{2}+a$ has only one solution, i.e. its discriminant $6^{2}-4 a=0$. Hence, $a=9$.
15. The solutions of the quadratic equation $x^{2}+p x+q=0$ are obtained by adding 5 to each of the solutions of $x^{2}-4 x+2=0$. Find the value of $3 p+q$.
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Answer: A.

Solution. If x is a root of the equation $x^{2}+p x+q=0$, then $x-5$ is a root of $x^{2}-4 x+2=0$, that is,

$$
0=(x-5)^{2}-4 \cdot(x-5)+2=x^{2}-14 x+47
$$

Therefore, the quadratic polynomials $x^{2}+p x+q$ and $x^{2}-14 x+47$, having the same roots and the same leading term x^{2}, are identical so that $3 p+q=3 \cdot(-14)+47=5$.
16. How many solutions (a, b, c) does the following system have?

$$
\begin{aligned}
& 1+a+b=a b \\
& 2+a+c=a c \\
& 5+b+c=b c
\end{aligned}
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Infinitely many

Answer: C.
Solution. The given equations can be rewritten in the form:

$$
\begin{aligned}
& (a-1)(b-1)=2, \\
& (a-1)(c-1)=3, \\
& (b-1)(c-1)=6,
\end{aligned}
$$

or, setting $x=a-1, y=b-1, z=c-1$, in the form

$$
\begin{aligned}
x y & =2, \\
x z & =3, \\
y z & =6 .
\end{aligned}
$$

Multiplying these equations, we get $(x y z)^{2}=36$, so that either $x y z=6$ or $x y z=-6$. In the former case we have $z=(x y z) /(x y)=6 / 2=3, y=6 / 3=2, x=6 / 6=1$; in the latter case, similarly, $z=-3, y=-2, x=-1$. Hence there are two solutions.
17. Find the value of the product $P=\left(1-\frac{1}{2^{2}}\right) \cdot\left(1-\frac{1}{3^{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{10^{2}}\right)$.
(A) 0.25
(B) 0.33
(C) 0.44
(D) 0.55
(E) 0.66

Answer: D.
Solution. Use the formula for the difference of two squares:

$$
\begin{aligned}
P & =\left(1-\frac{1}{2}\right) \cdot\left(1+\frac{1}{2}\right) \cdot\left(1-\frac{1}{3}\right) \cdot\left(1+\frac{1}{3}\right) \cdot \ldots \cdot\left(1-\frac{1}{9}\right) \cdot\left(1+\frac{1}{9}\right) \cdot\left(1-\frac{1}{10}\right) \cdot\left(1+\frac{1}{10}\right) \\
& =\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{7}{3} \cdot \frac{4}{3} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{9}{8} \cdot \frac{8}{9} \cdot \frac{10}{9} \cdot \frac{9}{10} \cdot \frac{11}{10}=\frac{1}{2} \cdot \frac{11}{10}=\frac{11}{20}=0.55 .
\end{aligned}
$$

18. The sequence a_{n} is defined by $a_{n}=1+\sqrt{\frac{1}{n}}-\sqrt{\frac{1}{n+1}}-\sqrt{\frac{1}{n}-\frac{1}{n+1}}$. What is the value of the product $a_{1} a_{2} \cdots a_{99}$?
(A) $\frac{1}{55}$
(B) $\frac{1}{110}$
(C) $\frac{1}{99}$
(D) $\frac{2}{99}$
(E) $\frac{1}{100}$

Answer: A.
Solution. We start with converting a_{n} into a product:

$$
\begin{aligned}
a_{n} & =1+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}}=\left(1+\frac{1}{\sqrt{n}}\right)\left(1-\frac{1}{\sqrt{n+1}}\right) \\
& =\frac{\sqrt{n}+1}{\sqrt{n}} \cdot \frac{\sqrt{n+1}-1}{\sqrt{n+1}}=\frac{\sqrt{n}+1}{\sqrt{n}} \cdot \frac{(n+1)-1}{\sqrt{n+1}+1} \cdot \frac{1}{\sqrt{n+1}}=\frac{\sqrt{n}+1}{\sqrt{n+1}+1} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
a_{1} \cdot a_{2} \cdots a_{99} & =\left(\frac{\sqrt{1}+1}{\sqrt{2}+1} \cdot \frac{\sqrt{1}}{\sqrt{2}}\right) \cdot\left(\frac{\sqrt{2}+1}{\sqrt{3}+1} \cdot \frac{\sqrt{2}}{\sqrt{3}}\right) \cdot\left(\frac{\sqrt{3}+1}{\sqrt{4}+1} \cdot \frac{\sqrt{3}}{\sqrt{4}}\right) \cdot \ldots \\
& =\left(\frac{\sqrt{99}+1}{\sqrt{100}+1} \cdot \frac{\sqrt{99}}{\sqrt{100}}\right)=\frac{2 \cdot 1}{(10+1) \cdot 10}=\frac{1}{55} .
\end{aligned}
$$

19. The graph of the function $y=\frac{x-3}{x^{2}-x+6}$ is obtained from the graph of $y=\frac{1}{x+2}$ by deleting a single point (u, v). What is the value of $u \cdot v$?
(A) $-\frac{3}{5}$
(B) $-\frac{1}{5}$
(C) 0
(D) $\frac{1}{5}$
(E) $\frac{3}{5}$

Answer: E.
Solution. We may rewrite $y=\frac{x-3}{x^{2}-x+6}$ as $y=\frac{x-3}{(x-3) \cdot(x+2)}$. For $x \neq 3$ we may simplify and get $y=\frac{1}{x+2}$, hence the point to be deleted is $(3,1 / 5)$.
20. Find the value of the expression $S=1!\cdot 3-2!\cdot 4+3!\cdot 5-4!\cdot 6+\ldots-2016!\cdot 2018+2017$!.
(A) 1
(B) -1
(C) -2018
(D) 2018
(E) 2017

Answer: A.
Solution. Observe that

$$
\begin{aligned}
S= & 1!\cdot(1+2)-2!\cdot(1+3)+3!\cdot(1+4)-4!\cdot(1+5)+\ldots \\
& \quad+2015!\cdot(1+2016)-2016!\cdot(1+2017)+2017! \\
= & 1!+2!-2!-3!+3!+4!-4!-5!+\ldots \\
& \quad+2015!+2016!-2016!-2017!+2017! \\
= &
\end{aligned}
$$

