November 27, 2005 Name

On all the following questions, **show your work.** There are 139 points available on this test. Do not try to do all the problems. Try to find four or five that you you can do well.

- 1. (10 points) Suppose the series $\sum a_n$ has partial sums S_n given by $S_n = \frac{(2n-1)^2}{(3n+1)^2}$. Does the series converge? If so, to what?
- 2. (20 points) Test for convergence and find the sum if possible. If you cannot find the sum, state the test you used to determine convergence (or divergence).

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

(b)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$
.

(c)
$$\sum_{n=1}^{\infty} \frac{1}{1 + (\pi/e)^n}$$
.

(d)
$$\sum_{n=1}^{\infty} \sin(n+1) - \sin(n).$$

(e)
$$\sum_{n=1}^{\infty} \arctan(n+1) - \arctan n.$$

- 3. (25 points) Match each of the following with the correct statement.
 - A. The series is absolutely convergent.
 - C. The series converges, but is not absolutely convergent.
 - D. The series diverges.

$$-1. \sum_{n=1}^{\infty} \frac{(-1)^n}{6n+4}$$

$$-2. \sum_{n=1}^{\infty} \frac{\sin(2n)}{n^2}$$

$$-3. \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+7}$$

$$-4. \sum_{n=1}^{\infty} \frac{(n+1)(6^2-1)^n}{6^{2n}}$$

$$-5. \sum_{n=1}^{\infty} \frac{(-5)^n}{n^5}$$

- 4. (24 points) The interval of convergence of a power series can be of four forms, [a, b], (a, b], [a, b) and (a, b). For each part below gave an example of a power series with the given interval of convergence.
 - (a) (0,2)
 - (b) [-1,5]
 - (c) [1,7)
- 5. (20 points) Consider the function $f(x) = e^{2x-1}$.
 - (a) Find the Taylor polynomial $T_5(x)$ at a = 1/2.
 - (b) Find an upper bound for $|R_5(x)|$ on the interval [0, 1].
 - (c) Find the radius of convergence of the Taylor series.
- 6. (20 points) Consider the function $f(x) = \frac{1}{1-x^2}$.
 - (a) Find a power series representation of $f(x) = \frac{1}{1-x^2}$.
 - (b) Differentiate both sides of the equation in (a) to find a power series representation of f'(x) and find the interval of convergence for this series.

- 7. (20 points) Consider the function $f(x) = 3x^2 \sin(x^2)$. Recall that the Maclaurin series for $\sin x$ is given by $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$.
 - (a) Find the Maclaurin series representation of f(x).

(b) Use part (a) of the problem to find each of the following derivatives of f.
i. f⁽³⁾(0)

ii. $f^{(4)}(0)$

iii. $f^{(8)}(0)$

iv. $f^{(12)}(0)$