September 27, 2004 Name

On all the following questions, **show your work.** There are 145 points available on this test. Do not try to do all the problems. Try to find four or five that you you can do well.

- 1. (15 points) Let f(x) = 1/x for all x > 0, and let [a, b] = [1, 3].
 - (a) Let n = 4 and use left endpoints for sample points to find the approximating sum. That is, compute L_4 .
 - (b) Find the n^{th} approximating sum, also using left endpoints. In other words, find an expression for L_n . You need not evaluate the limit as $n \to \infty$.
- 2. (30 points) Use the evaluation theorem, etc. to find each of the definite integrals below.

(a)
$$\int_{0}^{\ln 3} 2e^{2x} dx$$

(b) $\int_{1}^{6} \frac{x^{2} - 3x + 5}{x^{2}} dx$
(c) $\int_{0}^{\pi/4} \sec^{2} x dx$
(d) $\int_{0}^{1} \frac{1}{\sqrt{1 - x^{2}}} dx$
(e) $\int_{0}^{1} \frac{x}{1 + x^{4}} dx$

- 3. (15 points) Evaluate $\int_0^\infty 1/x^2 dx$.
- 4. (20 points) Let $g(x) = \int_0^x t^2 6t + 5 dt$.
 - (a) Over what intervals is g increasing?
 - (b) Over what intervals is g concave upwards?
 - (c) What is the maximum value of g over the interval [0, 8]?

Test 1

5. (20 points) Suppose f is defined by:

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1\\ x - 1 & \text{if } 1 < x \le 2\\ 3 - x & \text{if } 2 < x \le 3\\ 0 & \text{if } 3 < x \end{cases}$$

Let $g(x) = \int_0^x f(t)dt$.

(a) Find an expression for g(x) similar to the one for f(x).

(b) Sketch the graphs of g and f.

(c) Compute g'(x).

6. (15 points) Evaluate $\int_0^1 \ln x \, dx$.

7. (15 points) Let $f(x) = \int_0^{x^2} \frac{t}{t^3 - 2} dt$. Then $f'(x) = \frac{2x^3}{x^6 - 2}$. Explain why this is the case. How does the chain rule play a part here? What functions are being composed?

8. (15 points) Consider the integral $\int_{-2}^{3} 1/x \, dx$.

(a) It is tempting to evaluate this integral by antidifferentiating f(x) = 1/x, getting $F(x) = \ln |x|$, and then to measuring the growth of F(x) over the interval [-2, 3] to get $\ln |3| - \ln |-2| = \ln 3 - \ln 2 = \ln(3/2)$. Explain why this is wrong.

(b) Is there are reasonable approach to this problem?