September 27, 2005 Name

On all the following questions, **show your work.** There are 144 points available on this test. Do not try to do all the problems. Try to find four or five that you you can do well.

- 1. (20 points) Let f(x) = 1/x for all x > 0, and let [a, b] = [2, 8].
 - (a) (5) Let n = 3 and use left endpoints for sample points to find the approximating sum. That is, compute L_3 .

(b) (7) Find the n^{th} approximating sum, also using left endpoints. In other words, find an expression for L_n . You need not evaluate the limit as $n \to \infty$.

(c) (8) Use the midpoint rule to approximate $\int_2^8 1/x \, dx$. Compare the two numbers M_3 and $\int_2^8 1/x \, dx$.

2. (24 points) Find the following indefinite integrals.

(a)
$$\int \frac{(x-1)^2}{x^2+1} dx$$

(b)
$$\int \frac{1}{\sqrt{9-x^2}} dx$$

(c)
$$\int \frac{d}{dx}(x-3)(x^2-1) dx$$

3. (40 points) Use the evaluation theorem as needed to find each of the definite and improper integrals below.

(a)
$$\int_0^{\pi/2} \cos x \cos(\sin x) \, dx$$

(b)
$$\int_{3}^{4} \frac{x+1}{x^2-4} dx$$

(c)
$$\int_{e}^{\infty} (x \ln x)^{-1} dx$$

(d)
$$\int_0^2 x e^{x^2} dx$$

(e)
$$\int_0^1 x^2 (x-2)^8 dx$$

- 4. (20 points) Consider the integral $\int_{-2}^{3} 1/x \ dx$.
 - (a) Explain why this integral is not defined by the usual definition of integral as a limit of Riemann sums as the number of subintervals n approaches ∞ .

(b) It is tempting to evaluate this integral by antidifferentiating f(x) = 1/x, getting $F(x) = \ln |x|$, and then to measuring the growth of F(x) over the interval [-2, 3] to get $\ln |3| - \ln |-2| = \ln 3 - \ln 2 = \ln(3/2)$. Explain why this is wrong.

(c) Is there are reasonable approach to this problem? What is it?

- 5. (25 points) Let $g(x) = \int_0^{2x^2} (t-2)(t-8) dt$.
 - (a) Find g'(x).
 - (b) Find the critical points of g. IE, find the zeros of g'.
 - (c) Compute g'(-3/2), g'(-1/2), g'(1/2), and g'(3/2).
 - (d) Recall the great theorem in calculus 1 that tells you when a differentiable function is increasing: If f'(x) > 0 at every point of (a, b), then f is increasing over (a, b). Use this theorem and the Test Interval Technique to find the intervals over which g is increasing. Recall that g'(x) must be factored completely to apply the Test Interval Technique.
- 6. (15 points) Use the substitution $x = \sec \theta$ to compute $\int \frac{\sqrt{x^2-1}}{x^4} dx$. Show the triangle you use to find $\sin \theta$, etc. You may find useful the formula $\int \sec \theta d\theta = \ln |\sec \theta + \tan \theta| + C$.